Elevation

Height above or below sea level, for example altitude, bathymetry, digital elevation models, slope, derived products, DEMs, TINs
Subtopics:
(none)

1708 results listed alphabetically [list by similarity]
0.5-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in the Vicinity of Woods Hole, Massachusetts (H11077_05GEO, Geographic)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
0.5-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in the Vicinity of Woods Hole, Massachusetts (H11077_05UTM, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
0.5-m Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 of the Sea Floor in the Vicinity of Woods Hole, Massachusetts (H11077_0.5MUTM19_XYZ.TXT, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
10cct01_v2rbf_50m.tif: 50-Meter Resolution Grid of Swath Bathymetry Data Collected Offshore of Cat Island, Mississippi in March 2010

In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys east of Cat Island, Mississippi. The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U. S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. The data ...

Info
10cct02_sw_v2_50m - 50 meter interpolated bathymetric grid of Petit Bois Pass, Mississippi Barrier Islands, March 2010

In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi and Dauphin Island, Alabama. These efforts were part of the U.S. Geological Survey Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project, by mapping the shallow geologic stratigraphic framework ...

Info
10CCT03_ss_1m.tif: the 1-m resolution grid of the side scan sonar data from USGS Cruise 10cct03

In April of 2010, the U.S. Geological Survey (USGS) conducted a geophysical survey from the east end of West Ship Island, MSiss., extending to the middle of Dauphin Island, Ala. This survey had a dual purpose: (1) to interlink previously conducted nearshore geophysical surveys (shoreline to ~2 kilometers, km) with those of offshore surveys (~2 km to ~9 km) in the ares and (2) to extend the geophysical survey to include a portion of the Dauphin Island nearshore zone. The efforts were part of the USGS Gulf of ...

Info
10 m bathymetric contours for the Southwest Washington Study area (BATHY)

Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan-sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ...

Info
10-m Bathymetry grid of Vineyard and western Nantucket Sounds produced from lead-line and single-beam sonar soundings, swath-interferometric, multibeam, and lidar datasets (Esri binary grid, UTM Zone 19N, WGS84)

Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ...

Info
10-m Bathymetry grid produced from lead-line and single-beam sonar soundings, swath interferometric, multibeam, and lidar datasets (bb_navd88_10m, Esri binary grid, UTM Zone 19N, WGS84)

Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ...

Info
10 m depth contours-Santa Barbara Channel

This Data Release contains GIS data generated by USGS for use in a BOEM funded project to compare natural rockfish nursery habitat to habitat created by manmade structures in the eastern Santa Barbara Channel. The contours were created from published Data Elevation Models of Carignan and others (2009) and Dartnell and others (2012). Contours were generated using the ESRI Contour tool in spatial analyst. The contour interval is 10 meters. The contours were clipped to exclude areas outside the BOEM rockfish ...

Info
10 meter bathymetric contours of the Cape Ann - Salisbury Beach MA Survey Area (BATHCNTR_10M, geographic, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ...

Info
10 meter bathymetric contours of the Duxbury-Hull MA Survey Area (DH_BATHCNTR_10m shapefile, Geographic, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ...

Info
10 meter bathymetric contours of the Gulf of the Farallones region (10mCONTOUR)

In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques ...

Info
10 meter ESRI binary grid of nearshore bathymetry data collected at Duck, NC (vims_2002, UTM Zone 18N, WGS 84)

The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ...

Info
10-meter swath bathymetric grid collected by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (UTM Zone 18N, WGS 84, Esri Binary Grid, FI_BATHYGRD)

The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island ...

Info
10-m Hillshaded-relief image of Vineyard and western Nantucket Sounds produced from lead-line and single-beam sonar soundings, swath-interferometric, multibeam, and lidar datasets (TIFF image, UTM Zone 19N, WGS84)

Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and Western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ...

Info
10-m Interpolated Bathymetric Grid of the Northern Part of National Oceanic and Atmospheric Administration (NOAA) Survey H11044 off Milford, Connecticut (H11044N_10UTM, UTM Zone 18, WGS84)

During 2001 the NOAA Ship RUDE completed charting survey H11044 that covered a roughly 293 km2 area of the sea floor in north-central Long Island Sound, off Milford Connecticut. Although 100 percent coverage was achieved with sidescan sonar for charting purposes, only reconnaissance (spaced line) bathymetry was acquired with shallow-water multibeam and single-beam systems. Therefore, further processing was conducted at the USGS's Woods Hole Science Center to provide bathymetric datasets with more continuous ...

Info
10-m interval contours of smoothed multibeam bathymetry of Massachusetts Bay (MB_10MCTR9X9.SHP, Geographic, NAD83)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
10-m resolution gray-scale image of multibeam bathymetry in Massachusetts Bay (MB_BATHYGS10M.TIF)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
10-m resolution grid of multibeam bathymetry in Massachusetts Bay (MB_BATHY10M)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
10-m resolution image of shaded relief multibeam bathymetry in Massachusetts Bay, colored by water depth (MB_BATHYCLR10M.TIF)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
10-m resolution image of shaded relief multibeam bathymetry in Massachusetts Bay (MB_SRELIEF10M.TIF)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
10-m resolution image of shaded relief multibeam bathymetry in Massachusetts Bay, pseudocolored by backscatter intensity (MB_BACKPC10M.TIF)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
13CCT04_IFS_01_ITRF05.tif

In August of 2013, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi. These efforts are a continued part of the U.S. Geological Survey Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project, by mapping the shallow geologic stratigraphic framework of the ...

Info
13CCT04_SSS_01_ITRF05.tif

In August of 2013, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi. These efforts are a continued part of the U.S. Geological Survey Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project, by mapping the shallow geologic stratigraphic framework of the ...

Info
14BIM01_IFB_xyz: Interferometric Swath Bathymetry XYZ Data Collected in 2014 Near Breton Island, Louisiana

As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, ...

Info
14BIM02_SBB_xyz: Single-Beam Bathymetry XYZ Data Collected in 2014 Near Breton Island, Louisiana

As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, ...

Info
14BIM03_SBB_xyz: Single-Beam Bathymetry XYZ Data Collected in 2014 Near Breton Island, Louisiana

As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, ...

Info
14BIM05_IFB_xyz: Interferometric Swath Bathymetry XYZ Data Collected in 2014 Near Breton Island, Louisiana

As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, ...

Info
14BIM05_SSS_50cm_WGS84_UTM16N_Tile1: The 0.50-meter sample resolution of the side-scan sonar data collected in 2014 near Breton National Wildlife Refuge, Louisiana. This tile is one of four for this dataset.

As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, ...

Info
14BIM05_SSS_50cm_WGS84_UTM16N_Tile2: The 0.50-meter sample resolution of the side-scan sonar data collected in 2014 near Breton National Wildlife Refuge, Louisiana. This is tile two of four for this dataset.

As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, ...

Info
14BIM05_SSS_50cm_WGS84_UTM16N_Tile3: The 0.50-meter sample resolution of the side-scan sonar data collected in 2014 near Breton National Wildlife Refuge, Louisiana. This tile is three of four for this dataset.

As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, ...

Info
14BIM05_SSS_50cm_WGS84_UTM16N_Tile4: The 0.50-meter sample resolution of the side-scan sonar data collected in 2014 near Breton National Wildlife Refuge, Louisiana. This is tile four of four for this dataset.

As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, ...

Info
150-meter bathymetry grid acquired in August and September 2003 aboard the Ronald H. Brown on U.S. Geological Survey Cruise 2003-032-FA from the Puerto Rico Trench region (RB2003august, Esri binary and ASCII grid, UTM zone 19, WGS84)

In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ...

Info
150-meter bathymetry grid acquired in February and March of 2003 aboard the Ronald H. Brown on U.S. Geological Survey Cruise 2003-008-FA from the Puerto Rico Trench region (RB2003, Esri binary and ASCII grid, UTM zone 19, WGS84)

In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ...

Info
150-meter bathymetry grid acquired in September 2002 aboard the Ronald H. Brown on U.S. Geological Survey Cruise 2002-051-FA from the Puerto Rico Trench region (RB2002, Esri binary and ASCII grid, UTM zone 19, WGS84)

In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ...

Info
150-meter Fledermaus bathymetry grid from U.S. Geological Survey Cruise 02051, National Oceanic and Atmospheric Administration RB0208, September 24 to 30, 2002 aboard the Ronald H. Brown in the Puerto Rico Trench region (RB2002sd.sd)

In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ...

Info
150-meter Fledermaus bathymetry grid from U.S. Geological Survey Cruise 03008, National Oceanic and Atmospheric Administration RB0303, February 18 to March 7, 2003 aboard the Ronald H. Brown in the Puerto Rico Trench region (RB2003sd.sd)

In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ...

Info
150-meter Fledermaus bathymetry grid from U.S. Geological Survey Cruise 03032, National Oceanic and Atmospheric Administration RB0305, 28 August to 4 September 2003 (RB2003Augustsd.sd)

In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ...

Info
1.5-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in the Vicinity of Woods Hole, Massachusetts (H11077_1-5GEO, Geographic)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
1.5-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in the Vicinity of Woods Hole, Massachusetts (H11077_1-5UTM, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1869. In 2002, NOAA published digitized shorelines for T-sheet (T-1097), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1922. In 2002, NOAA published digitized shorelines for T-sheet (T-3920), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1950. In 2002, NOAA published digitized shorelines for T-sheet (T-9393), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1983 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National High Altitude Photography (NHAP) program. The NHAP was coordinated by the U.S. Geological Survey as an interagency project to acquire cloud-free aerial photographs at a specific altitude above mean terrain elevation. Two different camera systems were used to obtain simultaneous coverage of black-and-white (BW) and color infrared (CIR) aerial photographs over the conterminous United States. Black-and-white aerial photographs were obtained on 9-inch film from an ...

Info
1995 National Assessment of Oil and Gas Resources of the United States: Bathymetry (ATMX_BAT.SHP)

This GIS overlay is a component of the U.S Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata related to hydrate studies in this region.

Info
1998 Atlantic coast NASA/NOAA/USGS Spring ATM Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Atlantic Coast ...

Info
1998 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center's Digital Orthophoto Quarter Quads (DOQQ) images collected on January 24, 1998. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
1998 East Coast NASA/NOAA/USGS Winter ATM Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Atlantic Coast ...

Info
1998 Fall Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Fall Gulf Coast ...

Info
1998 MA, NY, MD, and VA USGS/NASA ATM2 Lidar-derived dune crest, toe and shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
1998 Southeast ATM Lidar-derived dune crest, toe and shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Southeast USGS/NASA ...

Info
1999 Atlantic Coast NASA/NOAA/USGS ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Floyd

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1999 Atlantic Coast ...

Info
1999 Fall Texas USGS/NASA/NOAA ATM Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1999 Fall Gulf Coast ...

Info
1-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11076 of Quicks Hole, Massachusetts (H11076_UTM_B, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ...

Info
1-m Bathymetric ArcRaster Grid of NOAA Survey H11310 in Central Narragansett Bay (H11310_UTM19, UTM Zone 19)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The mosaic and bathymetry presented herein covers an area ...

Info
1-m Bathymetric Grid Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12007 in the Vicinity of Cross Rip Channel, Nantucket Sound (H12007_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ...

Info
1-m Bathymetric Grid Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12007 in the Vicinity of Cross Rip Channel, Nantucket Sound (H12007_UTM, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ...

Info
1 m Digital Bathymetric Contours from NOAA Charts as Organized for the LISSGIS Library (LISBATHY)

The Long Island Sound Study (LISS) compiled data from a number of different sources, integrated new data, and assembled a comprehensive spatial database for areas of the States of Connecticut, New York, and portions of Rhode Island which border Long Island Sound.

Info
1 m digital bathymetric contours from NOAA charts as organized for the Long Island Sound Study Geographic Information System (LISSGIS) library (LISBATHY.SHP)

The Long Island Sound Study (LISS) compiled data from a number of different sources, integrated new data, and assembled a comprehensive spatial database for areas of the States of Connecticut, New York, and portions of Rhode Island which border Long Island Sound.

Info
1-meter contours produced from bathymetric data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006-2007 (cont_1m, polyline)

In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ...

Info
1-meter contours produced from swath bathymetry collected by the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL offshore of the Gulf Islands, MS, 2010 (ESRI polyline shapefile, tmunro_1m_bathycontours_MLLW.shp)

In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ...

Info
1-Meter Sample Resolution Interferometric Swath Backscatter Data Collected in 2012 from the Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 12BIM03)

As part of the Barrier Island Evolution Research Project, scientists from the U.S. Geological Survey's St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off the northern Chandeleur Islands, Louisiana, in June of 2012. The overall objective of the study is to better understand barrier-island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual timescales (1-5 years). The collection of ...

Info
1-meter swath bathymetric grid collected by the U.S. Geological Survey in Moultonborough Bay, Lake Winnipesaukee, New Hampshire in 2005 (UTM Zone 19N, WGS 84, Esri Binary Grid, WINNI_BATHY)

In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ...

Info
1-m interval contours of smoothed multibeam bathymetry in western Massachusetts Bay map Quadrangle 1 (Q1_1MCTR.SHP)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
1-m interval contours of smoothed multibeam bathymetry in western Massachusetts Bay map Quadrangle 2 (Q2_1MCTR.SHP)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
1-m interval contours of smoothed multibeam bathymetry in western Massachusetts Bay map Quadrangle 3 (Q3_1MCTR.SHP)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
1-m interval contours of smoothed multibeam bathymetry in western Massachusetts Bay map Quadrangles 1-3 (WMB_1MCTR.SHP)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
2000 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2000 U.S. Army Corps of ...

Info
2001 Gulf Coast USGS/NASA ATM Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2001 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 U.S. Army Corps of ...

Info
2001 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements collected by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA) on September 07-09, 2001. Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft ...

Info
2002 NOAA/NASA/USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2002 Post-Hurricane Lili ...

Info
2002 Post-Tropical Storm Fay University of Texas Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2002 University of Texas ...

Info
2002 USGS Virgina and Maryland Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ...

Info
2003 NOAA Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2003 NOAA Oahu lidar ...

Info
2003 Pre- and Post-Hurricane Isabel USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2003 Pre- and Post ...

Info
2004 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center’s Digital Orthophoto Quarter Quads (DOQQ) images collected on January 20, 2004. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2004 Maine NOAA Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 NOAA Maine lidar ...

Info
2004 Post-Hurricane Charley West Florida EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Post-Hurricane ...

Info
2004 Post-Hurricane Frances USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Post-Hurricane ...

Info
2004 Post-Hurricane Ivan Northern Gulf of Mexico EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 USGS Post-Ivan ...

Info
2004 Post-Hurricane Jeanne USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Post-Hurricane ...

Info
2004 Pre-Hurricane Ivan Eastern Gulf Coast United States Army Corps of Engineers (USACE) Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Pre-Ivan Eastern ...

Info
2004 USACE Post-Ivan Florida Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 U.S. Army Corps of ...

Info
2005-2006 Atlantic Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005-2006 Atlantic Coast ...

Info
2005 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center’s Digital Orthophoto Quadrangle (DOQ) images collected on November 17, 2005. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2005 EAARL Fire Island Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 Fire Island USGS ...

Info
2005 East Coast (DE, MD, NJ, NY, NC, and VA) USACE NCMP Topobathy Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2005 Padre Island USGS EAARL Lidar-derived dune crest, toe and shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 Experimental ...

Info
2005 Post-Hurricane Dennis Florida U.S. Army Corps of Engineers Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 USACE Post-Dennis ...

Info
2005 Post-Hurricane Katrina EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 Post-Hurricane ...

Info
2005 USGS Post-Hurricane Rita Texas and Louisiana Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 USGS Post-Hurricane ...

Info
2006 FEMA Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2006 Federal Emergency ...

Info
2007 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National Agriculture Imagery Program (NAIP) digital ortho imagery collected on October 11, 2007. This dataset contains digitized shorelines created from the NAIP imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2007 Northeast Barrier Islands USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Northeast Barrier ...

Info
2007 South Florida FDEM Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Florida Division of ...

Info
2007 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 U.S. Army Corps of ...

Info
2008 Assateague Island USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Assateague Island ...

Info
2008 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center high-resolution orthorectified images collected on October 01, 2008. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2008 North Carolina and Virginia NOAA/NGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Atlantic Coast ...

Info
2008 Post-Hurricane Gustav Northern Gulf of Mexico USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Post-Hurricane ...

Info
2008 South Louisiana USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 South Louisiana ...

Info
2008 USGS Post-Hurricane Ike Texas Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 USGS Post-Hurricane ...

Info
2009 Cape Canaveral USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Cape Canaveral ...

Info
2009 Florida USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Florida U.S. Army ...

Info
2009 North Carolina USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 U.S. Army Corps of ...

Info
2009 Post-Nor’Ida USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Post-Nor’Ida USGS ...

Info
2009 Western Gulf of Mexico USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Western Gulf of ...

Info
2010-2022 New Jersey and New York Beach Shoreline Change

This dataset defines shoreline change rates for each 10-meter (m)-wide profile calculated via endpoint rate and linear regression from Himmelstoss and others (2018). Shoreline change rates were calculated for two time periods: pre-Sandy (2010-2012) and post-Sandy (2012-2022). The profiles were derived from light detection and ranging (lidar) digital elevation models (DEMs). Refer to Doran and others (2017) for more information about the source lidar data. These data support the National Fish and Wildlife ...

