CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in San Diego County

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently anticipated questions:


What does this data set describe?

Title:
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in San Diego County
Abstract:
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern California include flood-hazard information for the coast from the border of Mexico to Pt. Conception. Several changes from Phase 1 projections are reflected in many areas; please read the model summary and inspect output carefully. Data are complete for the information presented. Details: Model background: The CoSMoS model comprises three tiers. Tier I consists of one Delft3D hydrodynamics FLOW grid for computation of tides, water level variations, flows, and currents and one SWAN grid for computation of wave generation and propagation across the continental shelf. The FLOW and SWAN models are two-way coupled so that tidal currents are accounted for in wave propagation and growth and conversely, so that orbital velocities generated by waves impart changes on tidal currents. The Tier I SWAN and FLOW models consist of identical structured curvilinear grids that extend from far offshore to the shore and range in resolution from 0.5 km in the offshore to 0.2 km in the nearshore. Spatially varying astronomic tidal amplitudes and phases and steric rises in water levels due to large-scale effects (for example, a prolonged rise in sea level) are applied along all open boundaries of the Tier I FLOW grid. Winds (split into eastward and northward components) and sea-level pressure (SLP) fields from CaRD10 (Dr. Dan Cayan, Scripps Institute of Oceanography, San Diego, California, written commun., 2014) that vary in both space and time are applied to all grid cells at each model time-step. Deep-water wave conditions, applied at the open boundaries of the Tier I SWAN model runs, were projected for the 21st century Representative Concentration Pathway (RCP) 4.5 climate scenario (2011-2100) using the WaveWatch III numerical wave model (Tolman and others, 2002) and 3-hourly winds from the GFDL-ESM2M Global Climate Model (GCM). Tier II provides higher resolution near the shore and in areas that require greater resolution of physical processes (such as bays, harbors, and estuaries). A single nested outer grid and multiple two-way coupled domain decomposition (DD) structured grids allow for local grid refinement and higher resolution where needed. Tier II was segmented into 11 sections along the Southern California Bight, to reduce computation time and complete runs within computational limitations. Water-level and Neumann time-series, extracted from Tier I simulations, are applied to the shore-parallel and lateral open boundaries of each Tier II sub-model outer grid respectively. Several of the sub-models proved to be unstable with lateral Neumann boundaries; for those cases one or both of the lateral boundaries were converted to water-level time-series or left unassigned. The open-boundary time-series are extracted from completed Tier I simulations so that there is no communication from Tier II to Tier I. Because this one-way nesting could produce erroneous results near the boundaries of Tier II and because data near any model boundary are always suspect, Tier II sub-model extents were designed to overlap in the along-coast direction. In the landward direction, Tier II DD grids extend to the 10-m topographic contour; exceptions exist where channels (such as the Los Angeles River) or other low-lying regions extend very far inland. Space- and time-varying wind and SLP fields, identical to those used in Tier I simulations, are applied to all Tier II DD grids to allow for wind-setup and local inverse barometer effects (IBE, rise or depression of water levels in response to atmospheric pressure gradients). A total of 42 time-series fluvial discharges are included in the Tier II FLOW domains in an effort to simulate exacerbated flooding caused by backflow at the confluence of high river seaward flows and elevated coastal surge levels migrating inland. Time-varying fluvial discharges are applied either at the closed boundaries or distributed as point sources within the relevant model domains. Wave computations are accomplished with the SWAN model using two grids for each Tier II sub-model: one larger grid covering the same area as the outer FLOW grid and a second finer resolution two-way coupled nearshore nested grid. The nearshore grid extends from approximately 800-1,000 m water depth up to 8-10 m elevations onshore. The landward extension is included to allow for wave computations of the higher SLR scenarios. Time- and space-varying 2D wave spectra extracted from previously completed Tier I simulations are applied approximately every kilometer along the open boundaries of the outer Tier II sub-model SWAN grids. The same space- and time-varying wind fields used in Tier I simulations are also applied to both Tier II SWAN grids to allow for computation of local wave generation. Tier III for the entire Southern California Bight consists of 4,802 cross-shore transects (CST) spaced approximately 100 m apart in the along-shore direction. The profiles extend from the -15 m isobath to at least 10 m above NAVD88. The CSTs are truncated for cases where a lagoon or other waterway exists on the landward end of the profile. Time-varying water levels and wave parameters (significant wave heights, Hs; peak periods, Tp; and peak incident wave directions, Dp), extracted from Tier II grid cells that coincide with the seaward end of the CSTs, are applied at the open boundary of each CST. The XBeach model is run in a hydrostatic (no vertical pressure gradients) mode including event-based morphodynamic change. Wave propagation, two-way wave-current interaction, water-level