Virginia

state
Subtopics:
Chesapeake (1 items)
Related topics:

10 results listed alphabetically [list by similarity]
Archive of Chirp Subbottom Profile Data Collected in 2019 from Cedar Island, Virginia

From August 9 to 14, 2019, researchers from the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate shoreface morphology and geology near Cedar Island, Virginia. The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. This publication serves as an archive of high-resolution ...

Info
Assateague Island Seabeach Amaranth Survey Data — 2001 to 2018

Seabeach amaranth (Amaranthus pumilus) is a federally threatened plant species that was once prevalent on beaches of the U.S. mid-Atlantic coast. For much of the 20th century, seabeach amaranth was absent and thought to be extinct along this coast presumably due to development and recreational pressure. Few plants were observed over much of the 20th century and the species was federally listed as endangered in 1993. To re-establish a population, the Natural Resources staff at Assateague Island National ...

Info
Lifespan of Chesapeake Bay salt marsh units

Lifespan distribution in the Chesapeake Bay (CB) salt marsh complex is presented in terms of lifespan of conceptual marsh units defined by Ackerman and others (2022). The lifespan calculation is based on estimated sediment supply and sea-level rise (SLR) predictions after Ganju and others (2020). Sea level predictions are present day estimates at the prescribed rate of SLR, which correspond to the 0.3, 0.5, and 1.0 meter increase in Global Mean Sea Level (GMSL) scenarios by 2100 from Sweet and others (2022) ...

Info
Normalized Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia- Fall 2014

Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ...

Info
Normalized Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia-Spring 2014

Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ...

Info
Raw and Normalized Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia- July 2014

Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ...

Info
Raw Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia- Fall 2014

Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ...

Info
Raw Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia- Spring 2014

Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ...

Info
Wetland-Change Data Derived from Landsat Imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1984 to 2015: Land-cover Change Analysis

This U.S. Geological Survey (USGS) data release includes geospatial datasets that were created for the analysis of Virginia and Maryland Atlantic coastal wetland changes over time. Wetland change was determined by assessing two metrics: wetland persistence and land-cover switching. Because seasonal water levels, beach width, and vegetation differences can affect change analyses, only images acquired during the spring (March, April, and May) were included in the wetland-change metrics (N=10). Land-cover ...

Info
Wetland-Change Data Derived from Landsat Imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1984 to 2015: Wetland Persistence Analysis

This U.S. Geological Survey (USGS) data release includes geospatial datasets that were created for the analysis of Virginia and Maryland Atlantic coastal wetland changes over time. Wetland change was determined by assessing two metrics: wetland persistence and land-cover switching. Because seasonal water levels, beach width, and vegetation differences can affect change analyses, only images acquired during the spring (March, April, and May) were included in the wetland-change metrics (N=10). To assess ...

Info