2021-322-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Pensacola Beach, Florida, June 2021
From June 2 through 9, 2021, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). This shapefile represents a line dataset of field activity number (FAN) 2021-322-FA chirp tracklines collected inshore and offshore of Pensacola Beach, FL. |
Info |
2021-322-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Pensacola Beach, Florida, June 2021
From June 2 through 9, 2021, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). This shapefile represents a point dataset of field activity number (FAN) 2021-322-FA chirp subbottom profile start of trackline locations collected inshore and offshore of Pensacola Beach, FL. |
Info |
2021-322-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Pensacola Beach, Florida, June 2021
From June 2 through 9, 2021, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). This shapefile represents a point dataset of field activity number (FAN) 2021-322-FA chirp subbottom profile 1,000-shot-interval locations collected inshore and offshore of Pensacola Beach, FL. |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2021 Near Pensacola Beach, Florida
From June 2 through 9, 2021, researchers from the U.S. Geological Survey (USGS) conducted an inshore and offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Pensacola Beach, Florida (FL). The Coastal Resource Evaluation for Management Applications (CREMA) project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation ... |
Info |
Single-Beam Bathymetry Data Collected in March 2021 from Grand Bay and Point Aux Chenes Bay, Mississippi/Alabama
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) in St. Petersburg, Florida, conducted a bathymetric survey of Point Aux Chenes Bay and a small portion of Grand Bay, Mississippi/Alabama, from March 3-6, 2021. Efforts were supported by the Estuarine and MaRsh Geology project (EMRG), and the data described will provide baseline bathymetric information for future research investigating wetland/marsh evolution, sediment transport, and recent and long-term ... |
Info |
Shore proximal sediment deposition in coastal marsh at the Grand Bay National Estuarine Research Reserve, Mississippi: net sedimentation tile datasets from October 2016 to October 2017
To understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites in the Grand Bay National Estuarine Research Reserve, Mississippi (GNDNERR). Each site consisted of four plots located along a transect perpendicular to the marsh-estuary shoreline at 5-meter (m) increments (5, 10, 15, and 20 m from the shoreline). Each plot contained four net sedimentation tiles (NST) that were secured ... |
Info |
YSI water quality data from August 2015 from Dauphin Island and the surrounding areas.
Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ... |
Info |
Sediment Sample Locations Collected in August 2015 from Dauphin Island and the surrounding areas
Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ... |
Info |
Surface sediment physical parameters data collected in August 2015 from Dauphin Island and the surrounding areas
Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ... |
Info |
Textural description of surface sediment samples collected in August 2015 from Dauphin Island and the surrounding areas
Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ... |
Info |
Benthic Foraminiferal Data from Surface Samples and Sedimentary Cores in the Grand Bay Estuary, Mississippi and Alabama
Microfossil (benthic foraminifera) samples were obtained from surficial grab (denoted with “G”) and push core (denoted with “M”) sediments collected in Grand Bay estuary, Mississippi and Alabama, to aid in the paleoenvironmental understanding of Grand Bay estuary. The data presented here were collected as part of the U.S. Geological Survey’s Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, and Barrier Island Evolution Research (BIER) project. Sampling was ... |
Info |
Water_Level_na: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water_Level_na_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water_Level_all: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water_Level_all_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water_Level_GBI: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water_Level_GBI_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_na: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_na_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_all: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_all_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_GBI: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_GBI_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_na_tropical: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_na_tropical_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_na_frontal: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_na_frontal_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_all_tropical: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_all_tropical_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_all_frontal: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_all_frontal_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_GBI_tropical: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_GBI_tropical_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_GBI_frontal: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_GBI_frontal_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
2015-330-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2015-330-FA Offshore of Dauphin Island, Alabama, September 2015
From September 16 through 23, 2015, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Dauphin Island, Alabama. Geophysical data were collected as part of the Alabama Barrier Island Restoration Feasibility Study. This shapefile represents a line dataset of field activity number (FAN) 2015-330-FA chirp tracklines. |
Info |
2015-330-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2015-330-FA Offshore of Dauphin Island, Alabama, September 2015
From September 16 through 23, 2015, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Dauphin Island, Alabama. Geophysical data were collected as part of the Alabama Barrier Island Restoration Feasibility Study. This shapefile represents a point dataset of field activity number (FAN) 2015-330-FA chirp subbottom profile start of trackline locations. |
Info |
2015-330-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2015-330-FA Offshore of Dauphin Island, Alabama, September 2015
From September 16 through 23, 2015, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Dauphin Island, Alabama. Geophysical data were collected as part of the Alabama Barrier Island Restoration Feasibility Study. This shapefile represents a point dataset of field activity number (FAN) 2015-330-FA chirp subbottom profile 1,000-shot-interval locations. |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2015 Offshore of Dauphin Island, Alabama
From September 16 through 23, 2015, researchers from the U.S. Geological Survey (USGS) conducted an offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Dauphin Island, Alabama (AL). The Alabama Barrier Island Restoration Feasibility Study project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic ... |
Info |