variations, and wave runup are computed at each transect. XBeach simulations are included in the CoSMoS model to account for infragravity waves that can significantly extend the reach of wave runup (Roelvink and others, 2009) compared to short-wave incident waves. The U.S. west coast is particularly susceptible to infragravity waves at the shore due to breaking of long-period swell waves (Tp > 15). Resulting water levels (WLs) from both Delft3D (high interest bays and marshes) and open-coast XBeach (CSTs) were spatially combined and interpolated to a 10 m grid. These WL elevations are differenced from the originating 2 m digital elevation model (DEM) to determine final flooding extent and depth of flooding. Events: The model system is run for pre-determined scenarios of interest such as the 1-yr or 100-yr storm event in combination with sea-level rise. Storms are first identified from time-series of total water level proxies (TWLpx) at the shore. TWLpx are computed for the majority of the 21st century (2010-2100), assuming a linear super-position of the major processes that contribute to the overall total water level. TWLpx time-series are then evaluated for extreme events, which define the boundary conditions for subsequent modeling with CoSMoS. Multiple 100-yr events are determined (varying Hs, Tp, Dp) and used for multiple model runs to better account for regional and directional flooding affects. Model results are combined and compiled into scenario-specific composites of flood projection. Digital Elevation Model (DEM): Our seamless, topobathymetric digital elevation model (DEM) was based largely upon the Coastal California TopoBathy Merge Project DEM, with some modifications performed by the USGS Earth Resources Observation and Science (EROS) Center to incorporate the most recent, high-resolution topographic and bathymetric datasets available. Topography is derived from bare-earth light detection and ranging (lidar) data collected in 2009-2011 for the CA Coastal Conservancy Lidar Project and bathymetry from 2009-2010 bathymetric lidar as well as acoustic multi- and single-beam data collected primarily between 2001 and 2013. The DEM was constructed to define the shape of nearshore, beach, and cliff surfaces as accurately as possible, utilizing dozens of bathymetric and topographic data sets. These data were used to populate the majority of the tier I and II grids. To describe and include impacts from long-term shoreline evolution, including cumulative storm activity, seasonal trends, ENSO, and SLR, the DEM was modified for each SLR scenario. Long-term shoreline (Vitousek and Barnard, 2015) and cliff (Limber et al., 2015) erosion projections were efficiently combined along the cross-shore transects to evolve the shore-normal profiles. Elevation changes from the profiles were spatially-merged for a cohesive, 3D depiction of coastal evolution used to modify the DEM. These data are used to generate initial profiles of the 4,802 CSTs used for Phase 2 tier III XBeach modeling and determining final projected flood depths in each SLR scenario. All data are referenced to NAD83 horizontal datum and NAVD88 vertical datum. Data for Tiers II and III are projected in UTM, zone 11. Outputs include: Areas of projected flood hazards: The area vulnerable to coastal flooding due to storm surge, sea-level anomalies, tide elevation, and wave run-up during the storm simulation, based on the maximum elevation of still-water level (inundation for several minutes) at each CST profile. Enclosed areas illustrate the projected water surface and is shown extending from offshore to the extent of coastal flooding for different SLR scenarios between 0 - 2.0 m (0.25 m increments), and at 5.0 m. Low-lying vulnerable areas depict locations where projections indicate flood potential but are not connected to the primary flood surface. Flood potential indicates the maximum and minimum areas of flooding extent considering accuracy of the DEM, hydrodynamic model accuracy, and vertical land motion (Howell et al., 2016). References Cited: Howell, S., Smith-Konter, B., Frazer, N., Tong, X., and Sandwell, D., 2016, The vertical fingerprint of earthquake cycle loading in southern California: Nature Geoscience, v. 9, p. 611-614, doi:10.1038/ngeo2741. Limber, P., Barnard, P.L. and Hapke., C., 2015, Towards projecting the retreat of California’s coastal cliffs during the 21st Century: in, Wang, P., Rosati, J.D., and Cheng, J., (eds.), The Proceedings of the Coastal Sediments: 2015, World Scientific, 14 p., doi:10.1142/9789814689977_0245 Roelvink, J.A., Reniers, A., van Dongeren, A.R., van Thiel de Vries, J., McCall, R., and Lescinski, J., 2009, Modeling storm impacts on beaches, dunes and barrier islands: Coastal Engineering, v. 56, p. 1,133–1,152, doi:10.1016/j.coastaleng.2009.08.006. Tolman, H.L., Balasubramaniyan, B., Burroughs, L.D., Chalikov, D.V., Chao, Y.Y., Chen H.S., Gerald, V.M., 2002, Development and implementation of wind generated ocean surface wave models at NCEP: Weather and Forecasting, v. 17, p. 311-333. Vitousek, S. and Barnard, P.L., 2015, A non-linear, implicit one-line model to predict long-term shoreline change: in, Wang, P., Rosati, J.D., and Cheng, J., (eds.), The Proceedings of the Coastal Sediments: 2015, World Scientific, 14 p., doi:10.1142/9789814689977_0215.
Supplemental_Information:
This work is one portion of ongoing modeling efforts for California and the western United States. For more information on CoSMoS implementation, see https://walrus.wr.usgs.gov/coastal_processes/cosmos/
  1. How might this data set be cited?
    Barnard, Patrick, Erikson, Li, Foxgrover, Amy, O'Neill, Andrea, and Herdman, Liv, 20161014, CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in San Diego County: U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, California.