Info
2010-2022 New Jersey and New York Beach Volumes

This dataset defines the volume of sand along a 10-meter (m) wide profile between the seaward-most dune toe and the mean high water shoreline derived from light detection and ranging (lidar) digital elevation models (DEMs). Refer to Doran and others (2017) for more information about the source lidar data. These data support the National Fish and Wildlife Foundation (NFWF)-funded project entitled “Monitoring Hurricane Sandy Beach and Marsh Resilience in New York and New Jersey” (NFWF project ID 2300.16 ...

Info
2010 Alabama and Florida USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Alabama and Florida ...

Info
2010 Assateague Island National Seashore USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Assateague Island ...

Info
2010 Cape Canaveral, Florida Single-beam Bathymetry Data

Single-beam bathymetric surveys were conducted on July 27-29, 2010 along 37 cross-shore transects offshore from Cape Canaveral, Fla. The transects were spaced 500 meters (m) apart in the alongshore direction and each was approximately five kilometers (km) long in the cross-shore.

Info
2010 Delaware USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Delaware U.S. Army ...

Info
2010 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National Agriculture Imagery Program (NAIP) digital ortho imagery collected on May 10, 2010. This dataset contains digitized shorelines created from the NAIP imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2010 Florida West Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Florida West Coast ...

Info
2010 Louisiana and Mississippi USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Louisiana and ...

Info
2010 Maryland USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Maryland U.S. Army ...

Info
2010 New Jersey USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 New Jersey U.S. ...

Info
2010 New York USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 New York U.S. Army ...

Info
2010 Northeast Atlantic USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Northeast Atlantic ...

Info
2010 Southeast Atlantic USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Southeast Atlantic ...

Info
2010 Virginia USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Virginia U.S. Army ...

Info
2011 East Coast New York/New Jersey NOAA/NGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 East Coast New York ...

Info
2011 Northern Gulf Coast USACE Lidar-derived dune crest, toe and shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 Northern Gulf Coast ...

Info
2011 USGS New York Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 Atlantic Coast ...

Info
2012 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey Earth Resources Observations and Science Center (EROS) high-resolution orthorectified image that was collected on October 20, 2012 over Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2012 Post-Hurricane Isaac USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Post-Hurricane Sandy Fire Island, New York Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Post-Hurricane Sandy Long Island, New York USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2012 Post-Hurricane Sandy New Jersey USGS EAARL-B Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Post-Hurricane Sandy Northeast Atlantic Coast USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post ...

Info
2012 Post-Sandy New York and New Jersey USACE NCMP Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Sandy New York ...

Info
2012 Pre-Hurricane Sandy Fire Island National Seashore, USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ...

Info
2012 Pre-Sandy New York and New Jersey USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Pre Hurricane Sandy ...

Info
2013-14 Massachusetts Lidar-Derived Dune Crest Point Data

This data release of dune metrics for the Massachusetts coast is part of a 2018 update to the Massachusetts Shoreline Change Project. Because of continued coastal population growth and the increased threat of coastal erosion, the Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. Maps of historic shoreline locations from the mid-1800s to 1978 were produced from multiple data sources, and in 2001, a 1994 shoreline ...

Info
2013-14 Massachusetts Lidar-Derived Dune Toe Point Data

This data release of dune metrics for the Massachusetts coast is part of a 2018 update to the Massachusetts Shoreline Change Project. Because of continued coastal population growth and the increased threat of coastal erosion, the Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. Maps of historic shoreline locations from the mid-1800s to 1978 were produced from multiple data sources, and in 2001, a 1994 shoreline ...

Info
2013-2014 Northeast USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013-2014 Post� ...

Info
2013 Dauphin Island USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 Dauphin Island ...

Info
2013 Maine USACE/NAE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 Maine United States ...

Info
2013 NOAA Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 National Oceanic ...

Info
2013 USACE NAE Topobathy Lidar: Maine Point Cloud files with Orthometric Vertical Datum North American Vertical Datum of 1988 (NAVD88) using GEOID12B

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ...

Info
2013 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 U.S. Army Corps of ...

Info
2013 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey topographic lidar survey that was conducted on July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana and published in USGS Data Series 838. Photo Science, Inc., was contracted by the USGS to collect and process these data. Lidar data were acquired around portions of both the Alabama and Louisiana barrier islands; however, this dataset only contains shorelines created from data acquired from ...

Info
2014 East Coast Maine USACE/NAE ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Sandy

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 East Coast Maine ...

Info
2014 East Coast New Hampshire USACE/NAE ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Sandy

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 East Coast New ...

Info
2014 East Coast Rhode Island NOAA/NGS ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Sandy

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 East Coast Rhode ...

Info
2014 Mobile County, Alabama Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 Mobile County, ...

Info
2014 Post-Hurricane Sandy SC to NY NOAA NGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2014 USGS CMGP Post-Sandy Long Island Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 USGS CMGP Post ...

Info
2014 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey topographic lidar survey that was conducted on January 16-18, 2014 over Breton Island, Louisiana and released under USGS field activity number 14LGC01. Quantum Spatial was contracted by the USGS to collect and process these data. This dataset contains vectorized shorelines created from data acquired from Breton Island, Louisiana. Shorelines were vectorized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital ...

Info
2015 Mississippi and Alabama USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2015 Mississippi and ...

Info
2015 USACE Florida Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2015 U.S. Army Corps of ...

Info
2016 Florida East Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2016 U.S. Army Corps of ...

Info
2016 Massachusetts NOAA Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2016 USACE Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2016 U.S. Army Corps of ...

Info
2016 USACE Post-Hurricane Matthew Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2017 East Coast USACE/FEMA ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Irma

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2017 Atlantic Coast ...

Info
2017 Florida West Coast NOAA Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches.Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2017 Georgia through New York USACE NCMP Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ...

Info
2017 USGS Lidar: Chenier Plain, LA Point Cloud files with Orthometric Vertical Datum North American Vertical Datum of 1988 (NAVD88) using GEOID12B

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ...

Info
2018 Alabama and Florida USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 East Coast (NC) USACE NCMP Topobathy Lidar Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 East Coast (VA, NC, SC) USACE NCMP Post-Florence Topobathy Lidar-Derived Dune Crest, Toe, and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 Florida USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 Mississippi and Alabama USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 Puerto Rico USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2018 South Texas USGS Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline derived from the 2018 United States ...

Info
2018 USGS Florida Panhandle Post-Michael Lidar-derived Dune Crest, Toe, and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2018 United States Army ...

Info
2019 North Carolina and Virginia Post-Dorian USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2019 North Carolina and Virginia USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (L=lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2020 New Jersey and New York USACE Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2020 New Jersey USACE USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ...

Info
2021 New York State Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ...

Info
2022 New Jersey and New York USACE USGS Lidar-Derived Dune Crest, Toe and Shoreline

The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ...

Info
25m Bathymetric ArcRaster Grid of Apalachicola Bay and St. George Sound, Florida (APBAYBATH25M)

These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ...

Info
25-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the Vicinity of Edgartown Harbor, Massachusetts (H11346_GEO25, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
25-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the Vicinity of Edgartown Harbor, Massachusetts (H11346_UTM25, UTM Zone 19, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
25m Hillshaded Bathymetric ArcRaster Grid of Apalachicola Bay and St. George Sound, FL (APBAY25HS)

These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ...

Info
2-m ASCII Bathymetric Grid from National Oceanic and Atmospheric Administration (NOAA) Survey H11361 of the Sea Floor in Eastern Long Island Sound (H11361_2MUTM18_XYZ.TXT, UTM Zone18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11250 of Eastern Long Island Sound (H11250U, UTM, Zone 18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11252 from Eastern Long Island Sound (H11252U_2M, UTM Zone 18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11361 from Eastern Long Island Sound (H11361U_2M, UTM Zone 18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_2M_UTM, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11445 in Long Island Sound, North of Plum Island, New York (H11445_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11445 in Long Island Sound, North of Plum Island, New York (H11445_2M_UTM, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11446 in Long Island Sound, North of Orient Point, New York (H11446_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11446 in Long Island Sound, North of Orient Point, New York (H11446_2M_UTM, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11922 in Rhode Island Sound West of Gay Head, Massachusetts (H11922_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During July-August 2008 NOAA completed hydrographic ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11922 in Rhode Island Sound West of Gay Head, Massachusetts (H11922_2M_UTM, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During July-August 2008 NOAA completed hydrographic ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11996 in Rhode Island Sound (H11996_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11996 in Rhode Island Sound (H11996_2M_UTM, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_2M_UTM, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12012 Offshore in Northeastern Long Island Sound (UTM Zone 18, NAD83, H12012_2M_UTM)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), has produced detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the terrain of the seabed, and provides information on sediment transport and benthic ...

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Northeastern Long Island Sound (H12013_2MUTM, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ...

Info
2-m Bathymetric Grid of NOAA Survey H11255 in Long Island Sound (BATHY2M_UTM18, UTM Zone 18)

Digital terrain models (DTMs) produced from multibeam bathymetric data provide valuable base maps for marine geological interpretations. These maps help define the geological variability of the seafloor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, and the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, ...

Info
2-m Bathymetry from the NOAA Survey H11255 of the Sea Floor in Southeastern Long Island Sound (H11255_2MUTM18_XYZ.TXT, UTM Zone 18)

Digital terrain models (DTMs) produced from multibeam bathymetric data provide valuable base maps for marine geological interpretations. These maps help define the geological variability of the seafloor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, and the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, ...

Info
2 meter Arc Raster grid of bathymetry acquired along cross lines using a SEA Ltd. SWATHplus-H interferometric sonar within Barnegat Bay New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri binary grid, UTM 18N, WGS 84)

Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events ...

Info
2 meter ArcRaster Grid of Swath Bathymetry of St. George Sound, Florida (STG2MBath)

These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ...

Info
2 meter ArcRaster grid of the Swath Bathymetry of Apalachicola Bay, Florida (APBAY2MBATH)

These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ...

Info
2-meter bathymetric data collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (bathymetry and depth-colored hillshade relief GeoTIFFs)

A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ...

Info
2-meter bathymetric data collected in 2016 by the U.S. Geological Survey off Town Neck Beach in Sandwich, Massachusetts, during field activity 2016-017-FA (GeoTIFF image)

Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ...

Info
2m GeoTIFF image of Swath Bathymetry of St. George Sound, Florida (STGSND2M_BATH.TIF)

These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program are to collect marine geophysical data and develop a suite of seafloor maps to better define the extent of oyster habitats and the overall seafloor geology of the bay to provide updated information for management of ...

Info
2m GeoTIFF of Swath Bathymetry of Apalachicola Bay, Florida (APBAY2M_BATH.tif)

These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ...

Info
30 meter Esri binary grids of coastal response type probabilities with respect to projected sea levels for the Northeastern U.S. from Maine to Virginia for the 2020s, 2030s, 2050s and 2080s (Albers, NAD 83)

The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land ...

Info
30 meter Esri binary grids of predicted elevation with respect to projected sea levels for the Northeastern U.S. from Maine to Virginia for the 2020s, 2030s, 2050s and 2080s (Albers, NAD 83)

The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land ...

Info
30 meter Esri binary grids of probability of predicted elevation with respect to projected sea levels for the Northeastern U.S. from Maine to Virginia for the 2020s, 2030s, 2050s and 2080s (Albers, NAD 83)

The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land ...

Info
30-m Hillshaded relief image produced from swath interferometric, multibeam, and lidar datasets (navd_bath_30m.tif GeoTIFF Image; UTM, Zone 19N, WGS 84)

These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ...

Info
30-m Topography and bathymetry grid produced from swath interferometric, multibeam, and lidar datasets (navd_bath_30m Esri binary grid, UTM Zone 19N, WGS84)

These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ...

Info
3 arc second digital elevation model of the Gulf of Maine

A gap-free, region-wide combined topographic/bathymetric grid at a fixed resolution is useful for describing the topography of the seafloor and for a wide variety of oceanographic studies. Generating a bathymetric grid of this type consists of (1) locating and retrieving digital datasets from a variety of sources, (2) correcting errors and determining the dataset that best represents the topography in specific regions, (3) converting the depth data to common horizontal and vertical datums, and (4) selecting ...

Info
3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai

3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai, were created using structure-from-motion (SfM) techniques. The two study sites are located approximately 640 m from shore and approximately 20 m apart in the alongshore direction. At each site, an approximate 12-meter diameter area was imaged in three passes by a swimmer using a handheld digital camera. These images were fed into Structure-from-Motion (SfM) software to produce high-resolution (fine-scale), ...

Info
3-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of Great Round Shoal Channel, Offshore Massachusetts (H11079_UTM_B, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ...

Info
3-m Hill-Shaded Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of Great Round Shoal Channel (H11079_UTM_HS, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ...

Info
40 meter ESRI binary grid of single beam and swath bathymetry of inner continental shelf north of Cape Hatteras, NC to Virginia border (nhatt, UTM Zone 18N, WGS 84)

The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ...

Info
40 meter ESRI binary grid of swath bathymetry of inner continental shelf south of Cape Hatteras, NC to Cape Lookout, NC (shatt, UTM Zone 18N, WGS84)

The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ...

Info
45-m ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_UTM45M, UTM Zone 19)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of central Rhode Island Sound using sidescan-sonar imagery, bathymetry data, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ...

Info
45-m ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11322 in Western Rhode Island Sound (H11322_UTM45M, UTM19)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of western Rhode Island Sound using sidescan-sonar imagery and bathymetry data collected aboard the NOAA Ship RUDE, as well as historic seismic records. The mosaic, ...

Info
45-m Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_GEO45M, Geographic)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of central Rhode Island Sound using sidescan-sonar imagery, multibeam bathymetry and seismic records. The mosaic, bathymetry, and their interpretations serve many ...

Info
4-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11320 in UTM Zone 19 (H11320_UTM_4M)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ...

Info
4 meter ESRI binary grid of nearshore bathymetry data collected south of Oregon Inlet (vims_2005, UTM Zone18N, WGS 84)

The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ...

Info
4-meter resolution bathymetric grid representing single beam data collected by the U.S. Geological Survey during field activity 2016-030-FA offshore Sandwich Beach, MA in June 2016 (32-bit GeoTIFF, UTM Zone 19N, NAD83-HARN)

The objectives of the survey were to provide bathymetric and sidescan sonar data for sediment transport studies and coastal change model development for ongoing studies of nearshore coastal dynamics along Sandwich Town Neck Beach, MA. Data collection equipment used for this investigation are mounted on an unmanned surface vehicle (USV) uniquely adapted from a commercially sold gas-powered kayak and termed the "jetyak". The jetyak design is the result of a collaborative effort between USGS and Woods Hole ...

Info
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441 and H11224 offshore of New London, Connecticut (NLONDON_GEO, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441, H11442, H11224, and H11225 offshore of New London and Niantic, Connecticut (NLNB_GEO, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441, H11442, H11224, and H11225 offshore of New London and Niantic, Connecticut (NLNB_UTM, UTM Zone 18, NAD83)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442 and H11225 offshore of Niantic, Connecticut (NIANTIC_GEO, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
4-m Grid of the Combined Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 Offshore in Eastern Long Island Sound and Westernmost Block Island Sound (ELISCOMB_GEO, Geographic, WGS84)

The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ...

Info
4-m Grid of the Combined Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 Offshore in Eastern Long Island Sound and Westernmost Block Island Sound (ELISCOMB_UTM, UTM Zone 18, NAD83)

The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ...

Info
4-m Grid of the Combined Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11922, H11995, H11996, H12009, H12010, H12011, H12015, H12023, H12033, H12137, H12139, H12296, H12298, and H12299 Offshore in Rhode Island and Block Island Sounds (RICOMB_4MGEO, Geographic, WGS 84)

Detailed bathymetric maps of the sea floor in Block Island and Rhode Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models (DTMs) from individual surveys provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited ...

Info
4-m Grid of the Combined Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11922, H11995, H11996, H12009, H12010, H12011, H12015, H12023, H12033, H12137, H12139, H12296, H12298, H12299 Offshore in Rhode island and Block Island Sound (RICOMB_4MUTM, UTM Zone 19, NAD 83)

Detailed bathymetric maps of the sea floor in Block Island and Rhode Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models (DTMs) from individual surveys provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited ...

Info
4-m Grid of the Combined Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H12009, H12010, H12011, H12015, H12033, H12137, and H12139 Offshore in Block Island Sound (BISOUND_4MGEO, Geographic, WGS84)

The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ...

Info
4-m Grid of the Combined Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H12009, H12010, H12011, H12015, H12033, H12137, and H12139 Offshore in Block Island Sound (BISOUND_4MUTM, UTM Zone 19, NAD83)

The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ...

Info
4-m Hill-Shaded Bathymetric GeoTIFF Image of National Oceanic and Atmospheric Administration (NOAA) Survey H11320 in UTM Zone 19 (H11320_UTM_4M.TIF)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ...

Info
500 meter bathymetric contours of the Gulf of the Farallones region (500mCONTOUR)

In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques ...

Info
50-Meter Digital Elevation Model of Coastal Bathymetry Collected in 2011 from the Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Numbers 11BIM01 and 11BIM02)

As part of the Barrier Island Evolution Research Project, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off the northern Chandeleur Islands, Louisiana, in June of 2011. The overall objectives of the study are to better understand barrier-island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual timescales (1-5 years). Collection of ...

