Projections of coastal water elevations for North Carolina and South Carolina

Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]

Metadata:

Identification_Information:
Citation:
Citation_Information:
Originator: Patrick L. Barnard
Originator: Li H. Erikson
Originator: Kees Nederhoff
Originator: Kai A. Parker
Originator: Jennifer A. Thomas
Originator: Amy C. Foxgrover
Originator: Andrea C. O’Neill
Originator: Norberto C. Nadal-Caraballo
Originator: Chris Massey
Originator: Madison C. Yawn
Originator: Anita C. Engelstad
Publication_Date: 20241122
Title:
Projections of coastal water elevations for North Carolina and South Carolina
Geospatial_Data_Presentation_Form: geoTIFF
Series_Information:
Series_Name: data release
Issue_Identification: DOI:10.5066/P9W91314
Publication_Information:
Publication_Place: Pacific Coastal and Marine Science Center, Santa Cruz, CA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/P9W91314
Larger_Work_Citation:
Citation_Information:
Originator: Patrick L. Barnard
Originator: Kevin Befus
Originator: Jeffrey J. Danielson
Originator: Anita C. Engelstad
Originator: Li H. Erikson
Originator: Amy C. Foxgrover
Originator: Matthew W. Hardy
Originator: Daniel J. Hoover
Originator: Tim Leijnse
Originator: Patrick W. Limber
Originator: Chris Massey
Originator: Robert McCall
Originator: Norberto C. Nadal-Caraballo
Originator: Kees Nederhoff
Originator: Leonard Ohenhen
Originator: Andrea C. O’Neill
Originator: Kai A. Parker
Originator: Manoocher Shirzaei
Originator: Xin Su
Originator: Jennifer A. Thomas
Originator: Maarten van Ormondt
Originator: Sean F. Vitousek
Originator: Kilian D. Vos
Originator: Madison C. Yawn
Publication_Date: 2023
Title:
Future coastal hazards along the U.S. North and South Carolina coasts
Series_Information:
Series_Name: data release
Issue_Identification: DOI:10.5066/P9W91314
Publication_Information:
Publication_Place: Pacific Coastal and Marine Science Center, Santa Cruz, CA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/P9W91314
Description:
Abstract:
Projected water elevations from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corps of Engineers. The resulting data are elevations of projected flood hazards along the North Carolina and South Carolina coast due to sea level rise and plausible future storm conditions that consider the changing climate, hurricanes, and natural variability. The resulting data products include water elevations that are consistent with coastal flood projections, also available in this dataset (Barnard, and others, 2023). In addition to sea-level rise, flood simulations run by these numerical models included dynamic contributions from tide, storm surge, wind, waves, river discharge, precipitation, and seasonal sea-level fluctuations. Outputs include impacts from combinations of SLR scenarios (0, 0.25, 0.5, 1.0, 1.5, 2.0, and 3.0 m), storm conditions including 1-year, 20-year, and 100-year return interval storms, and a background condition (no storm - astronomic tide and average atmospheric conditions).
Purpose:
These data are intended for policy makers, resource managers, science researchers, students, and the general public. These projections for future sea-level rise scenarios provide emergency responders and coastal planners with critical hazards information that can be used as a screening tool to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. These data can be used with geographic information systems or other software to identify and assess possible areas of vulnerability. These data are not intended to be used for navigation.
Supplemental_Information:
Work was funded by the Additional Supplemental Appropriations for Disaster Relief Act of 2019 (H.R. 2157) for North Carolina and South Carolina. This work is part of ongoing modeling efforts for the United States. For more information on coastal storm modeling, see https://www.usgs.gov/centers/pcmsc/science/coastal-storm-modeling-system-cosmos. Although this Federal Geographic Data Committee-compliant metadata file is intended to document the data set in nonproprietary form, as well as in Esri format, this metadata file may include some Esri-specific terminology.
Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2024
Currentness_Reference: publication year
Status:
Progress: Complete
Maintenance_and_Update_Frequency: None planned
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -81.41555
East_Bounding_Coordinate: -75.44948
North_Bounding_Coordinate: 36.55215
South_Bounding_Coordinate: 32.03543
Keywords:
Theme:
Theme_Keyword_Thesaurus: USGS Metadata Identifier
Theme_Keyword: USGS:0c7f4296-83ba-44fa-a364-c63cebe52924
Theme:
Theme_Keyword_Thesaurus: Data Categories for Marine Planning
Theme_Keyword: Physical Habitats and Geomorphology
Theme:
Theme_Keyword_Thesaurus: Global Change Master Directory (GCMD)
Theme_Keyword: Hazards Planning
Theme_Keyword: Ocean Waves
Theme_Keyword: Ocean Winds
Theme_Keyword: Beaches
Theme_Keyword: Erosion
Theme_Keyword: Sea Level Rise
Theme_Keyword: Storm Surge
Theme_Keyword: Extreme Weather
Theme_Keyword: Floods
Theme_Keyword: Water Elevation
Theme:
Theme_Keyword_Thesaurus: USGS Thesaurus
Theme_Keyword: Climate Change
Theme_Keyword: Storms
Theme_Keyword: Wind
Theme_Keyword: Floods
Theme_Keyword: Sea-level Change
Theme_Keyword: mathematical modeling
Theme_Keyword: effects of climate change
Theme_Keyword: earth sciences
Theme:
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: Oceans
Theme_Keyword: ClimatologyMeteorologyAtmosphere
Theme:
Theme_Keyword_Thesaurus: Marine Realms Information Bank (MRIB) keywords
Theme_Keyword: sea level change
Theme_Keyword: waves
Theme_Keyword: floods
Theme_Keyword: coastal erosion
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: U.S. Geological Survey
Theme_Keyword: USGS
Theme_Keyword: Coastal and Marine Hazards and Resources Program
Theme_Keyword: CMHRP
Theme_Keyword: Pacific Coastal and Marine Science Center
Theme_Keyword: PCMSC
Place:
Place_Keyword_Thesaurus: Geographic Names Information System (GNIS)
Place_Keyword: State of North Carolina
Place_Keyword: State of South Carolina
Access_Constraints: No access constraints
Use_Constraints:
USGS-authored or produced data and information are in the public domain from the U.S. Government and are freely redistributable with proper metadata and source attribution. Please recognize and acknowledge the U.S. Geological Survey as the originator of the dataset and in products derived from these data.