    Online Links:

    This is part of the following larger work.

    Barnard, Patrick L, Erikson, Li H, Foxgrover, Amy C, Limber, Patrick W, O'Neill, Andrea C, and Vitousek, Sean, 2018, Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2: data release doi:10.5066/F7T151Q4, U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, California.

    Online Links:

  2. What geographic area does the data set cover?
    West_Bounding_Coordinate: -120.81115722553
    East_Bounding_Coordinate: -116.66931152258
    North_Bounding_Coordinate: 34.687068180405
    South_Bounding_Coordinate: 32.546444355161
  3. What does it look like?
  4. Does the data set describe conditions during a particular time period?
    Beginning_Date: 10-Dec-2015
    Ending_Date: 14-Oct-2016
    Currentness_Reference:
    publication date
  5. What is the general form of this data set?
    Geospatial_Data_Presentation_Form: Flood hazard projection data in shapefile formats
  6. How does the data set represent geographic features?
    1. How are geographic features stored in the data set?
      This is a Vector data set.
    2. What coordinate system is used to represent geographic features?
      Grid_Coordinate_System_Name: Universal Transverse Mercator
      Universal_Transverse_Mercator:
      UTM_Zone_Number: 11
      Transverse_Mercator:
      Scale_Factor_at_Central_Meridian: 0.999600
      Longitude_of_Central_Meridian: -100.000000
      Latitude_of_Projection_Origin: 0.000000
      False_Easting: 500000.000000
      False_Northing: 0.000000
      Planar coordinates are encoded using row and column
      Abscissae (x-coordinates) are specified to the nearest 2.000000
      Ordinates (y-coordinates) are specified to the nearest 2.000000
      Planar coordinates are specified in meters
      The horizontal datum used is North American Datum 1983 (NSRS2007).
      The ellipsoid used is Geodetic Reference System 80.
      The semi-major axis of the ellipsoid used is 6378137.000000.
      The flattening of the ellipsoid used is 1/298.257222.
      Vertical_Coordinate_System_Definition:
      Depth_System_Definition:
      Depth_Datum_Name: NAVD88
      Depth_Resolution: 2.0
      Depth_Distance_Units: meters
      Depth_Encoding_Method: Implicit coordinate
  7. How does the data set describe geographic features?
    CoSMoS v3.0 Phase 2: San Diego County
    CoSMoS Phase 2 projections (Source: originators at United States Geological Survey, Pacific Coastal and Marine Science Center)
    Flood projection for given sea-level rise (SLR) value, low-lying vulnerable areas, and maximum/minimum flood potential
    area of inundation (Source: producer defined) geographic extent of projected coastal flooding and potential low-lying vulnerable areas associated with sea-level rise and storm conditions indicated

Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
    • Patrick Barnard
    • Li Erikson
    • Amy Foxgrover
    • Andrea O'Neill
    • Liv Herdman
  2. Who also contributed to the data set?
  3. To whom should users address questions about the data?
    Erikson, Li
    U.S. Geological Survey, Pacific Coastal and Marine Science Center
    400 Natural Bridges Drive
    Santa Cruz, CA
    USA

    831-460-7563 (voice)
    831-427-4748 (FAX)
    lerikson@usgs.gov

Why was the data set created?

These data are intended for policy makers, resource managers, science researchers, students, and the general public. These data can be used with geographic information systems or other software to identify and assess possible areas of vulnerability. These data are not intended to be used for navigation.

How was the data set created?