Info
50-Meter Digital Elevation Model of Coastal Bathymetry Collected in 2012 from the Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Numbers 12BIM03 and 12BIM04)

As part of the Barrier Island Evolution Research Project, scientists from the U.S. Geological Survey's St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off the northern Chandeleur Islands, Louisiana, in Julyof 2012. The overall objective of the study is to better understand barrier-island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual timescales (1-5 years). The collection of ...

Info
5 m Bathymetric Contours for Long Island Sound (LIS1992)

This bathymetric contour data set was derived from a gridded data set obtained from URI (B.Tyce, G. Hatcher). They used the "Gridder" program to obtain the grid. This gridded data set was generated from the original NOS soundings from 9 track tape that was cleaned up and edited at URI. This work was done with the intention of producing the color poster called "Long Island Sound Estuary" (Connecticut Dept. of Environmental Protection"), 1993. The accuracy is questionable.

Info
5-meter acoustic backscatter image collected by Alpine Ocean Seismic Survey, Inc., offshore of Fire Island, NY in 2014, as part of a collaborative U.S. Army Corp of Engineers and U.S. Geological Survey mapping effort (UTM zone 18N, WGS 84, Esri binary grid file format)

Hurricane Sandy, the largest storm of historical record in the Atlantic basin, severely impacted southern Long Island, New York in October 2012. In 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a high-resolution multibeam echosounder survey with Alpine Ocean Seismic Survey, Inc., offshore of Fire Island and western Long Island, New York to document the post-storm conditions of the inner continental shelf. The objectives of the survey were ...

Info
5-meter acoustic backscatter image collected by Alpine Ocean Seismic Survey, Inc., offshore of The Rockaways to Jones Inlet, NY in 2014, as part of a collaborative U.S. Army Corp of Engineers and U.S. Geological Survey mapping effort (UTM zone 18N, WGS 84, Esri binary grid file format)

Hurricane Sandy, the largest storm of historical record in the Atlantic basin, severely impacted southern Long Island, New York in October 2012. In 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a high-resolution multibeam echosounder survey with Alpine Ocean Seismic Survey, Inc., offshore of Fire Island and western Long Island, New York to document the post-storm conditions of the inner continental shelf. The objectives of the survey were ...

Info
5 meter ArcRaster Bathymetric grid of both the inshore and offshore area of Cape Ann - Salisbury Beach Survey Area (CABATH5M, UTM Zone 19, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ...

Info
5 meter ArcRaster Bathymetric Hillshade of both the inshore and offshore portions of the Cape Ann - Salisbury Beach Massachusetts Survey Area (CABATH5MHS, UTM Zone 19, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ...

Info
5 meter ArcRaster grid of bathymetry data collected in Buzzards Bay by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts in 2004, 2009, 2010, and 2011 (BB_bathy5m, UTM Zone 19N, Esri BINARY GRID)

These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ...

Info
5 meter ArcRaster grid of hillshaded bathymetry data collected in Buzzards Bay by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts in 2004, 2009, 2010, and 2011 (BB_hlshd5m, UTM Zone 19N, Esri BINARY GRID)

These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ...

Info
5 meter ArcRaster grid of multibeam bathymetry of the offshore area of Cape Ann - Salisbury Beach Massachusetts Survey Area (BATH_OS5m, UTM Zone 19, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ...

Info
5 meter ArcRaster grid of swath bathymetry of inshore area of Cape Ann - Salisbury Beach Massachusetts survey area (BATH_IS5m, UTM Zone 19, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ...

Info
5 meter bathymetric contours derived from data collected during U.S. Geological Survey Geophysical Surveys of Bear Lake, Utah-Idaho, September, 2002 cruise 02031(02031_BATHY_5M)

Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ...

Info
5-meter bathymetric contours generated from swath bathymetric data collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, CON_5M)

In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ...

Info
5-meter bathymetric data collected in 2013 by the U.S. Geological Survey south of Martha's Vineyard and north of Nantucket, Massachusetts (32-bit floating-point bathymetry GeoTIFF and depth-colored hillshaded GeoTIFF, UTM Zone 19N, WGS 84)

These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish ...

Info
5-meter bathymetric data collected in 2014 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (32-bit GeoTIFF, UTM Zone 18N, WGS 84)

The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ...

Info
5 meter color-hillshaded relief GeoTIFF of both the inshore and offshore area of Cape Ann - Salisbury Beach Survey Area (CABATH5M_GEOG.TIF, Geographic, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ...

Info
5-meter interferometric bathymetry data collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (32-bit GeoTIFF, UTM Zone 18N, WGS 84)

The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ...

Info
5-Meter Sample Resolution Interferometric Swath Bathymetric Data Collected in 2011 from the Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 11BIM01)

As part of the Barrier Island Evolution Research Project, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off the northern Chandeleur Islands, Louisiana, in June of 2011. The overall objectives of the study are to better understand barrier-island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual timescales (1-5 years). Collection of ...

Info
5-meter swath bathymetric grid collected by Alpine Ocean Seismic Survey, Inc., offshore of Fire Island, NY in 2014, as part of a collaborative U.S. Army Corp of Engineers and U.S. Geological Survey mapping effort (UTM zone 18N, WGS 84, Esri binary grid file format)

Hurricane Sandy, the largest storm of historical record in the Atlantic basin, severely impacted southern Long Island, New York in October 2012. In 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a high-resolution multibeam echosounder survey with Alpine Ocean Seismic Survey, Inc., offshore of Fire Island and western Long Island, New York to document the post-storm conditions of the inner continental shelf. The objectives of the survey were ...

Info
5-meter swath bathymetric grid collected by Alpine Ocean Seismic Survey, Inc., offshore of The Rockaways to Jones Inlet, NY in 2014, as part of a collaborative U.S. Army Corp of Engineers and U.S. Geological Survey mapping effort (UTM zone 18N, WGS 84, Esri binary grid file format)

Hurricane Sandy, the largest storm of historical record in the Atlantic basin, severely impacted southern Long Island, New York in October 2012. In 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a high-resolution multibeam echosounder survey with Alpine Ocean Seismic Survey, Inc., offshore of Fire Island and western Long Island, New York to document the post-storm conditions of the inner continental shelf. The objectives of the survey were ...

Info
5-meter swath bathymetric grid collected by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (UTM Zone 18N, WGS 84, Esri Binary Grid)

The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island. For more information about the WHCMSC Field Activity, see https:/ ...

Info
5-m interval contours of smoothed multibeam bathymetry in western Massachusetts Bay map Quadrangle 1 (Q1_5MCTR.SHP)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
5-m interval contours of smoothed multibeam bathymetry in western Massachusetts Bay map Quadrangle 2 (Q2_5MCTR.SHP)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
5-m interval contours of smoothed multibeam bathymetry in western Massachusetts Bay map Quadrangle 3 (Q3_5MCTR.SHP)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
5-m interval contours of smoothed multibeam bathymetry in western Massachusetts Bay map Quadrangles 1-3 (WMB_5MCTR.SHP)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
5-m interval contours of smoothed multibeam bathymetry of Massachusetts Bay (MB_5MCTR9X9.SHP, Geographic, NAD83)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
6-m resolution gray-scale image of shaded-relief multibeam bathymetry in western Massachusetts Bay map Quadrangle 1 (Q1_SRELIEF.TIF)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
6-m resolution gray-scale image of shaded-relief multibeam bathymetry in western Massachusetts Bay map Quadrangle 2 (Q2_SRELIEF.TIF)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
6-m resolution gray-scale image of shaded-relief multibeam bathymetry in western Massachusetts Bay map Quadrangle 3 (Q3_SRELIEF.TIF)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
6-m resolution grid of multibeam bathymetry in western Massachusetts Bay map Quadrangle 1 (Q1_BATHY6M)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
6-m resolution grid of multibeam bathymetry in western Massachusetts Bay map Quadrangle 2 (Q2_BATHY6M)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
6-m resolution grid of multibeam bathymetry in western Massachusetts Bay map Quadrangle 3 (Q3_BATHY6M)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
6-m resolution grid of multibeam bathymetry of western Massachusetts Bay map Quadrangles 1-3 (WMB_BATHY6M)

The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ...

Info
A bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada. (30-meter resolution, 32-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid)

This data publication is a compilation of six different multibeam surveys covering the previously unmapped Queen Charlotte Fault offshore southeast Alaska and Haida Gwaii, Canada. These data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, Natural Resources Canada, and the National Oceanic and Atmospheric Administration. The six source surveys from different multibeam sonars are combined into one terrain model with a 30-meter resolution. A complementary ...

Info
Acoustic backscatter data collected in 2007 from the San Miguel Passage in the Channel Islands, California

This portion of the data release presents acoustic backscatter data from the San Miguel Passage, in the Channel Islands, California. The data were collected in August 2007 by the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC) using a 234.5 kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonar mounted on the NOAA, Channel Islands National Marine Sanctuary R/V Shearwater as part of the research cruise S-2-07-SC. Data were collected in water depths up to 89 meters. ...

Info
Acoustic backscatter data collected in 2008 offshore Tijuana River Estuary, California, during USGS Field Activity S-5-08-SC

These metadata describe acoustic backscatter data collected during a 2008 SWATHPlus-M survey offshore Tijuana River Estuary, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number S-5-08-SC. The acoustic backscatter data are provided as a GeoTIFF image.

Info
Acoustic-backscatter data collected in 2016 offshore the Elwha River mouth, Washington, during USGS Field Activity 2016-605-FA

These metadata describe acoustic-backscatter data collected during a 2016 SWATHPlus-M survey offshore the Elwha River mouth, Strait of Juan de Fuca, Washington. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-605-FA. The acoustic-backscatter data are provided as a GeoTIFF image in UTM, zone 10, NAD83 coordinates.

Info
Acoustic-backscatter data for Jenkinson Lake, California collected during USGS field activity 2022-604-FA

Here January 2022 1-m resolution acoustic-backscatter data are provided for Jenkinson Lake, California. Acoustic-backscatter data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July 2023). Data are provided as a GeoTIFF image.

Info
Acoustic-backscatter data for Jenkinson Lake, California collected during USGS field activity 2022-649-FA

Here August 2022 1-m resolution acoustic-backscatter data are provided for Jenkinson Lake, California. Acoustic-backscatter data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July 2023). Data are provided as a GeoTIFF image.

Info
Acoustic-backscatter data for Jenkinson Lake, California collected during USGS field activity 2023-634-FA

Here July 2023 1-m resolution acoustic-backscatter data are provided for Jenkinson Lake, California. Acoustic-backscatter data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July 2023). Data are provided as a GeoTIFF image.

Info
Acoustic-backscatter data for Ozette Lake, Washington collected during USGS field activity 2019-622-FA

2-m resolution acoustic-backscatter data were collected during a July 2019 SWATHPlus survey of Ozette Lake, Washington. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2019-622-FA. The 2-m acoustic-backscatter data are provided as a GeoTIFF image.

Info
Acoustic-backscatter data of USGS field activity 2016-666-FA collected in the Santa Barbara Basin in September and October of 2016

These metadata describe acoustic-backscatter data collected during an October 2016 multibeam-echosounder survey of the northern portion of the Santa Barbara Channel, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-666-FA. The acoustic-backscatter data are provided as a GeoTIFF image.

Info
Acoustic Backscatter of the Sacramento River, from the Feather River to Knights Landing, California in February 2011

This part of the data release presents acoustic backscatter data collected on February 1, 2011, in the Sacramento River from the confluence of the Feather River to Knights Landing. The data were collected by the USGS Pacific Coastal and Marine Science Center (PCMSC) team with collaboration and funding from the U.S. Army Corp of Engineers. This project used interferometric sidescan sonar to characterize the riverbed and channel banks along a 12 mile reach of the Sacramento River, California (River Mile 79 ...

Info
Aerial imagery from the UAS survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01

This portion of the data release presents the raw aerial imagery collected during the unoccupied aerial system (UAS) survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. A total of six flights were conducted for the ...

Info
Aerial imagery from UAS survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05

This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, on 2019-06-05. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. For flights F01, F02, F03, F04, and F05 the ...

Info
Aerial imagery from UAS survey of the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06

This portion of the data release presents the raw aerial imagery collected during an Unmanned Aerial System (UAS) survey of the intertidal zone at Post Point, Bellingham Bay, WA, on 2019-06-06. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The UAS was flown on pre-programmed autonomous ...

Info
Aerial imagery from UAS survey of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03

This portion of the data release presents the raw aerial imagery collected during an Unmanned Aerial System (UAS) survey of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, on 2019-06-03. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The UAS was flown on pre ...

Info
Aerial imagery from UAS survey of the intertidal zone at West Whidbey Island, WA, 2019-06-04

This portion of the data release presents the raw aerial imagery collected during the unmanned aerial system (UAS) survey of the intertidal zone at West Whidbey Island, WA, on 2019-06-04. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. Flights using both a nadir camera orientation and an oblique camera orientation were conducted. For the nadir flights (F04, F05, F06, F07, and F08), the camera was mounted ...

Info
Aerial imagery from UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23

This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The imagery was acquired using two Department of Interior owned 3DR Solo quadcopters fitted with Ricoh GR II digital cameras featuring global shutters. The cameras were mounted using a fixed mount on the bottom of the UAS and oriented in a roughly nadir orientation. The ...

Info
Aerial imagery from UAS surveys of beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017

This portion of the data release presents the raw aerial imagery collected during the uncrewed aerial system (UAS) survey conducted on the ocean beaches adjacent to the Columbia River Mouth at the Oregon-Washington border in August 2017. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The ...

Info
Aerial imagery from UAS surveys of beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021

This portion of the data release presents the raw aerial imagery collected during the uncrewed aerial system (UAS) survey conducted on the ocean beaches adjacent to the Columbia River Mouth at the Oregon-Washington border in July 2021. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The ...

Info
Aerial_Shorelines_1940_2015.shp - Dauphin Island, Alabama Shoreline Data Derived from Aerial Imagery from 1940 to 2015

Aerial_WDL_Shorelines.zip features digitized historic shorelines for the Dauphin Island coastline from October 1940 to November 2015. This dataset contains 10 Wet Dry Line (WDL) shorelines separated into 58 shoreline segments alongshore Dauphin Island, AL. The individual sections are divided according to location along the island and shoreline type: open-ocean, back-barrier, marsh shoreline. Imagery of Dauphin Island, Alabama was acquired from several sources including the United States Geological Survey ...

Info
AllScenarios_Bin1thru18_SSC: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Initial_and_Final_Bed_Elevations: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Sediment_Fluxes: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Spatial_Flow: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Spatial_Waves: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
April 2009 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California

Bathymetric survey data were collected in April 2009 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ...

Info
April 2013 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California

Bathymetric survey data were collected in April 2013 just south of Dumbarton Bridge in south San Francisco Bay, California. A portion of the main channel was surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 (NAVD88), subtract a static offset of 0.37 ...

Info
April 2015 bathymetry (MLLW) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2015. Projection = UTM, zone 10 in meters, Horizontal Datum = NAD83 (CORS96), Vertical Datum = MLLW, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 3.7 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2015 bathymetry (NAVD88) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2015. Projection = UTM, zone 10 in meters, Horizontal Datum = NAD83 (CORS96), Vertical Datum = NAVD88, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 3.7 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2015 bathymetry (WGS84) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2015. Projection = UTM, zone 10 in meters, Horizontal Datum = WGS84(G1150), Elevations relative to the WGS84 Ellipsoid, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 3.7 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2016 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California

Bathymetric survey data were collected in April 2016 just south of Dumbarton Bridge in south San Francisco Bay, California. A portion of the main channel was surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 (NAVD88), subtract a static offset of 0.37 ...

Info
April 2016 bathymetry (MLLW) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2016. Projection = UTM, zone 10 in meters, Horizontal Datum = NAD83 (CORS96), Vertical Datum = MLLW, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 3.7 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2016 bathymetry (NAVD88) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2016. Projection = UTM, zone 10 in meters, Horizontal Datum = NAD83 (CORS96), Vertical Datum = NAVD88, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 3.7 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2016 bathymetry (WGS84) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2016. Projection = UTM, zone 10 in meters, Horizontal Datum = WGS84(G1150), Elevations relative to the WGS84 Ellipsoid, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 3.7 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2018 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California

Bathymetric survey data were collected in April 2018 just south of Dumbarton Bridge in south San Francisco Bay, California. A portion of the main channel was surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 (NAVD88), subtract a static offset of 0.37 ...

Info
April 2018 bathymetry (MLLW) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2018. Projection = UTM, zone 10 in meters, Horizontal Datum = NAD83 (CORS96), Vertical Datum = MLLW, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 3.7 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2018 bathymetry (NAVD88) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2018. Projection = UTM, zone 10 in meters, Horizontal Datum = NAD83 (CORS96), Vertical Datum = NAVD88, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 3.7 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2018 bathymetry (WGS84) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2018. Projection = UTM, zone 10 in meters, Horizontal Datum = WGS84(G1150), Elevations relative to the WGS84 Ellipsoid, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 3.7 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2019 bathymetry (MLLW) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2019. Projection = UTM, zone 10 in meters, Horizontal Datum = NAD83 (CORS96), Vertical Datum = MLLW, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 9.8 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2019 bathymetry (NAVD88) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2019. Projection = UTM, zone 10 in meters, Horizontal Datum = NAD83 (CORS96), Vertical Datum = NAVD88, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 9.8 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
April 2019 bathymetry (WGS84) of Coyote Creek and Alviso Slough, South San Francisco Bay, California

1-m resolution bathymetry collected in Coyote Creek and Alviso Slough in April 2019. Projection = UTM, zone 10 in meters, Horizontal Datum = WGS84(G1150), Elevations relative to the WGS84 Ellipsoid, all units in meters. The surveys extend east from Calaveras Point along Coyote Creek to the railroad bridge, along Alviso Slough to the town of Alviso (just over 7 km), and along the 9.8 km of Guadalupe Slough closest to the San Francisco Bay, California.