Point_of_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization:
U.S. Geological Survey, Pacific Coastal and Marine Science Center
Contact_Person: PCMSC Science Data Coordinator
Contact_Address:
Address_Type: mailing and physical
Address: 2885 Mission Street
City: Santa Cruz
State_or_Province: CA
Postal_Code: 95060
Contact_Voice_Telephone: 831-427-4747
Contact_Electronic_Mail_Address: pcmsc_data@usgs.gov
Browse_Graphic:
Browse_Graphic_File_Name: Projections_WaterElevation_NC_SC.png
Browse_Graphic_File_Description:
Map showing area of modelled projections of water elevation for North and South Carolina.
Browse_Graphic_File_Type: PNG
Data_Set_Credit:
This data release was funded by the Additional Supplemental Appropriations for Disaster Relief Act of 2019 (H.R. 2157) for North Carolina and South Carolina. The authors would like to acknowledge the following important contributions: Liv Herdman for help with understanding and accessing the National Water Model (NWM) data; Richard Signell and Daniel Nowacki for crucial python code and troubleshooting help in downloading National Water Model data hosted on Amazon Web Services (AWS); Fernando Salas for sharing route link files for NWM that were crucial in establishing watershed information; Brian Cosgrove and Anthony Guerriero for connecting the authors to Fernando Salas; and Malcolm Roberts for help navigating the CMIP6 tropical cyclone tracking products, providing additional information and access to them, and helpful discussions on research. Additionally, authors would like to extend special thanks to USGS colleagues for a detailed review of the projections: Amy Farris, Rachel Henderson, Kathy Weber, Justin Birchler, Alex Seymour, Sharifa Karwandyar, Matt Hardy, and Josh Pardun.
Native_Data_Set_Environment:
The datasets were created in a Windows 11 Operating system, using Matlab v2020, ArcGIS 10.8.1 and 10.8.8, and python 3.7. Results were output and saved as vector shapefiles.
Cross_Reference:
Citation_Information:
Originator: K. Nederhoff
Originator: T. Leijnse
Originator: K.A. Parker
Originator: J.A. Thomas
Originator: A.C. O'Neill
Originator: M. van Ormondt
Originator: R. McCall
Originator: L.H. Erikson
Originator: P.L. Barnard
Originator: A.C. Foxgrover
Originator: W. Klessens
Originator: N.C. Nadal-Caraballo
Originator: C. Massey
Publication_Date: 2024
Title:
Tropical cyclones or extratropical storms: what drives the compound flood hazard, impact and risk for the United States Southeast Atlantic coast?
Other_Citation_Details:
Nederhoff, K., Leijnse, T., Parker, K.A., Thomas, J.A., O'Neill, A.C., van Ormondt, M., McCall, R., Erikson, L.H., Barnard, P.L., Foxgrover, A.C., Klessens W., Nadal-Caraballo, N.C., and Massey, C., 2024, Tropical cyclones or extratropical storms: what drives the compound flood hazard, impact and risk for the United States Southeast Atlantic coast?: Natural Hazards, https://doi.org/10.1007/s11069-024-06552-x.
Online_Linkage: https://doi.org/10.1007/s11069-024-06552-x
Cross_Reference:
Citation_Information:
Originator: N.C. Nadal-Caraballo
Originator: M.O. Campbell
Originator: V.M. Gonzalez
Originator: M.J. Torres
Originator: J.A. Melby
Originator: A.A. Taflanidis
Publication_Date: 2020
Title:
Coastal Hazards System: A Probabilistic Coastal Hazard Analysis Framework
Other_Citation_Details:
Nadal-Caraballo, N. C., Campbell, M. O., Gonzalez, V. M., Torres, M. J., Melby, J. A., and Taflanidis, A. A., 2020, Coastal Hazards System: A Probabilistic Coastal Hazard Analysis Framework, Journal of Coastal Research, 95, 1211, https://doi.org/10.2112/SI95-235.1
Online_Linkage: https://doi.org/10.2112/SI95-235.1
Cross_Reference:
Citation_Information:
Originator: R.J. Haarsma
Originator: M.J. Roberts
Originator: P.L. Vidale
Originator: C.A. Senior
Originator: A. Bellucci
Originator: Q. Bao
Originator: P. Chang
Originator: S. Corti
Originator: N.S. Fučkar
Originator: V. Guemas
Originator: J. von Hardenberg
Originator: W. Hazeleger
Originator: C. Kodama
Originator: T. Koenigk
Originator: L. R. Leung
Originator: J. Lu
Originator: J.J. Luo
Originator: J. Mao
Originator: M.S. Mizielinski
Originator: R. Mizuta
Originator: P. Nobre
Originator: M. Satoh
Originator: E. Scoccimarro
Originator: T. Semmler
Originator: J. Small
Originator: J.S. von Storch
Publication_Date: 2016
Title:
High resolution model intercomparison project (HighResMIP v1.0) for CMIP6
Other_Citation_Details:
Haarsma, R.J., Roberts, M.J., Vidale, P.L., Senior, C.A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N.S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J. J., Mao, J., Mizielinski, M.S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.S., 2016, High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geoscientific Model Development, 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Online_Linkage: https://doi.org/10.5194/gmd-9-4185-2016
Cross_Reference:
Citation_Information:
Originator: Natural Resources Conservation Service
Publication_Date: 1985
Title: National Engineering Handbook
Other_Citation_Details:
Natural Resources Conservation Service, 1985, Hydrology, in, Natural Resources Conservation Service, 1985, National Engineering Handbook: U.S. Dept. of Agriculture, Soil Conservation Service
