Contours--Offshore of Santa Barbara, California

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently anticipated questions:


What does this data set describe?

Title: Contours--Offshore of Santa Barbara, California
Abstract:
This part of SIM 3281 presents data for the bathymetric contours for several seafloor maps (see sheets 1, 2, 3, 7, 10, SIM 3281) of the Offshore of Santa Barbara map area, California. The vector data file is included in "Contours_OffshoreSantaBarbara.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. The bathymetry and shaded-relief maps of the Offshore of Santa Barbara map area, California, were generated from bathymetry data collected by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB), by the U.S. Geological Survey (USGS), and by Fugro Pelagos for the U.S. Army Corps of Engineers (USACE) Joint Lidar Bathymetry Technical Center of Expertise. Most of the offshore area was mapped by CSUMB in the summer of 2007, using a 244-kHz Reson 8101 multibeam echosounder. Smaller areas in the far-east nearshore, as well as further offshore to the west and in the southeast outer shelf area, were mapped by the USGS in 2005 and 2006, using a combination of 468-kHz (2005) and 117-kHz (2006) SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonars. The nearshore bathymetry and coastal topography were mapped for USACE by Fugro Pelagos in 2009, using the SHOALS-1000T bathymetric-lidar and Leica ALS60 topographic-lidar systems. All these mapping missions combined to collect bathymetry from the 0-m isobath to beyond the 3-nautical-mile limit of California's State Waters. A smooth arithmetic mean convolution function that assigns a weight of one-ninth to each cell in a 3-pixel by 3-pixel matrix was then applied iteratively to the grid ten times. Following smoothing, contour lines were generated at 10-m intervals, then the contours were clipped to the boundary of the map area.
  1. How might this data set be cited?
    Ritchie, Andrew C., Dartnell, Peter, Kvitek, Rikk G., and Johnson, Samuel Y., 2013, Contours--Offshore of Santa Barbara, California:.

    This is part of the following larger work.

    Johnson, Samuel Y., Dartnell, Peter, Cochrane, Guy R., Golden, Nadine E., Phillips, Eleyne L., Ritchie, Andrew C., Greene, H. Gary, Krigsman, Lisa M., Kvitek, Rikk G., Dieter, Bryan E., Endris, Charles A., Seitz, Gordon G., Sliter, Ray W., Erdey, Mercedes D., Gutierrez, Carlos I., Wong, Florence L., Yoklavich, Mary M., Draut, Amy E., Hart, Patrick E., Conrad, James E., and Cochran, Susan A., 2013, California State Waters Map Series--Offshore of Santa Barbara, California: Scientific Investigations Map SIM 3281, U.S. Geological Survey, Reston, VA.

    Online Links:

  2. What geographic area does the data set cover?
    West_Bounding_Coordinate: -119.81
    East_Bounding_Coordinate: -119.62
    North_Bounding_Coordinate: 34.49
    South_Bounding_Coordinate: 34.32
  3. What does it look like?
  4. Does the data set describe conditions during a particular time period?
    Beginning_Date: 2005
    Ending_Date: 2007
    Currentness_Reference:
    ground condition
  5. What is the general form of this data set?
    Geospatial_Data_Presentation_Form: Vector digital data
  6. How does the data set represent geographic features?
    1. How are geographic features stored in the data set?
      This is a Vector data set. It contains the following vector data types (SDTS terminology):
      • String (31)
    2. What coordinate system is used to represent geographic features?
      The map projection used is WGS 1984 UTM Zone 11N.
      Projection parameters:
      Scale_Factor_at_Central_Meridian: 0.9996
      Longitude_of_Central_Meridian: -117.0
      Latitude_of_Projection_Origin: 0.0
      False_Easting: 500000.0
      False_Northing: 0.0
      Planar coordinates are encoded using coordinate pair
      Abscissae (x-coordinates) are specified to the nearest 0.0001
      Ordinates (y-coordinates) are specified to the nearest 0.0001
      Planar coordinates are specified in Meter
      The horizontal datum used is D WGS 1984.
      The ellipsoid used is NAVD 1988.
      The semi-major axis of the ellipsoid used is 6378137.0.
      The flattening of the ellipsoid used is 1/298.257223563.
  7. How does the data set describe geographic features?
    Contours_OffshoreSantaBarbara.shp
    The shapefile attributes include FID - Internal Feature Number, SHAPE - feature geometry, ID - feature ID, and CONTOUR - contour depth value. The shapefile can be added to any ESRI ArcMap project. (Source: ESRI)
    FID
    Internal feature number. (Source: ESRI) Sequential unique whole numbers that are automatically generated.
    SHAPE
    Feature geometry (Source: ESRI) Polyline
    ID
    Unique identifier for each contour line. Value of 0 means the line segment has been generated during the smoothing process. (Source: ESRI)
    Range of values
    Minimum:0
    Maximum:122
    Units:Double
    CONTOUR
    Contours are lines that connect points of equal depth based on the bathymetry grid. The contour values indicate the depth value the line represents. This makes it easier to identifier features on the seafloor. After smoothing of the bathymetry grid, contour lines were generated at 10-meter intervals from -10 m to -70 m. Values are negative to indicate depth below sea level. The value of 0 represents a line segment created during the smoothing process. (Source: USGS)
    Range of values
    Minimum:0
    Maximum:-60
    Units:Integer values 0 to -60 representing depth intervals as described above.

Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
    • Andrew C. Ritchie
    • Peter Dartnell
    • Rikk G. Kvitek
    • Samuel Y. Johnson
  2. Who also contributed to the data set?
  3. To whom should users address questions about the data?
    Peter Dartnell
    U.S. Geological Survey Pacific Coastal and Marine Science Center
    Physical Scientist
    400 Natural Bridges Dr.
    Santa Cruz, CA
    USA

    (831) 460-7415 (voice)
    (831) 427-4709 (FAX)
    pdartnell@usgs.gov

Why was the data set created?

These data are intended for science researchers, students, policy makers, and the general public. These data can be used with geographic information systems or other software to identify bathymetric features.

How was the data set created?

  1. From what previous works were the data drawn?
  2. How were the data generated, processed, and modified?
    Date: 2012 (process 1 of 4)
    During the CSUMB mapping mission, an Applanix positioning and motion compensation system (POS/MV) was used to accurately position the vessel during data collection, and it also accounted for vessel motion such as heave, pitch, and roll (position accuracy, +/-2 m; pitch, roll, and heading accuracy, +/-0.02 degrees; heave accuracy, +/-5 percent, or 5 cm). NavCom 2050 GPS receiver (CNAV) data were used to account for tidal-cycle fluctuations, and sound-velocity profiles were collected with an Applied Microsystems (AM) SVPlus sound velocimeter. Soundings were corrected for vessel motion using the Applanix POS/MV data, for variations in water-column sound velocity using the AM SVPlus data, and for variations in water height (tides) using vertical-position data from the CNAV receiver. Final XYZ soundings and bathymetric-surface models were referenced to the World Geodetic System of 1984 (WGS 1984) relative to the North American Vertical Datum of 1988 (NAVD 1988). During the USGS mapping missions, differential GPS (DGPS) data were combined with measurements of vessel motion (heave, pitch, and roll) in a CodaOctopus F180 attitude-and-position system to produce a high-precision vessel-attitude packet. This packet was transmitted to the acquisition software in real time and combined with instantaneous sound-velocity measurements at the transducer head before each ping. The returned samples were projected to the seafloor using a ray-tracing algorithm that works with previously measured sound-velocity profiles. Statistical filters were applied to the raw samples that discriminate the seafloor returns (soundings) from unintended targets in the water column. The original soundings were referenced to the WGS 1984 relative to the MLLW (Mean Lower Low Water) tidal datum, but, through postprocessing using National Oceanic and Atmospheric Administration's (NOAA's) VDatum tool, the soundings were transformed to NAVD 1988. Finally, the soundings were converted into 2-m-resolution bathymetric-surface-model grids. During the Fugro Pelagos mapping mission that was completed as part of the National Coastal Mapping Program of USACE, the Leica ALS60 topographic-lidar and the SHOALS-1000T bathymetric-lidar systems were mounted on an aircraft that flew survey lines at an altitude of 300 to 400 m (bathymetry) and 300 to 1,200 m (topography), at speeds of between 135 and 185 knots. The ALS60 system collected data at a maximum pulse rate of 200 kHz, and the SHOALS system collected data at 1 kHz. Information on aircraft position, velocity, and acceleration were collected using the Novatel and POS A/V 410 systems (SHOALS) and the onboard GPS/IMU system (ALS60). Aircraft-position data were processed using POSPac software, and the results were combined with the lidar data to produce 3-D positions for each lidar shot. Various commercial and proprietary software packages were used to clean the data, to convert all valid data from ellipsoid to orthometric heights, and to export the data as a series of topography and bathymetry ASCII files. Final grids were provided in geographic coordinates referenced to the NAVD 1988. Bathymetric contours (sheets 1, 2, 3, 7, 10) were generated from a modified bathymetric surface of California's State Waters within the Santa Barbara Channel. This surface was generated by merging all of California Seafloor Mapping Program's bathymetry data for the region into one surface model. After merging, the surface model was resampled to 10-m resolution, and then a smooth arithmetic mean convolution function that assigns a weight of one-ninth to each cell in a 3-pixel by 3-pixel matrix was applied iteratively to the surface ten times. Following smoothing, contour lines were generated at 10-m intervals, then the contours were clipped to the boundary of the map area. Small gaps in contours were connected while leaving the CONTOUR fields blank to facilitate identification. Person who carried out this activity:
    Peter Dartnell
    U.S. Geological Survey Pacific Coastal and Marine Science Center
    Physical Scientist
    400 Natural Bridges Dr.
    Santa Cruz, CA
    USA