Info
Arc ASCII and GeoTiff DEMs of the North-Central California Coast (DEM_#_ASCII and DEM_#_GeoTIFF)

A seamless, 2 meter resolution digital elevation model (DEM) was constructed for the open-coast region of the San Francisco Bay Area (outside of the Golden Gate Bridge), extending from Half Moon Bay to Bodega Head along the north-central California coastline. The goal was to integrate the most recent high-resolution bathymetric and topographic datasets available (for example, Light Detection and Ranging (lidar) topography, multibeam and single-beam sonar bathymetry) into a seamless surface model extending ...

Info
Archive of Side Scan Sonar and Swath Bathymetry Data Collected During USGS Cruise 13CCT04 Offshore of Petit Bois Island, Gulf Islands National Seashore, Mississippi, August 2014

In August of 2013, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi. These efforts are a continued part of the U.S. Geological Survey Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project, by mapping the shallow geologic stratigraphic framework of the ...

Info
Archive of Single-Beam Bathymetry Data Collected from Select Areas in Weeks Bay and Weeks Bayou, Southwest Louisiana, January 2013

A team of scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), collected 92-line-kilometers (km) of dual-frequency single-beam bathymetry data in the tidal creeks, bayous, and coastal areas near Weeks Bay, southwest Louisiana. Limited bathymetry data exist for these tidally- and meteorologically- influenced shallow-water estuarine environments. In order to reduce the present knowledge gap, the objectives of this study were to (1) develop methods for ...

Info
ArcInfo Grid of the 30 meter pixel Composite Bathymetry of Boston Harbor and Approaches (BH_30MBATH, UTM 19, WGS84)

These data are high-resolution bathymetric measurements of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km square of sidescan sonar and bathymetric data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed and gridded by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS).

Info
ASCII formatted file of the 4-m bathymetry from the northern half of USGS survey 98015 of the Sea Floor off Eastern Cape Cod (CAPENORTH_GEO4M_XYZ.TXT, Geographic, NAD83)

This data set includes bathymetry of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echosounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up to 7.5 ...

Info
ASCII formatted file of the 4-m bathymetry from the southern half of USGS Survey 98015 of the Sea Floor off Eastern Cape Cod (CAPESOUTH_GEO4M_XYZ.TXT, Geographic, NAD83)

This data set includes bathymetry of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echosounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up to 7.5 ...

Info
ASCII grid of bathymetry data collected by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts between Duxbury and Hull with data gaps (DH_bathy_wgaps.asc, ARC/INFO ASCII GRID, UTM Zone 19, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ...

Info
ASCII Text File of the Original 1-m Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Survey H11320 in Rhode Island Sound (H11320_1M_UTM19NAD83.TXT)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ...

Info
ASCII Text File of the Original 1-m Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_1M_UTM19NAD83.TXT)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of central Rhode Island Sound using sidescan-sonar imagery, bathymetry data, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ...

Info
ASCII Text File of the Original 1-m Bathymetry (Partial Coverage) from National Oceanic and Atmospheric Administration (NOAA) Survey H11322 in Western Rhode Island Sound (H11322_1M_UTM19NAD83.TXT)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of western Rhode Island Sound using sidescan-sonar imagery and bathymetry data collected aboard the NOAA Ship RUDE, as well as historic seismic records. The mosaic, ...

Info
ASCII text file of the Original 1-m Gridded Bathymetry from NOAA Survey H11310 in Central Narragansett Bay (H11310_1M_UTM19NAD83.TXT)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The bathymetry presented herein covers an area of the sea ...

Info
A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California

A seamless, three-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the Mexican border. The goal was to integrate the most recent, high-resolution datasets available (for example, Light Detection and Ranging (Lidar) topography, multibeam and single beam sonar bathymetry, and Interferometric Synthetic Aperture Radar (IfSAR) topography) into a continuous surface from at least the 20-m isobath to the +20-m elevation ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Initial_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Initial_Elevations_N.txt)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_114_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_114_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_134_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_134_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_152_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_152_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_155_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_155_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_158_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_158_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_186_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_186_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_191_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_191_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_23_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_23_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_257_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_257_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_4_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_4_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_71_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_71_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_95_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_95_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Year_30_Elevations_N)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Year_30_Elevations_NA)

Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ...

Info
ATLANTIC - Coastal Vulnerability to Sea-Level Rise: A Preliminary Database for the U.S. Atlantic Coast

The goal of this project is to provide a preliminary overview, at a National scale, the relative susceptibility of the Nation's coast to sea-level rise through the use of a coastal vulnerability index (CVI). This initial classification is based upon the variables geomorphology, regional coastal slope, tide range, wave height, relative sea-level rise and shoreline erosion and accretion rates. The combination of these variables and the association of these variables to each other furnish a broad overview of ...

Info
Backscatter intensity and sun-illuminated topographic imagery of the seafloor in the Stellwagen Bank National Marine Sanctuary region (bcksctter.tif)

This data set contains the sun-illuminated topographic imagery and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the ...

Info
Bathymetric change map of the nearshore around Ship, Horn, and Petit Bois islands, Mississippi: 1916-1920 to 2008-2009

To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. Data sets include 1916 through 1920 soundings collected by the United States Coast and ...

Info
Bathymetric change map of the nearshore around Ship, Horn, and Petit Bois islands, Mississippi: 1916-1920 to 2016

To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. Datasets include 1916 through 1920 soundings collected by the United States Coast and ...

Info
Bathymetric change map of the nearshore around Ship, Horn, and Petit Bois islands, Mississippi: 2008-2009 to 2016

To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. Data sets include 1916 through 1920 soundings collected by the United States Coast and ...

Info
Bathymetric change of Central San Francisco Bay, California: 1971 to 2020

This 25-m-resolution surface presents bathymetric change of Central San Francisco Bay, California (hereafter referred to as Central Bay). This surface compares a 1-m-resolution digital elevation model (DEM) of the central portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the Central Bay region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 25-m-resolution DEM of Central Bay comprised of historic surveys from ...

Info
Bathymetric change of San Pablo Bay, California: 1983 to 2015

This 25-m-resolution surface presents bathymetric change of San Pablo Bay, California, from 1983 to 2015. This surface compares a 1-m-resolution digital elevation model (DEM) of the northern portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the San Pablo Bay region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 25-m-resolution bathymetric DEM of San Pablo Bay comprised of historic surveys from 1983 to 1986 ...

Info
Bathymetric change of South San Francisco Bay, California: 1979 to 2020

This 50-m-resolution surface presents bathymetric change of South San Francisco Bay, California (hereafter referred to as South Bay). This surface compares a 1-m-resolution digital elevation model (DEM) of the southern portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the South Bay region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 50-m-resolution DEM of South Bay comprised of historic surveys from 1979 to ...

Info
Bathymetric change of Suisun Bay, California: 1988 to 2016

This 25-m-resolution surface presents bathymetric change of Suisun Bay, California, from 1988 to 2016. This surface compares a 1-m-resolution digital elevation model (DEM) of the northern portion of San Francisco Bay (Fregoso and others, 2020), comprised of bathymetry data in the Suisun region from the time period referred to as the 2010s because the majority of the surveys were in that decade, to a 25-m-resolution bathymetric DEM of Suisun Bay comprised of historic surveys from 1988 to 1990 (referred to as ...

Info
Bathymetric Contours within the inner shelf of Long Bay, South Carolina (CON_1M, 1 meter interval: Polyline shapefile)

In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ...

Info
Bathymetric data and grid of offshore Head of the Meadow Beach, Truro, MA on April 7, 2023

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ...

Info
Bathymetric data and grid of offshore Head of the Meadow Beach, Truro, MA on February 9, 2024

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed at the beach. In February and March 2024, U.S. ...

Info
Bathymetric data and grid of offshore Marconi Beach, Wellfleet, MA on April 23, 2024

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2024-016-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of two video cameras aimed at the beach (CoastCam CACO-02). In ...

Info
Bathymetric data and grid of offshore Marconi Beach, Wellfleet, MA on March 20, 2023

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Bathymetric data collected by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts between Duxbury and Hull (DH_bathy5m, Esri binary grid, UTM Zone 19, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ...

Info
Bathymetric data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006-2007 (BATHY_GRD.ASC, ESRI ASCII GRID)

In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ...

Info
Bathymetric data collected in the Belfast Bay, Maine pockmark field using a SWATHplus-M interferometric sonar in 2006 and 2008, by the U.S. Geological Survey (32-bit floating point raster, UTM 19 WGS 84, MLLW)

The U.S. Geological Survey, Woods Hole Coastal and Marine Science Center in cooperation with the University of Maine mapped approximately 50 square kilometers of the seafloor within Belfast Bay, Maine. Three geophysical surveys conducted in 2006, 2008 and 2009 collected swath bathymetric (2006 and 2008) and chirp seismic reflection profile data (2006 and 2009). The project characterized the spatial, morphological and subsurface variability of the Belfast Bay, Maine pockmark field. Pockmarks are large ...

Info
Bathymetric Data collected with Backpack and Wheel-mounted GPS within and around the Wilderness Breach, Fire Island, New York, (2014) in XYZ ASCII Text File Format

Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ...

Info
Bathymetric Data collected with Personal Watercraft within Bellport Bay, New York, (2014) in XYZ ASCII text file format

Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ...

Info
Bathymetric data during field activity 2021-014-FA offshore Head of the Meadow Beach, Truro MA on February 11, 2021

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ...

Info
Bathymetric data, stored as elevation above IGLD85, collected by the U.S. Geological Survey within the St. Clair River offshore of Marysville, Michigan, 2008 (ESRI GRID, MVILLE_05M)

In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ...

Info
Bathymetric data, stored as elevations above IGLD85, collected by the U.S. Geological Survey within the St. Clair River offshore of Port Lambton, Ontario, 2008 (ESRI GRID, PORTL_05M)

In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ...

Info
Bathymetric data, stored as elevations relative to IGLD85, collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI GRID, BATHY_05M)

In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ...

Info
Bathymetric DEM of the Sacramento River, from the Feather River to Knights Landing, California in February 2011

This part of the data release presents a digital elevation model (DEM) created from bathymetry data collected on February 1, 2011, in the Sacramento River from the confluence of the Feather River to Knights Landing. The data were collected by the USGS Pacific Coastal and Marine Science Center (PCMSC) team with collaboration and funding from the U.S. Army Corps of Engineers. This project used interferometric sidescan sonar to characterize the riverbed and channel banks along a 12 mile reach of the Sacramento ...

Info
Bathymetric depth contours at 5 meter intervals derived from interferometric sonar data collected offshore of Massachusetts within Vineyard Sound by the U.S. Geological Survey in 2009, 2010, and 2011 (VS_5MCNTR_V2, Esri Shapefile, Geographic, WGS84).

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ...

Info
Bathymetric depth contours at 5 meter intervals of interferometric sonar data collected offshore of Massachusetts within northern Cape Cod Bay (CCB_5MCNTR Esri Shapefile, Geographic, WGS84).

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ...

Info
Bathymetric digital elevation model (DEM) of Eastern Dry Rocks coral reef, Florida, 2021

A digital elevation model (DEM) was created from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was derived in Metashape (ver. 1.6.5) from the point cloud, but it excludes the 'low noise' class. The DEM covers a rectangular area of seafloor ...

Info
Bathymetric Digital Elevation Model (DEM) of the 2016 nearshore coastal bathymetry from West Ship Island to Horn Island, Gulf Islands National Seashore, Mississippi.

The United States Geological Survey Saint Petersburg Coastal and Marine Science Center (USGS SPCMSC), in cooperation with the United States Army Corps of Engineers (USACE) conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi (GUIS). Camille Cut separates Ship Island into East Ship Island and West Ship Island. The objective of this study was to establish base-level elevation conditions around West Ship Island, East Ship Island, ...

Info
Bathymetric Digital Elevation Model (DEM) of the 2016 nearshore coastal bathymetry from West Ship Island to Horn Island, Gulf Islands National Seashore, Mississippi.

The United States Geological Survey Saint Petersburg Coastal and Marine Science Center (USGS SPCMSC), in cooperation with the United States Army Corps of Engineers (USACE) conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi (GUIS). Camille Cut separates Ship Island into East Ship Island and West Ship Island. The objective of this study was to establish base-level elevation conditions around West Ship Island, East Ship Island, ...

Info
Bathymetric grid during field activity 2021-022-FA offshore Marconi Beach, Wellfleet MA on March 10, 2021

The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Bathymetric grid representing single beam data during field activity 2020-015-FA offshore Head of the Meadow Beach, Truro MA on March 10, 2020

The data in this release map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide environmental context for the camera calibration information for the 2019 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2020-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of the CoastCam, which are ...

Info
Bathymetric measurements of Little Holland Tract, Sacramento-San Joaquin Delta, California, 2015, from personal watercraft

Bathymetric data were collected by the U.S. Geological Survey (USGS) in 2015 for Little Holland Tract in the Sacramento-San Joaquin River Delta, California. The data were collected using a personal watercraft (PWC) platform that consisted of Trimble R7 Global Navigation Satellite System (GNSS) receivers with Zephyr 2 antennas, combined with Odom Echotrac CV-100 single-beam echosounders and 200 kHz transducers. Data was post-processed to remove spurious data points. Raw depths were converted to ellipsoid ...

Info
Bathymetric Terrain Model of the Puerto Rico Trench and Northeastern Caribbean Region Compiled by the U.S. Geological Survey From Multibeam Bathymetric Data Collected Between 2002 and 2013 (PRBATHOFR150, Esri Binary Grid, UTM19, WGS 84).

Bathymetric terrain models (BTMs) of seafloor morphology are an important component of marine geological investigations. Advances in technologies of acquiring and processing bathymetric data have facilitated the creation of high-resolution bathymetric surfaces that approach the resolution of those available for onshore investigations. These bathymetric terrain models provide a detailed representation of the Earth's subaqueous surface and when combined with other geophysical and geologic datasets, allow for ...

Info
Bathymetric Terrain Model of the U.S. Atlantic Margin (100-meter resolution) compiled by the U.S. Geological Survey (32-bit GeoTIFF, MERCATOR Projection, WGS 84)

Bathymetric terrain models of seafloor morphology are an important component of marine geological investigations. Advances in acquisition and processing technologies of bathymetric data have facilitated the creation of high-resolution bathymetric surfaces that approach the resolution of similar surfaces available for onshore investigations. These bathymetric terrain models provide a detailed representation of the Earth's subaqueous surface and, when combined with other geophysical and geological datasets, ...

Info
Bathymetry and acoustic backscatter of Crater Lake, Oregon from Field Activity: S-1-00-OR

ArcInfo GRID format data generated from the 2000 multibeam sonar survey of Crater Lake, Oregon. The data include high-resolution bathymetry and calibrated acoustic backscatter. Data are also available as ASCII xyz format (see data download page of https://doi.org/10.3133/ds72)

Info
Bathymetry and seafloor acoustic backscatter of mobile subaqueous sand dunes in the lower Columbia River, Washington and Oregon, 2021

Bathymetry and seafloor acoustic backscatter data were collected at four sites (SKM, SLG, LDB, WLW) using a SWATHPlus interferometric sonar (234 kHz) pole mounted to the R/V Parke Snavely during a June 2021 survey of the lower Columbia River, Washington and Oregon. Each site was surveyed repeatedly between June 5 and June 9, 2021 to quantify bathymetric changes resulting from migration of subaqueous sand dunes. The bathymetry and seafloor acoustic backscatter data from each site are provided as GeoTIFF ...

Info
Bathymetry and topography data offshore of Burien, Washington

This part of USGS Data Series 935 (Cochrane, 2014) presents bathymetry and topography data for the Offshore of Burien, California, map area, a part of the Southern Salish Sea Habitat Map Series. The data for this map area are a combination of topography extracted from a pre-existing Digital Elevation Model (DEM) merged with bathymetry data that were collected by the National Oceanic and Atmospheric Administration (NOAA) using multibeam sonar systems. The merged data are available for download in a single ...

Info
Bathymetry and topography data offshore of Seattle, Washington

This part of USGS Data Series 935 (Cochrane, 2014) presents bathymetry and topography data for the Offshore of Seattle, California, map area, a part of the Southern Salish Sea Habitat Map Series. The data for this map area are a combination of topography extracted from a pre-existing Digital Elevation Model (DEM) merged with bathymetry data that were collected by the National Oceanic and Atmospheric Administration (NOAA) using multibeam sonar systems. The merged data are available for download in a single ...

Info
Bathymetry and topography data offshore of Tacoma, Washington

This part of USGS Data Series 935 (Cochrane, 2014) presents bathymetry and topography data for the Offshore of Tacoma, California, map area, a part of the Southern Salish Sea Habitat Map Series. The data for this map area are a combination of topography extracted from a pre-existing Digital Elevation Model (DEM) merged with bathymetry data that were collected by the National Oceanic and Atmospheric Administration (NOAA) using multibeam sonar systems. The merged data are available for download in a single ...