Online_Linkage:
Cross_Reference:
Citation_Information:
Originator: Patrick L. Barnard
Originator: Li H. Erikson
Originator: Kees Nederhoff
Originator: Kai A. Parker
Originator: Jennifer A. Thomas
Originator: Amy C. Foxgrover
Originator: Andrea C. O’Neill
Originator: Norberto C. Nadal-Caraballo
Originator: Chris Massey
Originator: Madison C. Yawn
Originator: Anita C. Engelstad
Publication_Date: 2023
Title:
Projections of coastal flood hazards and flood potential for North Carolina and South Carolina
Other_Citation_Details:
Barnard, P. L., Erikson, L. H., Nederhoff, K., Parker, K. A., Thomas, J. A., Foxgrover, A. C., O’Neill, A. C., Nadal-Caraballo, N. C., Massey, C., Yawn, M., and Engelstad, A. C., 2023, Projections of coastal flood hazards and flood potential for North Carolina and South Carolina, in Barnard, P.L., Befus, K., Nadal-Caraballo, N.C., Danielson, J., Engelstad, A., Erikson, L.H., Foxgrover, A.C., Hardy, M., Hoover, D., Leijnse, T., Massey, C., McCall, R., Nederhoff, K., Ohenhen, L., O'Neill, A.C., Parker, K., Shirzaei, M., Su, X., Thompson, J., van Ormondt, M., Vitousek, S., Vos, K., and Yawn, M.C., 2023, Future coastal hazards along North Carolina and South Carolina coasts: U.S. Geological Survey data release, https://doi.org/10.5066/P9W91314
Online_Linkage: https://doi.org/10.5066/P9W91314
Cross_Reference:
Citation_Information:
Originator: T. Leijnse
Originator: M. van Ormondt
Originator: K. Nederhoff
Originator: A. van Dongeren
Publication_Date: 2021
Title:
Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: Including fluvial, pluvial, tidal, wind- and wave-driven processes
Other_Citation_Details:
Leijnse, T., van Ormondt, M., Nederhoff, K., and van Dongeren, A., 2021, Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: Including fluvial, pluvial, tidal, wind- and wave-driven processes: Coastal Engineering, v. 163, https://doi.org/10.1016/j.coastaleng.2020.103796
Online_Linkage: https://doi.org/10.1016/j.coastaleng.2020.103796
Data_Quality_Information:
Attribute_Accuracy:
Attribute_Accuracy_Report:
Attribute values are model-derived water elevations due to plausible sea-level rise and future storm conditions and therefore cannot be validated against observations. The projections were generated using the latest downscaled climate projections from the Coupled Model Intercomparison Project (CMIP6).
Logical_Consistency_Report: Data have undergone quality checks and meet standards.
Completeness_Report: Dataset is considered complete for the information presented.
Positional_Accuracy:
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report: Data are concurrent with topobathymetric DEM locations.
Vertical_Positional_Accuracy:
Vertical_Positional_Accuracy_Report:
Model-derived data are accurate within published uncertainty bounds (see flood potential in the Projections of coastal flood hazards and flood potential for North Carolina and South Carolina dataset, also available in this data release), indicative of total uncertainty from elevation data sources, model processes and contributing data, and vertical land motion. This value is spatially variable and dependent on scenario. See Process Steps for details on total contributions to uncertainty.
Lineage:
Source_Information:
Source_Citation:
Citation_Information:
Originator: Malcolm Roberts
Publication_Date: 2019
Title:
MOHC HadGEM3-GC31-HH model output prepared for CMIP6 HighResMIP highres-future
Geospatial_Data_Presentation_Form: netCDF files
Publication_Information:
Publication_Place: online
Publisher: Earth System Grid Federation
Online_Linkage: http://doi.org/10.22033/ESGF/CMIP6.5982
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2019
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: HadGEM3-GC31-HH
Source_Contribution:
Wind velocities, sea level pressure, and precipitation output were used as boundary conditions for the SFINCS model.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Malcolm Roberts
Publication_Date: 2019
Title:
MOHC HadGEM3-GC31-HM model output prepared for CMIP6 HighResMIP highres-future
Geospatial_Data_Presentation_Form: netCDF files
Publication_Information:
Publication_Place: online
Publisher: Earth System Grid Federation
Online_Linkage: http://doi.org/10.22033/ESGF/CMIP6.5984
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2019
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: HadGEM3-GC31-HM
Source_Contribution:
Wind velocities, sea level pressure, and precipitation output were used as boundary conditions for the SFINCS model.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Malcolm Roberts
Publication_Date: 2017
Title:
MOHC HadGEM3-GC31-HM-SST model output prepared for CMIP6 HighResMIP highresSST-present
Geospatial_Data_Presentation_Form: netCDF files
Publication_Information:
Publication_Place: online
Publisher: Earth System Grid Federation
Online_Linkage: http://doi.org/10.22033/ESGF/CMIP6.6024
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2017
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: HadGEM3-GC31-HM-SST
Source_Contribution:
Wind velocities, sea level pressure, and precipitation output were used as boundary conditions for the SFINCS model.