    (831) 460-7415 (voice)
    (831) 427-4709 (FAX)
    pdartnell@usgs.gov
    Date: 05-Oct-2017 (process 2 of 4)
    Added Distribution_Information section to metadata to facilitate data download. Person who carried out this activity:
    U.S. Geological Survey
    Attn: Alan O. Allwardt
    Contractor -- Information Specialist
    2885 Mission Street
    Santa Cruz, CA

    831-460-7551 (voice)
    831-427-4748 (FAX)
    aallwardt@usgs.gov
    Date: 05-Oct-2017 (process 3 of 4)
    Keywords section of metadata optimized for discovery in USGS Coastal and Marine Geology Data Catalog. Person who carried out this activity:
    U.S. Geological Survey
    Attn: Alan O. Allwardt
    Contractor -- Information Specialist
    2885 Mission Street
    Santa Cruz, CA

    831-460-7551 (voice)
    831-427-4748 (FAX)
    aallwardt@usgs.gov
    Date: 26-Apr-2018 (process 4 of 4)
    Added keywords from Coastal and Marine Ecological Classification Standard (CMECS) to metadata. Person who carried out this activity:
    U.S. Geological Survey
    Attn: Alan O. Allwardt
    Contractor -- Information Specialist
    2885 Mission Street
    Santa Cruz, CA

    831-460-7551 (voice)
    831-427-4748 (FAX)
    aallwardt@usgs.gov
  3. What similar or related data should the user be aware of?

How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?
    Not applicable.
  2. How accurate are the geographic locations?
    Estimated to be no less than 2 m, owing to total propagated uncertainties of the mapping systems, which include sonar system, position and motion compensation system, and navigation, as well as data processing that includes sounding cleaning, gridding, and datum transformations.
  3. How accurate are the heights or depths?
    Estimated to be no less than 20 cm, owing to total propagated uncertainties of the mapping systems, which include sonar system, position and motion compensation system, and navigation, as well as data processing that includes sounding cleaning, gridding, and datum transformations.
  4. Where are the gaps in the data? What is missing?
    Complete
  5. How consistent are the relationships among the observations, including topology?
    Unspecified

How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?
Access_Constraints: None
Use_Constraints:
Please recognize the U.S. Geological Survey (USGS); California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB); and the U.S. Army Corps of Engineers (USACE). USGS-authored or produced data and information are in the public domain. This information is not intended for navigational purposes. Read and fully comprehend the metadata prior to data use. Uses of these data should not violate the spatial resolution of the data. Where these data are used in combination with other data of different resolution, the resolution of the combined output will be limited by the lowest resolution of all the data. Acknowledge the U.S. Geological Survey in products derived from these data. Share data products developed using these data with the U.S. Geological Survey. This database has been approved for release and publication by the Director of the USGS. Although this database has been subjected to rigorous review and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. Furthermore, it is released on condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its authorized or unauthorized use. Although this Federal Geographic Data Committee-compliant metadata file is intended to document these data in nonproprietary form, as well as in ArcInfo format, this metadata file may include some ArcInfo-specific terminology.
  1. Who distributes the data set? (Distributor 1 of 1)
    U.S. Geological Survey
    345 Middlefield Rd
    Menlo Park, CA
    USA

    (650) 329-4309 (voice)
  2. What's the catalog number I need to order this data set?
  3. What legal disclaimers am I supposed to read?
    Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data on any other system or for general or scientific purposes, nor shall the act of distribution constitute any such warranty.
  4. How can I download or order the data?

Who wrote the metadata?

Dates:
Last modified: 26-Apr-2018
Metadata author:
Peter Dartnell
U.S. Geological Survey, Pacific Coastal and Marine Science Center
Physical Scientist
400 Natural Bridges Dr.
Santa Cruz, CA
USA

(831) 460-7415 (voice)
(831) 427-4709 (FAX)
pdartnell@usgs.gov
Metadata standard:
Content Standard for Digital Geospatial Metadata ("CSDGM version 2") (FGDC-STD-001-1998)

This page is <https://cmgds.marine.usgs.gov/catalog/pcmsc/cal_state_waters/Contours_OffshoreSantaBarbara_metadata.faq.html>
Generated by mp version 2.9.49 on Mon Sep 10 17:43:36 2018