Info
Bathymetry data collected from ASV operations on North Core Banks, NC in October 2022

These data map in high detail surficial cross-sections of North Core Banks, a barrier island in Cape Lookout National Seashore, NC, in October 2022. U.S. Geological Survey field efforts are part of an interagency agreement with the National Park Service to monitor the recovery of the island from Hurricanes Florence (2018) and Dorian (2019). Three sites of outwash, overwash, and pond formation were targeted for extensive vegetation ground-truthing, sediment samples, bathymetric mapping with a remote ...

Info
Bathymetry data collected in 2007 from the San Miguel Passage in the Channel Islands, California

This portion of the data release presents bathymetry data from the San Miguel Passage, in the Channel Islands, California. Bathymetry data were collected in the San Miguel Passage, Channel Islands, California in August 2007 by the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC). Collection was accomplished using a 234.5 kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonar mounted on the NOAA, Channel Islands National Marine Sanctuary R/V Shearwater as part of the ...

Info
Bathymetry data collected in 2008 offshore Tijuana River Estuary, California during USGS Field Activity S-5-08-SC

These metadata describe bathymetry data collected during a 2008 SWATHPlus-M survey offshore Tijuana River Estuary, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number S-5-08-SC. The bathymetry data are provided as GeoTIFF images in UTM, zone 11, NAD83 coordinates, vertically referenced to both NAVD88 and WGS84. A standard deviation grid is also provided.

Info
Bathymetry data collected in 2016 offshore the Elwha River mouth, Washington, during USGS Field Activity 2016-605-FA

These metadata describe bathymetry data collected during a 2016 SWATHPlus-M survey offshore the Elwha River mouth, Strait of Juan de Fuca, Washington. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-605-FA. The bathymetry data are provided as a GeoTIFF image in UTM, zone 10, NAD83 coordinates, vertically referenced to NAVD88.

Info
Bathymetry data for Jenkinson Lake, California collected during USGS field activity 2022-604-FA

Here January 2022 1-m resolution bathymetry data of Jenkinson Lake, California are provided for the entire lake and 0.5-m resolution bathymetry data are provided for the shallower upper basin. Bathymetry data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA ...

Info
Bathymetry data for Jenkinson Lake, California collected during USGS field activity 2022-649-FA

Here August 2022 1-m resolution bathymetry data of Jenkinson Lake, California are provided for the entire lake and 0.5-m resolution bathymetry data are provided for the shallower upper basin. Bathymetry data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July ...

Info
Bathymetry data for Jenkinson Lake, California collected during USGS field activity 2023-634-FA

Here July 2023 1-m resolution bathymetry data of Jenkinson Lake, California are provided for the entire lake and 0.5-m resolution bathymetry data are provided for the shallower upper basin. Bathymetry data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July ...

Info
Bathymetry data for Ozette Lake, Washington collected during USGS field activity 2019-622-FA

Bathymetry data were collected during a July 2019 SWATHPlus survey of Ozette Lake, Washington. Data were collected and processed by the the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2019-622-FA. The 2-m bathymetry data are provided as a GeoTIFF image.

Info
Bathymetry data for Santa Cruz Harbor, California collected during USGS field activity 2022-609-FA

1-m resolution bathymetry data were collected during a January 2022 SWATHPlus survey in and near the Santa Cruz harbor, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2022-609-FA. The 1-m bathymetry data are provided as a GeoTIFF file.

Info
Bathymetry data from Floras Lake, Oregon, June 2018

This portion of the USGS data release presents bathymetry data collected during surveys performed in Floras Lake, Oregon in June 2018 (USGS Field Activity Number 2018-636-FA). Floras Lake is a coastal lake in southern Oregon that is separated from the Pacific Ocean by sand dunes. It is not influenced by tides, although water levels fluctuate seasonally. Lake bed bathymetry data were collected using two personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system ...

Info
Bathymetry data from repeated surveys of a submerged nearshore berm at the mouth of the Columbia River, Washington, 2020-2021

This portion of the USGS data release presents gridded bathymetry data derived from repeated bathymetric surveys conducted by the U.S. Army Corps of Engineers Portland District on the Pacific Ocean, Washington. Repeated surveys were performed between September 9, 2020, and March 10, 2021, from a vessel equipped with a multi-beam bathymetry system to characterize the morphology and dispersal of a nearshore berm composed of sediment dredged from the navigational channel at the mouth of the Columbia River. ...

Info
Bathymetry data from USGS Field Activity S-8-08-SC, northern Santa Barbara Channel, southern California

Bathymetry data were collected by the U.S. Geological Survey in July 2008 in the northern Santa Barbara Channel in southern California. Data were collected aboard the R/V Parke Snavely, during USGS Field Activity S-9-08-SC, using a bathymetric sidescan system.

Info
Bathymetry from multibeam echosounder data collected offshore of Arcata, California

This 2-m-resolution bathymetry data for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image.

Info
Bathymetry from multibeam echosounder data collected offshore of Cape Mendocino, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Cape Mendocino, California, map area. Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image.

Info
Bathymetry from multibeam echosounder data collected offshore of Eureka, California

This 2-m-resolution bathymetry data for the Offshore of Eureka, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image.

Info
Bathymetry from multibeam echosounder data collected offshore of Morro Bay, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Morro Bay, California, map area. Bathymetry data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The bathymetry ...

Info
Bathymetry from multibeam echosounder data collected offshore of Point Buchon, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Point Buchon, California, map area. Bathymetry data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The ...

Info
Bathymetry from multibeam echosounder data collected offshore of Point Estero, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Point Estero, California, map area. Bathymetry data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The ...

Info
Bathymetry from multibeam echosounder data collected offshore of the Eel River, California

This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of the Eel River, California, map area. Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image.

Info
Bathymetry of the Atlantic Beach artificial reef (2-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship ...

Info
Bathymetry of the Historic Area Remediation Site in 1996 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ...

Info
Bathymetry of the Historic Area Remediation Site in 1998 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ...

Info
Bathymetry of the Historic Area Remediation Site in 2000 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ...

Info
Bathymetry of the Hudson Canyon region (100-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and ...

Info
Bathymetry of the Hudson Shelf Valley (12-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, ...

Info
Bathymetry of the Sandy Hook artificial reef (2-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the ...

Info
Bathymetry of Whales Tail Marsh tidal creeks, South San Francisco Bay, California, 2023

Bathymetric data collected in Whales Tail Marsh tidal creeks, South San Francisco Bay, California, in 2023 with a shallow draft vessel equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The bathymetric data are provided in a comma-separated text file.

Info
Bathymetry, topography, and sediment grain-size data from the Elwha River delta, Washington

This data release contains bathymetry and topography data from surveys performed on the Elwha River delta between 2010 and 2017. Sediment grain-size data are available for selected surveys performed after May 2012. This data release will be updated as additional bathymetry, topography, and surface-sediment grain-size data from future surveys become available.

Info
Bathymetry within the inner shelf of Long Bay, South Carolina collected by the USGS, 1999-2003 (BATHY, Grid)

In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (April 21, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (April 21, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (April 8, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (August 21, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (August 26, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (August 31, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (December 1, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (December 18, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (December 8, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected From Madeira Beach, Florida (February 17, 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (February 4, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 15, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 21, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 24, 2018)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 25, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 10, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 6, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 6, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 9, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (June 10, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (June 16, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (March 3, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (March 7, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (May 23, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (May 25, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (May 9, 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 10, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 14, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 16, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 2, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 30, 2016)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 6, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (November, 9 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (October 15, 2018)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (October 2, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (October 5, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 14, 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 15, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 18, 2019)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 21, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 24, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 8, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 9, 2016)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (April 1, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (August 7, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (December 7, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (February 22, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (February 3, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (January 27, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (July 21, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (July 28, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (June 7, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (May 19, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 17, 2018)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 7, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 8, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 11, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 19, 2019)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 8, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 9, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ...

Info
Beach Topography—Fire Island, New York, Pre-Hurricane Sandy, January 2012: Ground Based Lidar (1-Meter Digital Elevation Model)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, North Carolina collaborated to gather alongshore ground-based lidar beach topography at Fire Island, New York. This high-resolution, elevation dataset was collected on January 30, 2012, and was funded by SPCMSC. The USGS data release containing the aforementioned dataset includes the resulting, processed elevation point data (XYZ) and ...

Info
Beach Topography—Fire Island, New York, Pre-Hurricane Sandy, January 2012: Ground Based Lidar (ASCII XYZ Point Data)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, North Carolina collaborated to gather alongshore ground-based lidar beach topography at Fire Island, New York. This high-resolution, elevation dataset was collected on January 30, 2012, and was funded by SPCMSC. The USGS data release containing the aforementioned dataset includes the resulting, processed elevation point data (XYZ) and an ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2014

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2014 (USGS Field Activity Number 2014-631-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2015

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2015 (USGS Field Activity Number 2015-647-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2016

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2016 (USGS Field Activity Number 2016-663-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2017

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2017 (USGS Field Activity Number 2017-666-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2018

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2018 (USGS Field Activity Number 2018-652-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2019

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2019 (USGS Field Activity Number 2019-632-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2020

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2020 (USGS Field Activity Number 2020-622-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2021

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2021 (USGS Field Activity Number 2021-632-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2022

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2022 (USGS Field Activity Number 2022-641-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Beach topography of the Columbia River littoral cell, Washington and Oregon, 2023

This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2023 (USGS Field Activity Number 2023-644-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used ...

Info
Benthic foraminiferal data from sedimentary cores collected in the Grand Bay (Mississippi) and Dauphin Island (Alabama) salt marshes

Microfossil (benthic foraminifera) data from coastal areas were collected from state and federally managed lands within the Grand Bay National Estuarine Research Reserve and Grand Bay National Wildlife Refuge, Grand Bay, Mississippi/Alabama; federally managed lands of Bon Secour National Wildlife Refuge on Cedar Island and Little Dauphin Island, Alabama; and municipally managed land around Dauphin Island, Alabama. Samples were analyzed and quantified for foraminiferal census in order to document changes to ...

Info
Benthic foraminiferal data from sedimentary cores collected in the Grand Bay (Mississippi) and Dauphin Island (Alabama) salt marshes

Microfossil (benthic foraminifera) data from coastal areas were collected from state and federally managed lands within the Grand Bay National Estuarine Research Reserve and Grand Bay National Wildlife Refuge, Grand Bay, Mississippi/Alabama; federally managed lands of Bon Secour National Wildlife Refuge on Cedar Island and Little Dauphin Island, Alabama; and municipally managed land around Dauphin Island, Alabama. Samples were analyzed and quantified for foraminiferal census in order to document changes to ...

Info
Benthic foraminiferal data from the eastern Mississippi Sound salt marshes and estuaries

Microfossil (benthic foraminifera) and coordinate/elevation data were obtained from sediments collected in the coastal zones of Mississippi and Alabama, including marsh and estuarine environments of eastern Mississippi Sound and Mobile Bay, in order to develop a census for coastal environments and to aid in paleoenvironmental reconstruction. These data provide a baseline dataset for use in future wetland and estuarine change studies and assessments, both descriptive and predictive types. The data presented ...

Info
Benthic foraminiferal data from the eastern Mississippi Sound salt marshes and estuaries

Microfossil (benthic foraminifera) and coordinate/elevation data were obtained from sediments collected in the coastal zones of Mississippi and Alabama, including marsh and estuarine environments of eastern Mississippi Sound and Mobile Bay, in order to develop a census for coastal environments and to aid in paleoenvironmental reconstruction. These data provide a baseline dataset for use in future wetland and estuarine change studies and assessments, both descriptive and predictive types. The data presented ...

Info
Biscayne National Park LIDAR GeoTIFF

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne lidar to measure the submerged topography of the north Florida reef tract; secondarily, the data will be assessed ...

Info
BocaChica_2022_MBES: High-resolution Geophysical and Imagery Data Collected in November 2022 Offshore of Boca Chica Key, FL

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) nearshore Boca Chica Key, the Florida Keys, from November 8-13, 2022. This dataset, BocaChica_2022_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid, and the dataset BocaChica_2022_MBES_Backscatter.zip ...

Info
Braddock East camera locations and attitudes for low-altitude aerial images collected during unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Braddock Bay, New York in July 2017

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinities of Braddock Bay, Sodus Bay, and Chimney Bluffs State Park, New York. This data release includes images tagged ...

Info
Braddock East digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Braddock Bay, New York in July 2017 (32-bit floating point GeoTIFF image).

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinities of Braddock Bay, Sodus Bay, and Chimney Bluffs State Park, New York. This data release includes images tagged ...

Info
Braddock East point cloud from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Braddock Bay, New York in July 2017 (LAZ file).

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinities of Braddock Bay, Sodus Bay, and Chimney Bluffs State Park, New York. This data release includes images tagged ...

Info
Braddock West camera locations and attitudes for low-altitude aerial images collected during unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Braddock Bay, New York in July 2017

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinities of Braddock Bay, Sodus Bay, and Chimney Bluffs State Park, New York. This data release includes images tagged ...

Info
Braddock West digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Braddock Bay, New York in July 2017 (32-bit floating point GeoTIFF image).

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinities of Braddock Bay, Sodus Bay, and Chimney Bluffs State Park, New York. This data release includes images tagged ...

Info
Braddock West point cloud from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Braddock Bay, New York in July 2017 (LAZ file).

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinities of Braddock Bay, Sodus Bay, and Chimney Bluffs State Park, New York. This data release includes images tagged ...

Info
Breton2014_IFB_SBB_100_NAD83_NAVD88_UTM16N_GEOID09_DEM: A geotiff of the 100-meter cell size digital elevation model derived from the processed interferometric swath, single beam bathymetry, and Lidar data points.

As part of the Barrier Island Monitoring Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted nearshore geophysical surveys off Breton and Gosier Islands, Louisiana, in July and August of 2014. To assist the United States Fish and Wildlife Service (USFWS) with restoration planning efforts, the USGS was tasked with answering fundamental questions about the physical environment of the southern Chandeleur Islands, including the geology, ...

Info
Buzzards Bay: continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf, (32-bit GeoTIFF, UTM 19 NAD 83, NAVD 88 vertical datum).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to ...

Info
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Cape Canaveral, Florida, backscatter data collected in 2016 by Coastal Carolina University: Processed GeoTIFF Image

A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data.

Info
Cape Canaveral, Florida, multibeam bathymetry collected in 2016 by Coastal Carolina University: Processed elevation point data (XYZ)

A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data.

Info
Cape Canaveral, Florida, multibeam bathymetry collected in 2016 by Coastal Carolina University: Processed GeoTIFF Image

A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data.

Info
Cape Canaveral, Florida, seismic chirp collected in 2016 by Coastal Carolina University

A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data.

Info
Cape Canaveral, Florida side scan sonar data collected in 2016 by Coastal Carolina University: Processed GeoTIFF Image

A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data.

Info
Cape Canaveral tracklines of geophysical data collected in 2016 by Coastal Carolina University

A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data.

Info
Cape Cod Bay: continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf, (32-bit GeoTIFF, UTM 19 NAD 83, NAVD 88 vertical datum).

Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to ...

Info
CatIsland_2010_Bathy_NAVD88_grid.tif

In September and October of 2010, the U.S. Geological Survey (USGS), in cooperation with the Army Corps of Engineers (USACE), conducted geophysical surveys around Cat Island, Miss. to collect bathymetry, acoustical backscatter, and seismic reflection data (seismic-reflection data have been published separately, Forde and others, 2012). The geophysical data along with sediment vibracore data (yet to be published) will be integrated to analyze and produce a report describing the geomorphology and geologic ...

Info
CatIsland_2010_Bathy_Swath_tracklines

In September and October of 2010, the U.S. Geological Survey (USGS), in cooperation with the Army Corps of Engineers (USACE), conducted geophysical surveys around Cat Island, Miss. to collect bathymetry, acoustical backscatter, and seismic reflection data (seismic-reflection data have been published separately, Forde and others, 2012). The geophysical data along with sediment vibracore data (yet to be published) will be integrated to analyze and produce a report describing the geomorphology and geologic ...

Info
CatIsland 2010 single-beam bathymetry tracklines

In September and October of 2010, the U.S. Geological Survey (USGS), in cooperation with the Army Corps of Engineers (USACE), conducted geophysical surveys around Cat Island, Miss. to collect bathymetry, acoustical backscatter, and seismic reflection data (seismic-reflection data have been published separately, Forde and others, 2012). The geophysical data along with sediment vibracore data (yet to be published) will be integrated to analyze and produce a report describing the geomorphology and geologic ...

Info
CCALBATC - bathymetric contours for the central California region between Point Arena and Point Sur.

CCALBATC consists of bathymetric contours at 10-m and 50-m intervals for the area offshore of central California between Point Arena to the north and Point Sur to the south. The lines were digitized from 1:250,000-scale NOAA charts. This is one of a collection of digital files of a geographic information system of spatially referenced data related to the USGS Coastal and Marine Geology Program Monterey Bay National Marine Sanctuary Project (see this and other older Monterey Bay USGS works archived at https: ...