Source_Information:
Source_Citation:
Citation_Information:
Originator: EC-Earth Consortium
Publication_Date: 2019
Title:
EC-Earth-Consortium EC-Earth3P-HR model output prepared for CMIP6 HighResMIP highres-future
Geospatial_Data_Presentation_Form: netCDF files
Publication_Information:
Publication_Place: online
Publisher: Earth System Grid Federation
Online_Linkage: http://doi.org/10.22033/ESGF/CMIP6.4912
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2019
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: EC-Earth3P-HR
Source_Contribution:
Wind velocities, sea level pressure, and precipitation output were used as boundary conditions for the SFINCS model.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Aurore Voldoire
Publication_Date: 2019
Title:
CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 ScenarioMIP ssp585
Geospatial_Data_Presentation_Form: netCDF files
Publication_Information:
Publication_Place: online
Publisher: Earth System Grid Federation
Online_Linkage: http://doi.org/10.22033/ESGF/CMIP6.4225
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2019
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: CNRM-CM6-1-HR
Source_Contribution:
Wind velocities, sea level pressure, and precipitation output were used as boundary conditions for the SFINCS model.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Huan Guo
Originator: Jasmin G. John
Originator: Chris Blanton
Originator: Colleen McHugh
Originator: Serguei Nikonov
Originator: Aparna Radhakrishnan
Originator: Kristopher Rand
Originator: Niki T. Zadeh
Originator: V. Balaji
Originator: Jeff Durachta
Originator: Christopher Dupuis
Originator: Raymond Menzel
Originator: Thomas Robinson
Originator: Seth Underwood
Originator: Hans Vahlenkamp
Originator: Krista A. Dunne
Originator: Paul P.G. Gauthier
Originator: Paul Ginoux
Originator: Stephen M. Griffies
Originator: Robert Hallberg
Originator: Matthew Harrison
Originator: William Hurlin
Originator: Pu Lin
Originator: Sergey Malyshev
Originator: Vaishali Naik
Originator: Fabien Paulot
Originator: David J. Paynter
Originator: Jeffrey Ploshay
Originator: Daniel M. Schwarzkopf
Originator: Charles J. Seman
Originator: Andrew Shao
Originator: Levi Silvers
Originator: Bruce Wyman
Originator: Xiaoqin Yan
Originator: Yujin Zeng
Originator: Alistair Adcroft
Originator: John P. Dunne
Originator: Isaac M. Held
Originator: John P. Krasting
Originator: Larry W. Horowitz
Originator: Chris Milly
Originator: Elena Shevliakova
Originator: Michael Winton
Originator: Ming Zhao
Originator: Rong Zhang
Publication_Date: 2018
Title:
National Oceanic and Atmospheric Administration (NOAA) NOAA-GFDL GFDL-CM4 model output prepared for CMIP6 ScenarioMIP ssp585
Geospatial_Data_Presentation_Form: netCDF files
Publication_Information:
Publication_Place: online
Publisher: Earth System Grid Federation
Online_Linkage: http://doi.org/10.22033/ESGF/CMIP6.9268
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2018
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: GFDL-CMC4C192
Source_Contribution:
Wind velocities, sea level pressure, and precipitation output were used as boundary conditions for the SFINCS model.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Enrico Scoccimarro
Originator: Alessio Bellucci
Originator: Daniele Peano
Publication_Date: 2017
Title: CMCC CMCC-CM2-VHR4 model output prepared for CMIP6 HighResMIP
Geospatial_Data_Presentation_Form: netCDF files
Publication_Information:
Publication_Place: online
Publisher: Earth System Grid Federation
Online_Linkage: https://doi.org/10.22033/ESGF/CMIP6.1367
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2017
Source_Currentness_Reference: publication date 1
Source_Citation_Abbreviation: CMCC-CM2-VHR4
Source_Contribution:
Wind velocities, sea level pressure, and precipitation output were used as boundary conditions for the SFINCS model.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Sanne Muis
Originator: Maialen I. Apecechea
Originator: José A. Álvarez
Originator: Martin Verlaan
Originator: Kun Yan
Originator: Job Dullaart
Originator: Jeroen Aerts
Originator: Trang Duong
Originator: Rosh Ranasinghe
Originator: Dewi le Bars
Originator: Rein Haarsma
Originator: Malcolm Roberts
Publication_Date: 2021
Title:
Global water level change indicators from 1950 to 2050 derived from HighResMIP climate projections
Geospatial_Data_Presentation_Form: netCDF files
Publication_Information:
Publication_Place: online
Publisher:
Copernicus Climate Change Service (C3S) Climate Data Store (CDS)
Online_Linkage:
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2021
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: GTSM
Source_Contribution: obtained nearshore water levels for SFINCS input
Source_Information:
Source_Citation:
Citation_Information:
Originator: National Oceanic and Atmospheric Administration (NOAA)
Publication_Date: 2021
Title: Historic Water Levels
Geospatial_Data_Presentation_Form: csv
Publication_Information:
Publication_Place: online
Publisher: NOAA
Online_Linkage:
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20210101
Source_Currentness_Reference: date data were accessed
Source_Citation_Abbreviation: historical NOAA water levels
Source_Contribution: model testing
Source_Information:
Source_Citation:
Citation_Information:
Originator: D. J. Tyler
Originator: W.M. Cushing
Originator: Jeff J. Danielson
Originator: S. Poppenga
Originator: S. Beverly
Originator: R. Shogib
Publication_Date: 2022
Title: Topobathymetric Model of the Coastal Carolinas, 1851 to 2020
Geospatial_Data_Presentation_Form: raster
Publication_Information:
Publication_Place: online
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/P9MPA8K0
Type_of_Source_Media: digital dataset
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 1851
Ending_Date: 2020
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: DEM1
Source_Contribution: digital elevation data used for model input
Source_Information:
Source_Citation:
Citation_Information:
Originator: NOAA Office for Coastal Management
Publication_Date: 2016
Title:
2016 USGS Coastal National Elevation Database (CoNED) Topobathymetric Model (1859-2015): Chesapeake Bay
Geospatial_Data_Presentation_Form: raster
Publication_Information:
Publication_Place: online
Publisher: NOAA
Online_Linkage:
Type_of_Source_Media: digital dataset
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 1859
Ending_Date: 2015
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: DEM2
Source_Contribution: digital elevation data used for model input
Source_Information:
Source_Citation:
Citation_Information:
Originator: Soil Survey Staff, Natural Resources Conservation Service
Publication_Date: 2022
Title: Web Soil Survey, STATSGO2 Database
Geospatial_Data_Presentation_Form: NetCDF
Publication_Information:
Publication_Place: online
Publisher: United States Department of Agriculture
Online_Linkage:
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2022
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NRCS
Source_Contribution: soil infiltration rates for precipitation
Source_Information:
Source_Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 20210604
Title:
National Land Cover Database (NLCD) 2016 Land Cover Conterminous United States
Geospatial_Data_Presentation_Form: geoTIFF
Publication_Information:
Publication_Place: online
Publisher: Multi-Resolution Land Characteristics Consortium
Online_Linkage: https://www.mrlc.gov/data/nlcd-2016-land-cover-conus
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2021
Source_Currentness_Reference: publication date 6
Source_Citation_Abbreviation: NLCD 2016
Source_Contribution: land cover
Source_Information:
Source_Citation:
Citation_Information:
Originator: Li Erikson
Originator: Liv Herdman
Originator: Chris Flanary
Originator: Anita Engelstad
Originator: Prasad Pusuluri
Originator: Patrick Barnard
Originator: Curt Storlazzi
Originator: Mike Beck
Originator: Borja Reguero
Publication_Date: 2022
Title:
Ocean wave time-series simulated with a global-scale numerical wave model under the influence of projected CMIP6 wind and sea ice fields
Geospatial_Data_Presentation_Form: NetCDF
Publication_Information:
Publication_Place: online
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/P9KR0RFM
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2022
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: WW3
Source_Contribution: projected wave data
Source_Information:
Source_Citation:
Citation_Information:
Originator: Kai A. Parker
Originator: Li Erikson
Originator: Jennifer A. Thomas
Originator: Kees Nederhoff
Originator: Tim Leijnse
Publication_Date: 2023
Title:
Nearshore parametric wave setup hindcast data (1979-2019) for North Carolina and South Carolina coasts
Geospatial_Data_Presentation_Form: csv files
Publication_Information:
Publication_Place: online
Publisher: United States Geological Survey
Online_Linkage: https://doi.org/10.5066/P9W91314
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2023
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: waveSetup_hindc
Source_Contribution: provided wave setup for the hindcast period
Source_Information:
Source_Citation:
Citation_Information:
Originator: Kai A. Parker
Originator: Li Erikson
Originator: Jennifer A. Thomas
Originator: Kees Nederhoff
Originator: Tim Leijnse
Publication_Date: 2023
Title:
Nearshore parametric wave setup projections (2020-2050) for North Carolina and South Carolina coasts
Geospatial_Data_Presentation_Form: csv files
Publication_Information:
Publication_Place: online
Publisher: United States Geological Survey
Online_Linkage: https://doi.org/10.5066/P9W91314
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2023
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: waveSetup_proj
Source_Contribution: provided wave setup for the projection period
Source_Information:
Source_Citation:
Citation_Information:
Originator: Kai A. Parker
Originator: Li Erikson
Originator: Jennifer A. Thomas
Originator: Kees Nederhoff
Originator: Tim Leijnse
Publication_Date: 2023
Title:
Nearshore water level, tide and non-tidal residual hindcasts (1979-2016) for North Carolina and South Carolina coasts
Geospatial_Data_Presentation_Form: csv files
Publication_Information:
Publication_Place: online
Publisher: United States Geological Survey
Online_Linkage: https://doi.org/10.5066/P9W91314
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2023
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: waterLevel_hindc
Source_Contribution:
provided water levels, tides, and non-tidal residuals for the hindcast period
Source_Information:
Source_Citation:
Citation_Information:
Originator: Kai A. Parker
Originator: Li Erikson
Originator: Jennifer A. Thomas
Originator: Kees Nederhoff
Originator: Tim Leijnse
Publication_Date: 2023
Title:
Nearshore water level, tide and non-tidal residual projections (2016-2050) for North Carolina and South Carolina coasts
Geospatial_Data_Presentation_Form: csv files
Publication_Information:
Publication_Place: online
Publisher: United States Geological Survey
Online_Linkage: https://doi.org/10.5066/P9W91314
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2023
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: waterLevel_proj
Source_Contribution:
provided water levels, tides, and non-tidal residuals for the projection period
Source_Information:
Source_Citation:
Citation_Information:
Originator: Y. Xia
Originator: M. Mitchell
Originator: J. Ek
Originator: B. Sheffield
Originator: E. Cosgrove
Originator: L. Wood
Originator: C. Luo
Originator: H. Alonge
Originator: J. Wei
Originator: B. Meng
Originator: D. Livneh
Originator: V. Lettenmaier
Originator: Q. Koren
Originator: K. Mo Duan
Originator: Y. Fan
Originator: D. Mocko
Publication_Date: 2009
Title:
North American Land Data Assimilation System (NLDAS) Primary Forcing Data L4 Hourly 0.125 x 0.125 degree V002
Geospatial_Data_Presentation_Form: GRIB files
Publication_Information:
Publication_Place: online