  1. From what previous works were the data drawn?
  2. How were the data generated, processed, and modified?
    Date: 28-Feb-2015 (process 1 of 6)
    Obtained topobathymetric elevation data from Coastal National Elevation Database (CoNED) Applications Project (http://topotools.cr.usgs.gov/coned); used to populate Delft-3D grid bathymetry and create digital elevation model (DEM). See model summary for information on grid and model structure.
    Date: 01-May-2015 (process 2 of 6)
    Finished initial grid and FLOW-WAVE model structure within Delft-3D. Finished test storm (January 2010 storm including tides, waves, wind, and pressure) and tide scenarios (no atmospheric forcing, FLOW only) with initial QC checks. Checks included quantitative comparisons to tide station water levels within Southern California study area and output comparisons between model versions to determine model accuracy and consistency. See model summary for information on model structure and data used.
    Date: 01-Apr-2016 (process 3 of 6)
    Determined regional 100-year, 20-year, and annual storm events, as well as average conditions within Global Climate Model (GCM) data for study area. Extracted climate data from GCM for all storm events as boundary conditions for tier I/II simulations. See model summary for information on model structure and outputs.
    Date: 15-May-2016 (process 4 of 6)
    Began merging long-term shoreline and cliff erosion projections to create cohesive depiction of coastal evolution for each SLR scenario. Tier II model output used as conditions for XBeach projections along evolved cross-shore transects. Began post-processing Delft-3D and XBeach output within Matlab (v. 2015b) to make spatially cohesive flood projection. See model summary for information on model structure and outputs.
    Date: 14-Aug-2018 (process 5 of 6)
    Metadata was modified to add or correct the Larger_Work section, and to correct the link(s) to the Methods Summary pdf so that it points to the new location of the file. No data information was changed. Person who carried out this activity:
    Susan A Cochran
    U.S. Geological Survey, Pacific Coastal and Marine Science Center
    Geologist
    2885 Mission Street
    Santa Cruz, CA
    USA

    (831) 460-7545 (voice)
    scochran@usgs.gov
    Date: 19-Oct-2020 (process 6 of 6)
    Edited metadata to add keywords section with USGS persistent identifier as theme keyword. No data were changed. Person who carried out this activity:
    U.S. Geological Survey
    Attn: VeeAnn A. Cross
    Marine Geologist
    384 Woods Hole Road
    Woods Hole, MA

    508-548-8700 x2251 (voice)
    508-457-2310 (FAX)
    vatnipp@usgs.gov
  3. What similar or related data should the user be aware of?

How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?
    Attribute values are extents of flood projections, low-lying vulnerable areas, and maximum/minimum flood potential due to plausible sea-level rise and future storm conditions and therefore cannot be validated against observations. The projections were generated using the latest downscaled climate projections and fluvial discharges for Southern California and calibrated hydrodynamic models.
  2. How accurate are the geographic locations?
    Data are concurrent with topobathymetric DEM locations.
  3. How accurate are the heights or depths?
    N/A
  4. Where are the gaps in the data? What is missing?
    Dataset is considered complete for the information presented (as described in the abstract) and will be updated as necessary as improvements are developed. Users are advised to read the rest of the metadata record carefully for additional details.
  5. How consistent are the relationships among the observations, including topology?
    Data have undergone quality checks and meet standards.

How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?
Access_Constraints: none
Use_Constraints:
USGS-authored or produced data and information are in the public domain from the U.S. Government and are freely redistributable with proper metadata and source attribution. Please recognize and acknowledge the U.S. Geological Survey as the originator(s) of the dataset and in products derived from these data.
  1. Who distributes the data set? (Distributor 1 of 1)
    U.S. Geological Survey - ScienceBase
    Denver Federal Center, Building 810, Mail Stop 302
    Denver, CO
    USA

    1-888-275-8747 (voice)
    sciencebase@usgs.gov
  2. What's the catalog number I need to order this data set?
  3. What legal disclaimers am I supposed to read?
    This database, identified as flood-hazard projections for the Southern California coast, have been approved for release and publication by the U.S. Geological Survey (USGS). Although these data have been subjected to rigorous review and are substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. Furthermore, it is released on condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its authorized or unauthorized use. The U.S. Geological Survey provides these data as is for a quick reference, emergency planning tool but assumes no legal liability or responsibility resulting from the use of this product. The suggestions and illustrations included in these data are intended to improve coastal-flood awareness and preparedness; however, they do not guarantee the safety of an individual or structure. The contributors and sponsors of this product do not assume liability for any injury, death, property damage, or other effects of coastal flooding. Although these data have been processed successfully on a computer system at the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data on any other system or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. The USGS or the U.S. Government shall not be held liable for improper or incorrect use of the data described and/or contained herein. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. These data are not intended for navigational use.
  4. How can I download or order the data?

Who wrote the metadata?

Dates:
Last modified: 19-Oct-2020
Last Reviewed: 03-Oct-2016
Metadata author:
Andrea O'Neill
U.S. Geological Survey, Pacific Coastal and Marine Science Center
Oceanographer
2885 Mission Street
Santa Cruz, CA
USA

831-460-7586 (voice)
831-427-4748 (FAX)
aoneill@usgs.gov
Metadata standard:
Content Standard for Digital Geospatial Metadata (FGDC-STD-001-1998)

This page is <https://cmgds.marine.usgs.gov/catalog/pcmsc/DataReleases/ScienceBase/DR_F7T151Q4/SanDiego_County/CoSMoS_3.0_Phase2_flood_hazard_projections_average_conditions_in_San_Diego_County.faq.html>
Generated by mp version 2.9.50 on Thu Oct 28 09:11:03 2021