Info
CENCAL1853_1910 - Vectorized Shoreline of Central California Derived from 1853-1910 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL1929_1942 - Vectorized Shoreline of Central Califonia Derived from 1929-1942 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL1945_1976 - Vectorized Shoreline of Central California Derived from 1945-1976 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL_1998_2002 - Vectorized Shoreline of Central California Derived from 1998-2002 Lidar Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
Chandeleurs_2013_50_NAD83_NAVD88_GEOID09_DEM.tif: 50-Meter Digital Elevation Model (DEM) of Coastal Bathymetry Collected in 2013 from the Chandeleur Islands, Louisiana (U.S. Geological Survey (USGS) Field Activity Numbers (FAN) 13BIM02, 13BIM03, 13BIM04, 13BIM07, and 13BIM08.)

As part of the Barrier Island Evolution Research Project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted nearshore geophysical surveys around the northern Chandeleur Islands, Louisiana, in July and August of 2013. The objective of the study is to better understand barrier-island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual timescales (1‒5 years). ...

Info
Charles Point camera locations and attitudes for low-altitude aerial images collected during unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated ...

Info
Charles Point digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image)

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated ...

Info
Charles Point point cloud from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (LAZ file)

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated ...

Info
Chimney Bluffs camera locations and attitudes for low-altitude aerial images collected during unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Chimney Bluffs, New York in July 2017

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Chimney Bluffs State Park, New York. This data release includes images tagged with locations determined from ...

Info
Chimney Bluffs digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Chimney Bluffs, New York in July 2017 (32-bit floating point GeoTIFF image)

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Chimney Bluffs State Park, New York. This data release includes images tagged with locations determined from ...

Info
Chimney Bluffs point cloud from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Chimney Bluffs, New York in July 2017

Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Chimney Bluffs State Park, New York. This data release includes images tagged with locations determined from ...

Info
Chirp and minisparker seismic-reflection data of field activity F-02-07-NC collected offshore San Mateo County, California, from 2007-03-22 to 2007-04-06

High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in March and April 2007, offshore San Mateo County, California. Data were collected aboard the R/V Fulmar during field activity F-02-07-NC. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were ...

Info
Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03

High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006, offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and ...

Info
Chirp seismic-reflection data from field activity L-1-06-SF collected offshore Bolinas to San Francisco, California on 2006-09-30

High-resolution Chirp seismic-reflection data were collected by the U.S. Geological Survey in September 2006 offshore San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom profiler and recorded with a Triton SB-Logger.

Info
Chirp seismic-reflection data of field activity F-02-07-NC collected offshore San Mateo County, California, from 2007-03-22 to 2007-04-06

High-resolution single-channel Chirp seismic-reflection data were collected by the U.S. Geological Survey in March and April 2007 from Pacifica to Half Moon Bay, offshore San Mateo County, California. Data were collected aboard the R/V Fulmar, during field activity F-02-07-NC. Chirp data were collected using an EdgeTech 512 chirp subbottom system and recorded with a Triton SB-Logger.

Info
Chirp sub-bottom data acquired offshore San Francisco and Pacifica during USGS field activity S-16-10-NC

Chirp sub-bottom data were collected by the U.S. Geological Survey in August 2010, offshore San Mateo County, California. Data were collected aboard the R/V Snavely during field activity S-16-10-NC. Chirp data were collected using an Edgetech 512 chirp sub-bottom profiler.

Info
CNTR10M - 10 meter bathymetric contours of the Channel Islands National Marine Sanctuary and Santa Barbara Bay. (UTM 10N, NAD83)

Data layer containing 10 meter bathymetric contours for the Channel Islands National Marine Sanctuary and Santa Barbara Bay. Data are derived from 1:250,000-scale National Oceanic and Atmospheric Administration (NOAA) charts and Monterey Bay Aquarium Research Institute (MBARI), Santa Barbara Bay Multibeam Data

Info
Coastal bathymetry data collected between 2008 and 2009 offshore of the Mississippi and Alabama barrier islands: Processed elevation point data

During the summers of 2008 and 2009 the United States Geological Survey (USGS) conducted bathymetric surveys from West Ship Island, Mississippi, to Dauphin Island, Alabama, as part of the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. The survey area extended from the shoreline out to approximately two kilometers and included the adjacent passes. These findings were originally published in Dewitt and others (2012). This USGS data release includes updated elevation point ...

Info
Coastal Bathymetry Data Collected in 2016 from the Chandeleur Islands, Louisiana–Interferometric Bathymetry Soundings (XYZ)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected single beam and swath bathymetry data from the northern Chandeleur Islands, Louisiana, in June of 2016. This USGS data release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). This USGS data release provides 208-line kilometers (km) of processed interferometric bathymetry (IFB) data collected under Field Activity Number (FAN) 2016-335-FA. This FAN ...

Info
Coastal Bathymetry Data Collected in 2016 from the Chandeleur Islands, Louisiana–Interpolated Digital Elevation Model

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected single beam and swath bathymetry data from the northern Chandeleur Islands, Louisiana, in June of 2016. This USGS data release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). This USGS data release provides 437-line kilometers (km) of processed single beam bathymetry (SBB) and interferometric bathymetry (IFB) data collected under Field Activity ...

Info
Coastal Bathymetry Data Collected in 2016 from the Chandeleur Islands, Louisiana–Single Beam Bathymetry Soundings (XYZ)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected single beam and swath bathymetry data from the northern Chandeleur Islands, Louisiana, in June of 2016. This USGS data release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). This USGS data release provides 229-line kilometers (km) of processed single beam bathymetry (SBB) data collected under Field Activity Number (FAN) 2016-335-FA. This FAN ...

Info
Coastal Bathymetry Data Collected in 2016 nearshore from West Ship Island to Horn Island, Gulf Islands National Seashore, Mississippi, U.S. Geological Survey (USGS).

The United States Geological Survey Saint Petersburg Coastal and Marine Science Center (USGS SPCMSC), in cooperation with the United States Army Corps of Engineers (USACE) conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi (GUIS). Camille Cut separates Ship Island into East Ship Island and West Ship Island. The objective of this study was to establish base-level elevation conditions around West Ship Island, East Ship Island, ...

Info
Coastal Bathymetry Data Collected in June 2018 from Fire Island, New York: Wilderness Breach and Shoreface

Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, June 2?17, 2018. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach and the adjacent shoreface environment. During this study, bathymetry data were collected aboard two personal watercraft (PWC) outfitted with single-beam echosounders, as well ...

Info
Coastal Interferometric Swath Bathymetry Data Collected in 2015 from the Chandeleur Islands, Louisiana: 2015_Chand_IFB_5m_NAD83_NAVD88_GEOID09_DEM

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected swath bathymetry data offshore of the Northern Chandeleur Islands, Louisiana in September 2015. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). For further information regarding data collection and/or processing methods, refer to previously published USGS Data Series 847 and 848 (https://doi.org/10.3133/ds8487 and https:/ ...

Info
Coastal Interferometric Swath Bathymetry Data Collected in 2015 from the Chandeleur Islands, Louisiana: 2015_Chand_IFB_5m_NAD83_NAVD88_GEOID09_XYZ

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected swath bathymetry data offshore of the Northern Chandeleur Islands, Louisiana in September 2015. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). For further information regarding data collection and/or processing methods, refer to previously published USGS Data Series 847 and 848 (https://doi.org/10.3133/ds8487 and https:/ ...

Info
Coastal Interferometric Swath Bathymetry Data Collected in 2015 from the Chandeleur Islands, Louisiana: 2015_Chand_IFB_5m_WGS84_XYZ

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected swath bathymetry data offshore of the Northern Chandeleur Islands, Louisiana in September 2015. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). For further information regarding data collection and/or processing methods, refer to previously published USGS Data Series 847 and 848 (https://doi.org/10.3133/ds8487 and https:/ ...

Info
Coastal Multibeam Bathymetry and Backscatter Data Collected in June 2021 from Rockaway Peninsula, New York

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), June 18-25, 2021. This dataset, Rockaway_2021_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid and the dataset Rockaway_2021_MBES ...

Info
Coastal Multibeam Bathymetry and Backscatter Data Collected in May 2021 From Seven Mile Island, New Jersey

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore extent of Seven Mile Island, New Jersey, from May 19-23, 2021. The download file, 7Mile_2021_MBES_xyz.zip, includes processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. The download file, 7Mile_2021_MBES ...

Info
Coastal Multibeam Bathymetry and Backscatter Data Collected in May 2023 from Rockaway Peninsula, New York

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), from May 6-16, 2023. This dataset, Rockaway_2023_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid and the dataset Rockaway_2023_MBES ...

Info
Coastal Multibeam Bathymetry and Backscatter Data Collected in May 2023 From Seven Mile Island, New Jersey

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore extent of Seven Mile Island, New Jersey (NJ), from May 18-27, 2023. The download file, 7Mile_2023_MBES_xyz.zip, includes processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. The download file, 7Mile_2023_MBES ...

Info
Coastal Multibeam Bathymetry and Backscatter Data Collected in October 2019 from Rockaway Peninsula, New York: Leg 1

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), from October 4-6, 2019. This dataset, Rockaway_2019_MBES_Leg1_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid from the first leg of the ...

Info
Coastal Multibeam Bathymetry and Backscatter Data Collected in October 2019 from Rockaway Peninsula, New York: Leg 2

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), from October 24-29, 2019. This dataset, Rockaway_2019_MBES_Leg2_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid from the second leg of ...

Info
Coastal Multibeam Bathymetry Data Collected in 2018 Offshore of Seven Mile Island, New Jersey

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) offshore of Seven Mile Island, New Jersey, September 6-8, 2018 and September 21-23, 2018. This dataset, presented as Seven_Mile_Island_2018_MBES_WGS84_UTM18N_xyz.zip and Seven_Mile_Island_2018_MBES_NAD83_NAVD88_GEOID12B_xyz.zip, includes the processed elevation point data ...

Info
Coastal Multibeam Bathymetry Data Collected in 2019 off of Santa Rosa Island, Florida

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) offshore of Santa Rosa Island, Florida (FL), June 15-29, 2019. This dataset, Santa_Rosa_Island_2019_MBES_UTM16N_xyz.zip, includes the processed elevation point data (XYZ) as derived from a 1-meter (m) bathymetric grid.

Info
Coastal Multibeam Bathymetry Data Collected in August 2017 from the Chandeleur Islands, Louisiana

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) offshore of the Chandeleur Islands, Louisiana, August 9-12, 2017. This dataset, Chandeleur_Islands_2017_MBB_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid.

Info
Coastal Multibeam Bathymetry Data Collected in August 2018 from the Chandeleur Islands, Louisiana

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) offshore of the Chandeleur Islands, Louisiana, August 16-21, 2018. This dataset, Chandeleur_ Islands_2018_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid.

Info
Coastal Multibeam Bathymetry Data Collected in August 2019 from Cedar Island, Virginia

An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), covering the nearshore, seaward of Cedar Island, Virginia, from August 14-21, 2019. This dataset, Cedar_ Island_2019_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. Additionally, the dataset Cedar_Island ...

Info
Coastal Single-beam Bathymetry Data Collected in 2022 From Breton Island, Louisiana

As part of the restoration monitoring component of the Deepwater Horizon early restoration project, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted single-beam and multibeam bathymetry surveys around Breton Island, Louisiana (LA), from August 3-5, 2022, for Field Activity Number (FAN) 2022-328-FA. The purpose of data collection was to develop a baseline digital elevation model of the seafloor around Breton Island for comparison with both ...

Info
Coastal Single-beam Bathymetry Data Collected in 2022 off Seven Mile Island, New Jersey

To determine continued change to the shoreface morphology and evolution at Seven Mile Island, New Jersey, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) in St. Petersburg, Florida, conducted a single-beam bathymetric survey of Seven Mile Island, New Jersey, from April 29 - May 2, 2022. During this study, single-beam bathymetry data were collected using a personal watercraft (PWC) and a floating-towed-seismic sled. Both the PWC and the seismic sled ...

Info
Coastal Single-beam Bathymetry Data Collected in August 2018 from the Chandeleur Islands, Louisiana

Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS - SPCMSC) in St. Petersburg, Florida, conducted a single-beam bathymetric survey of the northern Chandeleur Islands, August 17-21, 2018. During this study, bathymetry data were collected aboard the research vessel (R/V) Jabba Jaw, a 21-foot (ft) twin hulled vessel outfitted with a single-beam echosounder.

Info
Coastal Single-beam Bathymetry Data Collected in August 2019 from Cedar Island, Virginia

Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS - SPCMSC) in St. Petersburg, Florida, conducted a single-beam bathymetric survey of Cedar Island, Virginia, August 9-15, 2019. During this study, bathymetry data were collected aboard a towed seismic sled outfitted with a single-beam echosounder.

Info
Coastal Single-beam Bathymetry Data Collected in September and October 2019 from Rockaway Peninsula, New York

Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS - SPCMSC) in St. Petersburg, Florida, conducted a single-beam bathymetric survey of Rockaway Peninsula, New York September 27 - October 6, 2019. During this study, bathymetry data were collected aboard two personal watercraft (PWC) outfitted with single-beam echosounders, as well as a towed seismic sled with similar instrumentation.

Info
Coastal Topography—Long Island, New York, Post-Hurricane Irene, 30 August 2011

A digital elevation model (DEM) mosaic was produced for Long Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Woolpert, Inc. using an Leica ALS50-II lidar sensor flown on a Cessna 404 aircraft. These data were collected post-Hurricane Irene on August 30, 2011.

Info
Coastal Topography—Long Island, New York, Post-Hurricane Irene, 30 August 2011

Binary point-cloud data were produced for Long Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Woolpert, Inc. using an Leica ALS50-II lidar sensor flown on a Cessna 404 aircraft. These data were collected post-Hurricane Irene on August 30, 2011.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

Dune features (dune crest and toe elevations) and mean-high-water shoreline data for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science and Woolpert using using airborne lidar sensors. Binary point-cloud ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

Derived products of a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virgina, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors. Post ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Digital elevation model (DEM)

A DEM was produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virgina, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar and digital elevation model (DEM) tile index

This data represents the tile index for lidar data collected for the U.S. Geological Survey in November 2012 following Hurricane Sandy, which made landfall in the eastern United States on October 29th, 2012. The lidar LAS and derived-digital elevation model (DEM) data are divided into these tiles and filenames match the tile number. The index shows the extent of data collection (portions of the coastline of New York, Delaware, Maryland, Virginia, and North Carolina) and provides tile names to aid in ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar-extracted dune features

Dune crest and toe positions along a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York)using using airborne ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar point-cloud data (LAS)

Binary point-cloud data were produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Mean-high-water shoreline

Mean-high-water (MHW) shoreline for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines were derived from lidar data collected following Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th). Data were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically-referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, ...

Info
Coastal Topography-Upper Florida Keys Reef Tract, Florida, 26-30 June 2016

A digital elevation model (DEM) mosaic was produced for a portion of the upper Florida Keys reef tract, Florida, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1 ...

Info
Coastal Topography-Upper Florida Keys Reef Tract, Florida, 26-30 June 2016

Binary point-cloud data were produced for a portion of the upper Florida Keys reef tract, Florida, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1-Unclassified, 2-Ground ...

Info
CoconutIsland_2023_MBES: High-resolution Geophysical and Imagery Data Collected in May 2023 Near Fort Hase, Marine Corps Base Hawaii

An Ellipsoidally Referenced Survey (ERS) using a Norbit Winghead multibeam echosounder, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) nearshore Coconut Island, on the island of Oahu, May 7, 2023. This dataset, CoconutIsland_2023_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 0.25 meter (m) bathymetric grid and the dataset CoconutIsland_2023_MBES_Backscatter.zip includes the acoustic backscatter intensity ...

Info
Collection, analysis, and age-dating of sediment cores from Herring River wetlands and other nearby wetlands in Wellfleet, Massachusetts, 2015–17

The Herring River estuary in Wellfleet, Cape Cod, Massachusetts, has been tidally restricted for more than a century by a dike constructed near the mouth of the river. Upstream from the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and brackish wetlands dominated by Phragmites australis. This estuary is now managed by the National Park Service, which plans to ...

Info
Collection, analysis, and age-dating of sediment cores from mangrove and salt marsh ecosystems in Tampa Bay, Florida, 2015

Coastal wetlands in Tampa Bay, Florida, are important ecosystems that deliver a variety of ecosystem services. Key to ecosystem functioning is wetland response to sea-level rise through accumulation of mineral and organic sediment. The organic sediment within coastal wetlands is composed of carbon sequestered over the time scale of the wetland’s existence. This study was conducted to provide information on soil accretion and carbon storage rates across a variety of coastal ecosystems that was utilized in ...

Info
Collection, analysis, and age-dating of sediment cores from natural and restored salt marshes on Cape Cod, Massachusetts, 2015-16

Nineteen sediment cores were collected from five salt marshes on the northern shore of Cape Cod where previously restricted tidal exchange was restored to part of the marshes. Cores were collected in duplicate from two locations within each marsh complex: one upstream and one downstream from the former tidal restriction (typically caused by an undersized culvert or a berm). The unaltered, natural downstream sites provide a comparison against the historically restricted upstream sites. The sampled cores ...

Info
Collection, Analysis, and Age-Dating of Sediment Cores from Salt Marshes on the South Shore of Cape Cod, Massachusetts, From 2013 Through 2014

The accretion history of fringing microtidal salt marshes located on the south shore of Cape Cod, Massachusetts, was reconstructed from sediment cores collected in low and high marsh vegetation zones. The location of these marshes within protected embayments and the absence of large rivers on Cape Cod result in minimal sediment supply and a dominance of organic matter contribution to sediment peat. Age models based on 210-lead and 137-cesium were constructed to evaluate how vertical accretion and carbon ...