Publisher:
Goddard Earth Sciences Data and Information Services Center (GES DISC)
Online_Linkage: https://10.5067/6J5LHHOHZHN4
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2009
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NLDAS
Source_Contribution: historic precipitation used to compare to NWM streamflow
Source_Information:
Source_Citation:
Citation_Information:
Originator: Yan Y. Liu
Originator: David R. Maidment
Originator: David G. Tarboton
Originator: Xing Zheng
Originator: Ahmet Yildirim,
Originator: Nazmus S. Sazib
Originator: Shaowen Wang
Publication_Date: 2016
Title: NFIE Continental Flood Inundation Mapping - Data Repository
Geospatial_Data_Presentation_Form: shapefiles
Publication_Information:
Publication_Place: online
Publisher: University of Texas
Online_Linkage: https://web.corral.tacc.utexas.edu/nfiedata/
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20201007
Source_Currentness_Reference: time when data were accessed
Source_Citation_Abbreviation: NFIE
Source_Contribution: shapefiles providing stream reach ID locations
Source_Information:
Source_Citation:
Citation_Information:
Originator: National Oceanic and Atmospheric Administration (NOAA)
Publication_Date: 2020
Title: The NOAA National Water Model Retrospective dataset, V.2.0
Geospatial_Data_Presentation_Form: zarr
Publication_Information:
Publication_Place: online
Publisher: aws
Online_Linkage: https://registry.opendata.aws/nwm-archive
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20201231
Source_Currentness_Reference: date data were accessed
Source_Citation_Abbreviation: NWM
Source_Contribution: used to establish projected river/fluvial discharge
Source_Information:
Source_Citation:
Citation_Information:
Originator: Manoocher Shirzaei
Originator: Leonard Ohenhen
Originator: Matthew W. Hardy
Publication_Date: 2023
Title:
Vertical land motion rates for the years 2007 to 2021 for North Carolina and South Carolina coasts
Geospatial_Data_Presentation_Form: csv files
Publication_Information:
Publication_Place: online
Publisher: United States Geological Survey
Online_Linkage: https://doi.org/10.5066/P9W91314
Type_of_Source_Media: online database
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2023
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: VLM
Source_Contribution: provided vertical land motion for uncertainty calculations
Process_Step:
Process_Description:
All processes and methods are outlined in Nederhoff and others (2024); please refer to that for more information beyond the summary in this document. To generate time-series of forcings for coastal flooding models in order to map future coastal flooding hazards along the south Atlantic United States coast due to sea level rise and plausible future storm conditions that consider the changing climate, hurricanes, and natural variability, we gathered available atmospheric forcing data (specifically precipitation, sea-level pressure, and near-surface wind for this study) from CMIP6 Global Climate Models (GCM). At the time of this study, only products for Representative Concentration Pathway 8.5 for the projected time-period 2020-2050 were available and used. Output was gathered for specific High-Resolution Model Intercomparison Project (HighResMIP) experiments: HadGEM3-GC31, EC-Earth3P-HR, CNRM-CM6-1-HR, GFDL-CMC4C192 and CMCC-CM2-VHR4
Source_Used_Citation_Abbreviation:
HadGEM3-GC31-HH, HadGEM3-GC31-HM, HadGEM3-GC31-HM-SST, EC-Earth3P-HR, CNRM-CM6-1-HR, GFDL-CMC4C192 and CMCC-CM2-VHR4
Process_Date: 20200501
Process_Step:
Process_Description:
We analyzed multi-model trends in future (2020-2050) tropical cyclone climatology depicted in GCMs throughout the study area (Nederhoff and others, 2024). This included detailed comparisons to historical runs in probability functions of tropical cyclone sea-level pressure, propagation speed and maximum wind speed throughout the study area, to highlight future changes in tropical cyclone characteristics by geographical position.
Source_Used_Citation_Abbreviation:
HadGEM3-GC31-HH, HadGEM3-GC31-HM, HadGEM3-GC31-HM-SST, EC-Earth3P-HR, CNRM-CM6-1-HR, GFDL-CMC4C192 and CMCC-CM2-VHR4
Process_Date: 20201215
Process_Step:
Process_Description:
We obtained Global Surge and Tide Model (GTSM) output (run for all aforementioned CMIP6 experiments’ sea-level pressure and wind) for nearshore water levels for projected period 2016-2050, and historical period (1976-2015). As described in Nederhoff and others (2024), we conducted initial comparisons of datasets and analysis of extreme water level changes, before preparing data for use in following process steps.
Source_Used_Citation_Abbreviation: GTSM
Process_Date: 20201215
Process_Step:
Process_Description:
As described by Nederhoff and others (2024), we tested the Super-Fast Inundation of CoastS model (SFINCS; Leijnse and others, 2021) resolutions and computational efficiency and determined that running the SFINCS at 200-m spatial resolution, with sub-gridding, was optimum for this study, providing balance between fast simulations and accuracy of coastal water levels (tested for Hurricane Florence,14 September 2018, with historical NOAA water levels). The study area was covered by three rectilinear SFINCS domains, aligned shore-normal for each respective area, with the offshore boundary as the nearshore GTSM output locations. Model boundaries extend outside the study area to encompass and include necessary hydrodynamics. Elevation for the SFINCS domains was extracted from the corresponding DEMs in the region and resampled from 1-meter resolution to the SFINCS model's computational grid. SFINCS simulations were run with soil infiltration rates derived using the Curve Number Method (U.S. Dept. of Agriculture, Soil Conservation Service, 1985) to capture absorption/run-off of precipitation in the model. Curve Numbers were derived using the National Land Classification Dataset (NLCD 2016) and the Digital General Soil Map of the United States (NRCS).
Source_Used_Citation_Abbreviation: historical NOAA water levels, DEM1, DEM2, NLCD 2016, NRCS
Process_Date: 20210115
Process_Step:
Process_Description:
We conducted initial comparisons of WW3 data for projections (run with wind conditions for all aforementioned CMIP6 experiments) at the 15-20 m isobath and analysis of extreme nearshore wave changes, before preparing data for use in following process steps.
Source_Used_Citation_Abbreviation: WW3
Process_Date: 20210228
Process_Step:
Process_Description:
Hindcasted water levels were compared to NOAA tide station observations and were used to guide any necessary bias corrections (see the Nearshore water level, tide and non-tidal residual hindcasts (1979-2016) for North Carolina and South Carolina coasts dataset, also available in this data release). Bias corrections were applied to the projected water levels. See Nederhoff and others (2024) for more details.
Source_Used_Citation_Abbreviation: waterLevel_hindc, waterLevel_proj
Process_Date: 20210301
Process_Step:
Process_Description:
In collaboration with U.S. Army Corps of Engineers (USACE), we used a synthetic database available from Nadal-Caraballo and others (2020) of approximately 1,200 tropical cyclone events to establish a baseline of boundary conditions for tropical storms. As described in Nederhoff and others (2024), changes in tropical storm parameters, computed from the previous tropical cyclone analysis comparing GCM data for historical to future periods, were used to shift the hazard curves to represent future cyclone conditions and changes in frequency of occurrence and magnitude.
Process_Date: 20210531
Process_Step:
Process_Description:
We derived future time-series data of river/fluvial discharge through the study area for 48 rivers, using the relationship between historical NLDAS precipitation and NWM reanalysis data and applying it to future GCM precipitation output (Nederhoff and others, 2024). The upstream watershed of each of the 48 rivers was identified from the network of river reach IDs used by the NWM (NFIE). Historical precipitation (1993-2018) over each individual watershed was used for each respective river. Future discharge was then estimated by applying future GCM precipitation data (2020-2050) over watersheds and using the established relationships between historical precipitation/pluvial rates and discharge. When no precipitation was projected in data, baseline river discharge rates (from NWM historical periods) were used. An additional river time series consisted solely of its historical baseline discharge, due to its watershed being too small for this process.
Source_Used_Citation_Abbreviation: NLDAS, NWM, NFIE
Process_Date: 20211101
Process_Step:
Process_Description:
Using the GTSM output and computed wave setup, we identified extreme water levels along the open coast and associated fluvial inputs and precipitation for extreme coastal water elevation events. As described by Nederhoff and others (2024), the largest coastal storm events (from GTSM storm tide and wave setup) of each GCM were identified, equivalent to an average of the largest 5 storms per year. The overland flow model (SFINCS) was run for all anomalously high-water level events (top 150 from each contributing GCM, plus all tropical cyclone events from USACE) with each event’s commensurate GTSM coastal water levels, wave setup, SLR, point-source river discharge (at each river), and precipitation data fields included as forcing for the simulation.
Source_Used_Citation_Abbreviation:
GTSM, waterLevel_proj, waterLevel_hindc, waveSetup_hindc, waveSetup_proj
Process_Date: 20210615
Process_Step:
Process_Description:
Detailed quality control was conducted for test outputs from the model system. After identifying initial sources of error, all simulations were rerun.
Process_Date: 20211101
Process_Step:
Process_Description:
Return period (RP) statistics (1/20/100-year storm, or no storm/daily average conditions) were calculated per grid cell for each SLR scenario to yield a composited raster of water levels for each SLR and storm combination (Nederhoff and others, 2024). With each composited raster, by RP and SLR, a depth threshold of 5 cm (at native 200-m scale of SFINCS computational grid) was used to preserve legitimate flood projections in high-relief areas. Raster outputs were run through an iterative function (in Matlab) to identify cells connected to coastally driven flooding (such as, physically connected to contiguous coastal flood surface and ocean). For cells not connected to coastal flooding, output was labeled "ponding", to signify vulnerability to flood hazards driven by river discharge or precipitation. Water levels/elevations in each cell were then depth-differenced to underlying DEM data (sub-sampled to horizontal resolution of 10 m) to resolve fine-scale features in coastal flood hazards and ponding areas. Water elevations were only output for areas identified as coastal flooding (see the flood hazard layers contained in Projections of coastal flood hazards and flood potential for North Carolina and South Carolina, also available in this data release), as that was the focus of the study. Uncertainty was calculated as a sum of contributions, including DEM uncertainty (35 cm), projected vertical land motion (VLM) based on SLR (spatially variable per SLR scenario), and uncertainty with the model and model processes (spatially variable, derived from water level return-period curves at each grid point, dependent on scenario). This total uncertainty is applied to the final water elevation and extrapolated outward to depict the maximum and minimum potential flood area considering total uncertainty (labeled as ‘flood potential’). Water elevations are accurate within these bounds.