Info
Color coded bathmetry map of Cape Canaveral, Florida, derived from boat based sounding data (2014)

The Cape Canaveral Coastal System (CCCS) is a prominent feature along the Southeast U.S. coastline and is the only large cape south of Cape Fear, North Carolina. Most of the CCCS lies within the Merritt Island National Wildlife Refuge and included in its boundaries are the Cape Canaveral Air Force Station (CCAFS), NASA’s Kennedy Space Center (KSC), and a large portion of Canaveral National Seashore. The actual promontory of the modern cape falls within the jurisdictional boundaries of the CCAFS. These ...

Info
Color GeoTIFF Image of the 10-m Interpolated Bathymetric Grid of the Northern Part of National Oceanic and Atmospheric Administration (NOAA) Survey H11044 off Milford, Connecticut (H11044N_MB10M_UTM18.TIF, UTM Zone 18, WGS84)

During 2001 the NOAA Ship RUDE completed charting survey H11044 that covered a roughly 293 km2 area of the sea floor in north-central Long Island Sound, off Milford Connecticut. Although 100 percent coverage was achieved with sidescan sonar for charting purposes, only reconnaissance (spaced line) bathymetry was acquired with shallow-water multibeam and single-beam systems. Therefore, further processing was conducted at the USGS's Woods Hole Science Center to provide bathymetric datasets with more continuous ...

Info
Color GeoTIFF Image of the Bathymetry of National Oceanic and Atmospheric Administration (NOAA) Survey H11322 in Western Rhode Island Sound (H11322_UTM.TIF, UTM 19)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of western Rhode Island Sound using sidescan-sonar imagery and bathymetry data collected aboard the NOAA Ship RUDE, as well as historic seismic records. The mosaic, ...

Info
Color GeoTIFF of the Bathymetry of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_GEO.TIF. Geographic)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of central Rhode Island Sound using sidescan-sonar imagery, bathymetry data, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ...

Info
Color Hill-Shaded GeoTIFF Image Showing the 2-m bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11250 in Eastern Long Island Sound (H11250_GEO_2MMBES.TIF, Geographic)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
Color Hill-Shaded GeoTIFF Image Showing the 2-m bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11252 in Eastern Long Island Sound (H11252_2MUTM18_MB.TIF, UTM Zone 18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
Color Hill-Shaded GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11361 in Eastern Long Island Sound (H11361_2MUTM18_MB.TIF, UTM Zone 18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
Color Hill-Shaded GeoTIFF Image Showing the Composite 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11252 and H11361 in Eastern Long Island Sound (SMR_COMP_2MUTM.TIF, UTM, Zone 18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 0.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (H11077_MB0.5M_GEO.TIF, Geographic)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 0.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (H11077_MB0.5M_UTM19.TIF, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 1.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (H11077_MB1.5M_GEO.TIF, Geographic)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 1.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (H11077_MB1.5M_UTM19.TIF, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 1-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11076 in Quicks Hole, Elizabeth Islands, MA (H11076_GEO_1MMBES.TIF, Geographic)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 1-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12007 in the Vicinity of Cross Rip Channel, Nantucket Sound (H12007_1MMB_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 1-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12007 in the Vicinity of Cross Rip Channel, Nantucket Sound (H12007_1MMB_UTM19.TIF, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 25-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the vicinity of Edgartown Harbor, MA (H11346_MB25M_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 25-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the vicinity of Edgartown Harbor, MA (H11346_MB25M_UTM19.TIF, UTM Zone 19, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_2MMB_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_2MMB_UTM18.TIF, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11445 North of Plum Island, New York (H11445_MB2M_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11445 North of Plum Island, New York (H11445_MB2M_UTM.TIF, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11446 North of Orient Point, New York (H11446_MB2M_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11446 North of Orient Point, New York (H11446_MB2M_UTM.TIF, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11922 in Rhode Island Sound (H11922_2MMB_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During July-August 2008 NOAA completed hydrographic ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11922 in Rhode Island Sound (H11922_2MMB_UTM19.TIF, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During July-August 2008 NOAA completed hydrographic ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11995 in Rhode Island Sound (H11995_MB2M_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11995 in Rhode Island Sound (H11995_MB2M_UTM.TIF, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11996 in Rhode Island Sound (H11996_MB2M_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11996 in Rhode Island Sound (H11996_MB2M_UTM.TIF, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_2MMB_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_2MMB_UTM18.TIF, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11999 North of Duck Pond Point, New York (H11999_MB2M_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11999 North of Duck Pond Point, New York (H11999_MB2M_UTM.TIF, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_MB2M_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_MB2M_UTM.TIF, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12296 in Block Island Sound (H12296_MB2M_GEO.TIF, Geographic, WGS 84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12296 in Block Island Sound (H12296_MB2M_UTM.TIF, UTM Zone 19, NAD 83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12298 in Block Island Sound (UTM Zone 19, NAD 83, H12298_MB2M_UTM.TIF)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along western Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12299 in Block Island Sound (UTM Zone 19, NAD 83, H12299_MB2M_UTM.TIF)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs and ...

Info
Color Shaded-Relief GeoTIFF Image Showing the 3-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11079 in Great Round Shoal Channel, Offshore Massachusetts (H11079_3MUTM19_MB.TIF, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12324 in Narragansett Bay (UTM Zone 19, NAD 83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along southern Narragansett Bay, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During September 2014, bottom photographs and surficial ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 offshore in eastern Long Island Sound and westernmost Block Island Sound (ELISCOMB_4MBAT_GEO.TIF, Geographic, WGS84)

The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 Offshore in Eastern Long Island Sound and Westernmost Block Island Sound (ELISCOMB_4MBAT_UTM18.TIF, UTM Zone 18, NAD83)

The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441 and H11224 Offshore of New London, CT (NLONDON_MBLIDAR_GEO.TIF, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442 and H11225 Offshore of Niantic, CT (NIANTIC_MBLIDAR_GEO.TIF, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442, H11441, H11224, and H11225 Offshore of New London and Niantic, CT (NLNB_MBLIDAR_GEO.TIF, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11922, H11995, H11996, H12009, H12010, H12011, H12015, H12023, H12033, H12137, H12139, H12296, H12298, and H12299 Offshore in Rhode Island and Block Island Sounds (RICOMB_4MMB_GEO.TIF, Geographic, WGS 84)

Detailed bathymetric maps of the sea floor in Block Island and Rhode Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models (DTMs) from individual surveys provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11922, H11995, H11996, H12009, H12010, H12011, H12015, H12023, H12033, H12137, H12139, H12296, H12298, and H12299 Offshore in Rhode Island and Block Island Sounds (RICOMB_4MMB_UTM19.TIF, UTM Zone 19, NAD 83)

Detailed bathymetric maps of the sea floor in Block Island and Rhode Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models (DTMs) from individual surveys provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H12009, H12010, H12011, H12015, H12033, H12137, and H12139 Offshore in Block Island Sound (BISOUND_4MMB_GEO.TIF, Geographic, WGS84)

The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H12009, H12010, H12011, H12015, H12033, H12137, and H12139 Offshore in Block Island Sound (BISOUND_4MMB_UTM19.TIF, UTM Zone 19, NAD83)

The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ...

Info
Color Shaded-Relief Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11255 in Long Island Sound (H11255_GEO_2MBATHY.TIF, Geographic)

Digital terrain models (DTMs) produced from multibeam bathymetric data provide valuable base maps for marine geological interpretations. These maps help define the geological variability of the seafloor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, and the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, ...

Info
Combined 2-m and Interpolated 10-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Northeastern Long Island Sound (H12013_INTGEO, Geographic, WGS-84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ...

Info
Combined 2-m and Interpolated 10-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Northeastern Long Island Sound (H12013_INTUTM, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ...

Info
Comma separated value (CSV) text file of post-processed kinematic (PPK) data calculated from raw data logged on two Spectra Precision SP80 GNSS receivers during survey 2016-030-FA conducted offshore Sandwich Beach, MA by the U.S. Geological Survey in 2016

The objectives of the survey were to provide bathymetric and sidescan sonar data for sediment transport studies and coastal change model development for ongoing studies of nearshore coastal dynamics along Sandwich Town Neck Beach, MA. Data collection equipment used for this investigation are mounted on an unmanned surface vehicle (USV) uniquely adapted from a commercially sold gas-powered kayak and termed the "jetyak". The jetyak design is the result of a collaborative effort between USGS and Woods Hole ...

Info
Comma separated value (CSV) text files of navigation and elevation data collected by the U.S. Geological Survey during field activity 2016-030-FA offshore Sandwich Beach, MA in June 2016

The objectives of the survey were to provide bathymetric and sidescan sonar data for sediment transport studies and coastal change model development for ongoing studies of nearshore coastal dynamics along Sandwich Town Neck Beach, MA. Data collection equipment used for this investigation are mounted on an unmanned surface vehicle (USV) uniquely adapted from a commercially sold gas-powered kayak and termed the "jetyak". The jetyak design is the result of a collaborative effort between USGS and Woods Hole ...

Info
Composite 2-m ASCII Bathymetric grid from National Oceanic and Atmospheric Administration (NOAA) Surveys H11252 and h11361 of the Sea Floor in Eastern Long Island Sound (SMR_COMP_2MUTM_XYZ.TXT, UTM Zone18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
Composite 2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Surveys H11252 and H11361 from Eastern Long Island Sound (COMP2M_UTM, UTM Zone 18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ...

Info
Composite swath bathymetry gridded data collected by the U.S. Geological Survey surrounding the eastern Elizabeth Islands and northern Martha's Vineyard, MA, 2011 (Esri grid, UTM Zone19 N, WGS 84, 5-m resolution, allswathi_5m)

These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ...

Info
Continuous and optimized 3-arcsecond elevation model for the United States east coast (32-bit GeoTiff, geographic, NAD83)

Investigations of coastal change and coastal resources often require continuous elevation profiles from the seafloor to coastal terrestrial landscapes. Differences in elevation data collection in the terrestrial and marine environments result in separate elevation products that may not share a vertical datum. This data release contains the compilation of multiple elevation products into a continuous digital elevation model at a resolution of 3-arcseconds (approximately 90 meters) from the terrestrial ...

Info
Continuous and optimized 3-arcsecond elevation model for the United States west coast (32-bit GeoTiff, geographic, NAD83)

Investigations of coastal change and coastal resources often require continuous elevation profiles from the seafloor to coastal terrestrial landscapes. Differences in elevation data collection in the terrestrial and marine environments result in separate elevation products that may not share a vertical datum. This data release contains the assimilation of multiple elevation products into a continuous digital elevation model at a resolution of 3-arcseconds (approximately 90 meters) from the terrestrial ...

Info
Continuous resistivity profiling data processed with multiple water conductivity values from Indian River Bay, Delaware, during April 2010 on U.S. Geological Survey Field Activity 2010-006-FA

A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around ...

Info
Continuous terrain model for water circulation studies, Barnegat Bay, New Jersey (10 meter resolution, 32-bit GeoTIFF, UTM 18, WGS 84)

Water quality in the Barnegat Bay estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Bay watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events. The scale of ...

Info
Contoured Bathymetry for Lake Maurepas, Louisiana (MAURCONT)

This is the contoured bathymetry for Lake Maurepas created for USGS Professional Paper 1634 by Laura Hayes using Vertical Mapper.

Info
Contoured Bathymetry for Lake Pontchartrain, Louisiana (PONTCONT)

This is the contoured bathymetry for Lake Pontchartrain created for USGS Professional Paper 1634 by Laura Hayes using Vertical Mapper.

Info
Contours-Oregon OCS Floating Wind Farm Site

This data release contains data from the USGS field activity 2014-607-FA, a survey of the Oregon Outer Continental Shelf (OCS) Floating Wind Farm Site in 2014. The bathymetry raster was generated from bathymetry data collected by U.S. Geological Survey (USGS) during the period from August 20 to September 1, 2014 using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. ...

Info
Coverage Polygons for DEMs of the North-Central California Coast (DEM_coverage_areas.shp)

A GIS polygon shapefile outlining the extent of the 14 individual DEM sections that comprise the seamless, 2-meter resolution DEM for the open-coast region of the San Francisco Bay Area (outside of the Golden Gate Bridge), extending from Half Moon Bay to Bodega Head along the north-central California coastline. The goal was to integrate the most recent high-resolution bathymetric and topographic datasets available (for example, Light Detection and Ranging (lidar) topography, multibeam and single-beam sonar ...

Info
Crocker Reef, Florida, 2016-2017 Seafloor Elevation Stability Models, Maps, and Tables

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2016 and 2017 at Crocker Reef near Islamorada, Florida (FL), within a 33.62 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Yates and others (2019) derived from an elevation-change analysis between two elevation datasets acquired in 2016 and 2017 using ...

Info
Crocker Reef, Florida, 2017-2018 Seafloor Elevation Stability Models, Maps, and Tables

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2017 and 2018 at Crocker Reef near Islamorada, Florida (FL), within a 6.11 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Yates and others (2019) derived from an elevation-change analysis between two elevation datasets acquired in 2017 and 2018 using ...

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration measures for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 2 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 3 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 4 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 5 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 6 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 7 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Initial DEMs with and without restoration alternatives R2-R7

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Hindcast Model Inputs and Results: Final DEM

The model output of bathymetry and topography values resulting from a deterministic simulation at Dauphin Island, Alabama, as described in USGS Open-File Report 2019–1139 (https://doi.org/10.3133/ofr20191139), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020).

Info
Dauphin Island Decadal Hindcast Model Inputs and Results: Initial DEM

The model input for the bathymetry and topography values resulting from a deterministic simulation at Dauphin Island, Alabama, as described in U.S. Geological Survey (USGS) Open-File Report 2019-1139 (https://doi.org/10.3133/ofr20191139), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020).

Info
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results

Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ...

Info
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Intermediate-Low Sea Level Rise (SLR) Scenario

Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ...

Info
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Low Sea Level Rise (SLR) Scenario

Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ...

Info
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Present-Day Scenario

Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ...

Info
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Static Intermediate-Low Sea Level Rise Scenario

Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ...

Info
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Static Low Sea Level Rise Scenario

Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ...

Info
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Katrina Intermediate-Low Sea Level Rise Scenario

Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ...

Info
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Katrina Low Sea Level Rise Scenario

Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ...

Info
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Katrina Present-Day Scenario

Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ...

Info
December 2008 bathymetry collected near Dumbarton Bridge in south San Francisco Bay, California

Bathymetric survey data were collected in December 2008 just south of Dumbarton Bridge in south San Francisco Bay, California. Portions of the main channel and western shallows/intertidal mudflats were surveyed using an interferometric sidescan sonar system following procedures detailed in Foxgrover and others, 2011. The bathymetry is provided as a 1-m resolution raster in geoTIFF format, referenced to the vertical datum of mean lower low water (MLLW). To convert to the North American Vertical Datum of 1988 ...

Info
Delineated Coastal Cliff Toes Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff toes that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ...

Info
Delineated Coastal Cliff Tops Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff tops that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ...

Info
Delineated Coastal Cliff Transects Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff transects that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) ...

Info
Depth contours derived from swath bathymetry data collected in Buzzards Bay by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts in 2004, 2009, 2010, and 2011 (BB_5mCntr Esri Polyline Shapefile, Geographic, WGS84).

These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ...

Info
Digital Bathymetric Grid and Associated Spatial Data Files for USGS Cruise 07CCT01

The Gulf Islands National Seashore (GUIS) is composed of a series of barrier islands along the Mississippi - Alabama coastline. Historically these islands have been undergoing long-term change. The devastation of Hurricane Katrina in 2005 prompted questions about the stability of the barrier islands and their potential response against future storm impacts. Additionally, there was concern from the National Park Service (NPS) about the preservation of the historical Fort Massachusetts, located on West Ship ...

Info
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2021

A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 650x120 meters (0 ...

Info
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2022

A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.8.5) from the point cloud and includes points from both classes. The DEM covers a ...

Info
Digital elevation model (DEM) of Black Beach, Falmouth, Massachusetts on 18 March 2016 (32-bit GeoTIFF)

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info
Digital elevation model (DEM) of central San Francisco Bay, California, created using bathymetry data collected between 2009 and 2020 (MLLW)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the central portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ...

Info
Digital elevation model (DEM) of central San Francisco Bay, California, created using bathymetry data collected between 2009 and 2020 (NAVD88)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the central portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ...

Info
Digital elevation model (DEM) of Looe Key, Florida, 2021

A digital elevation model (DEM) was created from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 720x100 meters (0.072 ...

Info
Digital elevation model (DEM) of northern San Francisco Bay, California, created using bathymetry data collected between 1999 and 2016 (MLLW)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the northern portion of San Francisco Bay, which includes San Pablo Bay, Carquinez Strait, and portions of Suisun Bay, was constructed from bathymetric surveys collected from 1999 to 2016. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and ...

Info
Digital elevation model (DEM) of northern San Francisco Bay, California, created using bathymetry data collected between 1999 and 2016 (NAVD88)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the northern portion of San Francisco Bay, which includes San Pablo Bay, Carquinez Strait, and portions of Suisun Bay, was constructed from bathymetric surveys collected from 1999 to 2016. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and ...