Source_Used_Citation_Abbreviation: VLM, DEM1, DEM2
Process_Date: 20220115
Process_Step:
Process_Description:
Data from all domains were merged to make geoTIFFs of the originating rasters. The geoTIFFs were exported from ArcMap for all combinations of seven SLRs (0, 0.25, 0.5, 1.0, 1.5, 2.0 and 3.0 m), 3 storms (1-year, 20-year, and 100-year return period coastal events), and the non-storm condition for a total of 28 scenarios. Final geoTIFFs (at 10 m horizontal resolution) were separated by state (Projections_WaterElevation_*STATE*.zip) for file-size considerations. Data are further organized by storm scenario (’RP’) and SLR amount.
Process_Date: 20220330
Spatial_Data_Organization_Information:
Direct_Spatial_Reference_Method: Raster
Raster_Object_Information:
Raster_Object_Type: Pixel
Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:
Planar:
Grid_Coordinate_System:
Grid_Coordinate_System_Name: Universal Transverse Mercator
Universal_Transverse_Mercator:
UTM_Zone_Number: 17
Transverse_Mercator:
Scale_Factor_at_Central_Meridian: 0.9996
Longitude_of_Central_Meridian: -81.00000
Latitude_of_Projection_Origin: 0.00000
False_Easting: 500000.0
False_Northing: 0.00
Planar_Coordinate_Information:
Planar_Coordinate_Encoding_Method: row and column
Coordinate_Representation:
Abscissa_Resolution: 10
Ordinate_Resolution: 10
Planar_Distance_Units: Meters
Geodetic_Model:
Horizontal_Datum_Name: GCS WGS 1984
Ellipsoid_Name: Geodetic Reference System 80
Semi-major_Axis: 6378137.00
Denominator_of_Flattening_Ratio: 298.257223563
Vertical_Coordinate_System_Definition:
Depth_System_Definition:
Depth_Datum_Name: North American Vertical Datum of 1988
Depth_Resolution: 0.01
Depth_Distance_Units: meters
Depth_Encoding_Method: Implicit coordinate
Entity_and_Attribute_Information:
Detailed_Description:
Entity_Type:
Entity_Type_Label:
water elevation projections [Projections_WaterElevation_*STATE*.zip]
Entity_Type_Definition:
geoTIFF files contain projections of flood-hazard water elevations.
Entity_Type_Definition_Source: Producer defined
Attribute:
Attribute_Label: water_elev
Attribute_Definition:
water elevation (referenced to NAVD88) associated with corresponding flood extent of sea-level rise (SLR) and return period (RP) indicated
Attribute_Definition_Source: model-derived
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: -0.13
Range_Domain_Maximum: 30.58
Attribute_Units_of_Measure: meters
Attribute_Measurement_Resolution: 0.01
Overview_Description:
Entity_and_Attribute_Overview:
The data contain water elevations (elevations of water surface associated with coincident flood hazards). Return periods cover average conditions (RP000), once-a-year storms (RP001), every 20 (RP20) and every 100 years (RP100) storms. File names reflect the geographic area of the projection (state), the attribute (water_elevation), the sea-level rise (SLR) scenario, and the return period (RP) of storm conditions. SLR scenarios are listed in centimeters and range from no SLR (SLR000) to a SLR of 300 cm (SLR300). For example, NC_water_elev_SLR200_RP100 contains the water elevation for a sea level rise of 200 cm (2 m) during a hundred-year storm in North Carolina. Data are spatially consistent for coastal flood hazards of the same scenario (see the flood hazard layers contained in Projections of coastal flood hazards and flood potential for North Carolina and South Carolina, also available in this data release).
Entity_and_Attribute_Detail_Citation: none
Distribution_Information:
Distributor:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey - CMGDS
Contact_Address:
Address_Type: mailing and physical
Address: 2885 Mission Street
City: Santa Cruz
State_or_Province: CA
Postal_Code: 95060
Contact_Voice_Telephone: 831-427-4747
Contact_Electronic_Mail_Address: pcmsc_data@usgs.gov
Resource_Description:
These data are available as zip files with a filename of [Projections_WaterElevation_*STATE*.zip], where *STATE* can be either North Carolina (NC) or South Carolina (SC).
Distribution_Liability:
Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data on any other system or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: GeoTIFF
Format_Information_Content: Zip file contains the geoTIFF files for North Carolina
File_Decompression_Technique: WinZip
Transfer_Size: 2185
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information:
Network_Address:
Network_Resource_Name: https://doi.org/10.5066/P9W91314
Access_Instructions:
Data can be downloaded using the Network_Resource_Name link then scrolling down to the Simulation Data section.
Digital_Form:
Digital_Transfer_Information:
Format_Name: GeoTIFF
Format_Information_Content: Zip file contains the geoTIFF files for South Carolina
File_Decompression_Technique: WinZip
Transfer_Size: 1007
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information:
Network_Address:
Network_Resource_Name: https://doi.org/10.5066/P9W91314
Access_Instructions:
Data can be downloaded using the Network_Resource_Name link then scrolling down to the Simulation Data section.
Fees: None
Metadata_Reference_Information:
Metadata_Date: 20241122
Metadata_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization:
U.S. Geological Survey, Pacific Coastal and Marine Science Center
Contact_Person: PCMSC Science Data Coordinator
Contact_Address:
Address_Type: mailing and physical
Address: 2885 Mission Street
City: Santa Cruz
State_or_Province: CA
Postal_Code: 95060
Contact_Voice_Telephone: 831-427-4747
Contact_Electronic_Mail_Address: pcmsc_data@usgs.gov
Metadata_Standard_Name: Content Standard for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001-1998

This page is <https://cmgds.marine.usgs.gov/catalog/pcmsc/DataReleases/CMGDS_DR_tool/DR_P9W91314/Projections_WaterElevation_metadata.html>
Generated by mp version 2.9.51 on Fri Dec 20 12:49:46 2024