Info
Digital Elevation Model (DEM) of Rincon, Puerto Rico (rincon_dem)

The USGS Digital Elevation Model (DEM) data files are digital representations of cartographic information in a raster form. DEMs consist of a sampled array of elevations for a number of ground positions at regularly spaced intervals. The DEM data for 7.5-minute units correspond to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle map series for all of the United States and its territories. Each 7.5-minute DEM is based on 30- by 30-meter data spacing with the Universal Transverse Mercator (UTM) ...

Info
Digital elevation model (DEM) of south San Francisco Bay, California, created using bathymetry data collected between 2005 and 2020 (MLLW)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the southern portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ...

Info
Digital elevation model (DEM) of south San Francisco Bay, California, created using bathymetry data collected between 2005 and 2020 (NAVD88)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the southern portion of San Francisco Bay, was constructed from bathymetric surveys collected from 2005 to 2020. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and interferometric side-scan sonar systems. Of those 93 surveys, 75 consist of swaths of data ...

Info
Digital Elevation Model (DEM) of Summerland Ledge, Florida, 2022

A digital elevation model (DEM) was created from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a ...

Info
Digital Elevation Model from Single-Beam Bathymetry XYZ Data Collected in 2015 from Raccoon Point to Point Au Fer, Louisiana

As part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the south-central coast of Louisiana, from Raccoon Point to Point Au Fer Island, in July 2015. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration ...

Info
Digital Elevation Model from Single Beam Bathymetry XYZ Data Collected in June 2015 from the Chandeleur Islands, Louisiana

As part of the Louisiana Coastal Protection and Restoration Authority (CPRA) Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey around the Chandeleur Islands, Louisiana in June 2015. The goal of the program is to provide long-term data on Louisiana’s barrier islands and use this data to plan, design, evaluate, and maintain current and future barrier island ...

Info
Digital elevation model of Little Holland Tract, Sacramento-San Joaquin Delta, California, 2015

This product is a digital elevation model (DEM) for the Little Holland Tract in the Sacramento-San Joaquin River Delta, California based on U.S. Geological Survey (USGS)-collected elevation data, merged with existing topographic and bathymetric elevation data. The USGS collected topographic and bathymetric elevation data in 2015, using a combination of methods. Topographic and shallow-water bathymetric data were collected on foot using a global positioning system (GPS) backpack platform that consisted of ...

Info
Digital Elevation Model of Oxbow Reservoir, Placer County, California, October 2022

This portion of the data release presents a digital elevation model (DEM) of portions of Oxbow Reservoir in Placer County, California. The DEM was created using topographic survey data collected on 26 October 2022, when the reservoir was partially de-watered to allow repairs to the dam infrastructure following the Mosquito Fire. Although the gates of the dam were open during this time, significant portions of the reservoir site remained inaccessible to surveyors due to the continued flow of the Middle Fork ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, March 2015

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in March 2015. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at a ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, March 2016

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in March 2016. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at a ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, March 2017

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in March 2017. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at a ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, October 2014

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in October 2014. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, September 2017

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in September 2017. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, September and October 2015

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in September and October 2015. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, September and October 2016

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in September and October 2016. Bathymetry data were collected using a personal watercraft (PWC) and small boat, each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, April 2014

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in April 2014. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2011

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2011. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2012

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2012. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2022

This portion of the USGS data release presents digital elevation models (DEMs) derived from bathymetric and topographic surveys conducted on the Elwha River delta in August 2022 (USGS Field Activity Number 2022-638-FA). Nearshore bathymetry data were collected using two personal watercraft (PWCs) and a kayak equipped with single-beam echosounders and survey-grade global navigation satellite systems (GNSS) receivers. Topographic data were collected on foot with survey-grade GNSS receivers mounted on ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, February 2016

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in February 2016. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, January 2015

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in January 2015. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2015

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in July 2015. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2016

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in July 2016. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2017

This portion of the USGS data release presents digital elevation models (DEMs) derived from bathymetric and topographic surveys conducted on the Elwha River delta in July 2017 (USGS Field Activity Number 2017-638-FA). Nearshore bathymetry data were collected using two personal watercraft (PWCs) and a kayak equipped with single-beam echosounders and survey-grade global navigation satellite systems (GNSS) receivers. Topographic data were collected on foot with survey-grade GNSS receivers mounted on backpacks. ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2018

This portion of the USGS data release presents digital elevation models (DEMs) derived from bathymetric and topographic surveys conducted on the Elwha River delta in July 2018 (USGS Field Activity Number 2018-648-FA). Nearshore bathymetry data were collected using two personal watercraft (PWCs) and a kayak equipped with single-beam echosounders and survey-grade global navigation satellite systems (GNSS) receivers. Topographic data were collected on foot with survey-grade GNSS receivers mounted on backpacks. ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, March 2013

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in March 2013. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, May 2011

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in May 2011. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, May 2012

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in May 2012. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2010

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September 2010. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2013

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September 2013. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2014

This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September 2014. Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented ...

Info
Digital elevation models of the coast of Alaska from Icy Cape to Cape Prince of Wales, 2016

This part of the data release presents digital elevation models (DEMs) spanning the ocean shoreline of Alaska from Icy Cape to Cape Prince of Wales. Aerial images were collected, and data were processed, by Fairbanks Fodar (https://www.fairbanksfodar.com) in Fairbanks, Alaska, for the U.S. Geological Survey. The aerial images, from which the DEMs were created, were collected in 2016 between August 29 and September 4 and extend from the shoreline to 400-4000 meters inland. The aerial images were collected ...

Info
Digital surface model (DSM) and digital elevation model (DEM) of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01

This portion of the data release presents a digital surface model (DSM) and digital elevation model (DEM) of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The DSM and DEM have a resolution of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The DSM represents the elevation of the highest object within the bounds of a cell, including vegetation, woody ...

Info
Digital surface model (DSM) for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05

This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have ...

Info
Digital surface model (DSM) for the intertidal zone at West Whidbey Island, WA, 2019-06-04

This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at West Whidbey Island, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been ...

Info
Digital surface model (DSM) for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23

This portion of the data release presents a digital surface model (DSM) and hillshade of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The DSM has a resolution of 10 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. ...

Info
Digital surface model representing Head of the Meadow Beach, Truro during field activity 2021-014-FA on February 04, 2021

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ...

Info
Digital surface model representing Head of the Meadow Beach, Truro from images taken during field activity 2020-015-FA on March 6, 2020

The data in this release map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide environmental context for the camera calibration information for the 2019 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2020-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of the CoastCam, which are ...

Info
Digital Surface Model representing Head of the Meadow Beach, Truro, MA on March 10, 2023

The data in this release re-map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide updated environmental context for the 2020 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-01, which are two video cameras aimed ...

Info
Digital surface model representing Head of the Meadow Beach, Truro on March 10, 2022

These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods ...

Info
Digital surface model representing Marconi Beach, Wellfleet during field activity 2021-022-FA on March 17, 2021

The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Digital Surface Model representing Marconi Beach, Wellfleet, MA on March 22, 2023

The data in this release re-map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Digital surface model representing Marconi Beach, Wellfleet on March 11, 2022

The data in this release map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ...

Info
Digital surface models (DSM) for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03

This portion of the data release presents digital surface models (DSM) and hillshade images of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA. The DSMs have a resolution of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and ...

Info
Digital Surface Models (DSM) from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017

This portion of the data release presents digital surface models (DSM) of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The DSMs have resolutions of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tides on 7 and 8 August 2017. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds ...

Info
Digital Surface Models (DSM) from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021

This portion of the data release presents digital surface models (DSM) of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The DSMs have resolutions of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tides on 22 and 23 July 2021. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds ...

Info
Digital Surface Models (DSM) from UAS surveys of the upper reservoir delta at Jenkinson Lake, El Dorado County, California

This portion of the data release presents high-resolution Digital Surface Models (DSM) of the Jenkinson Lake upper reservoir delta in El Dorado County, California. The DSMs have resolutions of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected during surveys with unoccupied aerial systems (UAS). The surveys were on 2021-10-13, 2021-11-04, 2022-10-25, and 2023-11-13, and were generally timed to coincide with low water level in the reservoir to ...

Info
Digital surface models (DSMs) for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06

This portion of the data release presents digital surface models (DSMs) and hillshade images of the intertidal zone at Post Point, Bellingham Bay, WA. The DSMs were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, ...

Info
Digital Surface Models (DSMs) of the Whale's Tail Marsh region, South San Francisco Bay, CA

This portion of the data release presents digital surface models (DSM) of the Whale's Tail Marsh region of South San Francisco Bay, CA. The DSMs have resolutions of 5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of repeat aerial imagery collected from fixed-wing aircraft. Unlike a digital elevation model (DEM), a DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, structures, and other objects have not been removed from the data. ...

Info
Digital surface models of the north coast of Barter Island, Alaska acquired on July 01 2014, September 07 2014, and July 05 2015 (GeoTIFF image)

Digital surface elevation models (DSMs) of the coastline of Barter Island, Alaska derived from aerial photographs collected on July 01 2014, September 07 2014, and July 05 2015. Aerial photographs and coincident elevation data were processed using Structure-from-Motion (SfM) photogrammetric techniques. These files are single-band, 32-bit floating point DSMs (digital surface models) that represent surface elevations of buildings, vegetation, and uncovered ground surfaces in meters with 23 cm ground sample ...

Info
Digital surface models representing Nauset Light Beach, Eastham, MA on September 14 and 20, 2023, pre and post Hurricane Lee

The data in this release map Marconi Beach, Head of the Meadow Beach, and Nauset Light Beach, in Cape Cod National Seashore (CACO), Massachusetts, before and after Hurricane Lee in September 2023. U.S Geological Survey personnel conducted field surveys to collect topographic data using global navigation satellite systems (GNSS) at all three beaches. In addition, at Nauset Light Beach, an uncrewed aerial system (UAS) was used to collect images with a Ricoh GRII camera for use in structure from motion ...

Info
Digital vector bathymetric/topographic contours of the sea floor in the Stellwagen Bank National Marine Sanctuary region (bathy.shp)

This data set contains the sea floor topographic contours generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were ...

Info
Donated AUV bathymetry data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in April 2018 offshore of south-central California

This dataset consists of autonomous underwater vehicle (AUV) bathymetry data collected in April 2018 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, bathymetry data were collected across six AUV dives, all six of which collected coincident bathymetry and Chirp seismic-reflection data. A seventh bathymetric survey, 201804_LuciaChica2m, consists of MBARI data from several AUV dives that were conducted pre-2018 but were ...

Info
Donated AUV bathymetry data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in March 2019 offshore of south-central California

This dataset consists of autonomous underwater vehicle (AUV) bathymetry data collected in March 2019 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, bathymetry data were collected across eight AUV dives, all eight of which collected coincident bathymetry and Chirp seismic-reflection data. The collection of these data was funded entirely by MBARI, and the data have been donated to the U.S. Geological Survey (USGS). The data ...

Info
Donated AUV bathymetry data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in May 2019 offshore of south-central California

This dataset consists of autonomous underwater vehicle (AUV) bathymetry data collected in May 2019 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, bathymetry data were collected across four AUV dives, all four of which collected coincident bathymetry and Chirp and seismic-reflection data. The collection of these data was funded entirely by MBARI, and the data have been donated to the U.S. Geological Survey (USGS). The data ...

Info
Donated AUV Chirp seismic-reflection data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in April 2018 offshore of south-central California

This dataset consists of autonomous underwater vehicle (AUV) Chirp seismic-reflection data collected in April 2018 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, data were collected across eight AUV dives, six of which collected coincident bathymetry and Chirp seismic-reflection data (two dives collected Chirp seismic-reflection data only). The collection of these data was funded entirely by MBARI, and the data have been ...

Info
Donated AUV Chirp seismic-reflection data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in March 2019 offshore of south-central California

This dataset consists of autonomous underwater vehicle (AUV) Chirp seismic-reflection data collected in March 2019 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, data were collected across eight AUV dives, all eight of which collected coincident bathymetry and Chirp seismic-reflection data. The collection of these data was funded entirely by MBARI, and the data have been donated to the U.S. Geological Survey (USGS). The ...

Info
Donated AUV Chirp seismic-reflection data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in May 2019 offshore of south-central California

This dataset consists of autonomous underwater vehicle (AUV) Chirp seismic-reflection data collected in May 2019 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, data were collected across four AUV dives, all four of which collected coincident bathymetry and Chirp seismic-reflection data. The collection of these data was funded entirely by MBARI, and the data have been donated to the U.S. Geological Survey (USGS). The data ...

Info
DUBATHG - ArcInfo GRID format of the 2001 multibeam echo-sounder data collected in the Duwamish River Delta, Puget Sound (Seattle), Washington from Field Activity: R-1-01-WA

ArcInfo GRID format bathymetry data generated from the 2001 multibeam sonar survey the major deltas of southern Puget Sound, WA., including Nisqually, Puyallup, and Duwamish Deltas. This is metadata for the Duwamish Delta multibeam bathymetry data.

Info
EAARL Bare Earth Topography-Fire Island National Seashore

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft ...

Info
EAARL-B Coastal Topography--Chandeleur Islands, Louisiana, 2012: Seamless (Bare Earth and Submerged) (.shp file)

This shapefile was produced from 52 2-kilometer by 2-kilometer tile extents of remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL-B Coastal Topography--Eastern New Jersey, Hurricane Sandy, 2012: First Surface

ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the New Jersey coastline, pre- and post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

American Standard Code Information Interchange XYZ and binary point-cloud data, as well as a seamless (bare-earth and submerged) digital elevation model for part of Fire Island, New York, pre-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system ...

Info
EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

This shapefile was produced from 53 2-kilometer by 2-kilometer tile extents of remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface ...

Info
EAARL-B Submerged Topography—Barnegat Bay, New Jersey, post-Hurricane Sandy, 2012–2013

American Standard Code Information Interchange XYZ and binary point-cloud data, as well as a digital elevation model for part of Barnegat Bay, New Jersey, post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL-B Submerged Topography—Barnegat Bay, New Jersey, pre-Hurricane Sandy, 2012

American Standard Code for Information Interchange XYZ and binary point-cloud data, as well as a digital elevation model for part of Barnegat Bay, New Jersey, pre-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL-B Submerged Topography—Crocker Reef, Florida, 2014

A submerged topography digital elevation model (DEM) mosaic for a portion of the submerged environs of Crocker Reef, Florida, was produced from remotely sensed, geographically referenced elevation measurements collected on April 13 and 22, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation ...

Info
EAARL-B Submerged Topography—Crocker Reef, Florida, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Crocker Reef, Florida, were produced from remotely sensed, geographically referenced elevation measurements collected on April 13 and 22, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
EAARL-B Submerged Topography—Saint Croix, U.S. Virgin Islands, 2014

A submerged topography digital elevation model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Submerged Topography--Saint Thomas, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation ...

Info
EAARL-B Submerged Topography—Saint Thomas, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Topography-Big Thicket National Preserve: Beaumont and Lower Neches River Units, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
EAARL-B Topography-Big Thicket National Preserve: Beaumont and Lower Neches River Units, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental ...

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 29, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B) ...

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 29, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

A first-surface topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ...

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

A bare-earth topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging ...

Info
EAARL-B Topography-Big Thicket National Preserve: Lance Rosier Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
EAARL-B Topography-Big Thicket National Preserve: Lance Rosier Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed ...

Info
EAARL-B Topography-Big Thicket National Preserve: Lower Neches River Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Topography-Big Thicket National Preserve: Lower Neches River Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Topography-Big Thicket National Preserve: Menard Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging ...

Info
EAARL-B Topography-Big Thicket National Preserve: Menard Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging ...

Info
EAARL-B Topography-Big Thicket National Preserve: Neches Bottom and Jack Lore Baygall Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Neches Bottom and Jack Lore Baygall Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Topography-Big Thicket National Preserve: Neches Bottom and Jack Lore Baygall Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Neches Bottom and Jack Lore Baygall Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

A first-surface topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 25, 26, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

A bare-earth topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 25, 26, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed ...

Info
EAARL-B Topography-Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 23, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL ...

Info
EAARL-B Topography—Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 23, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar ...

Info
EAARL-B Topography—Suncook River, New Hampshire, 5-6 November 2013: Seamless (Bare Earth and Submerged)

Binary point-cloud data for part of the Suncook River in New Hampshire were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey. Elevation measurements were collected over the area on November 5 and 6, 2013 using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and ...

Info
EAARL Coastal Topography--Alligator Point, Louisiana, 2010

A digital elevation model (DEM) of a portion of Alligator Point, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's ...

Info
EAARL Coastal Topography and Imagery--Assateague Island National Seashore, Maryland and Virginia, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Assateague Island National Seashore in Maryland and Virginia, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography and Imagery--Fire Island National Seashore, New York, 2009

A digital elevation model (DEM) of a portion of the Fire Island National Seashore in New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography and Imagery--Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

A digital elevation map (also known as a Digital Elevation Model, or DEM) of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Coastal Topography and Imagery--Western Louisiana, Post-Hurricane Rita, 2005: First Surface

ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the Louisiana coastline, post-Hurricane Rita (September 2005 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2002: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2002: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2005: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2005: Bare Earth

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Assateague Island National Seashore was produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2005: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2005: First Surface

A first-surface topography Digital Elevation Model (DEM) mosaic for the Assateague Island National Seashore was produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2010

A digital elevation model (DEM) of a portion of the Assateague Island National Seashore in Maryland and Virginia was produced from remotely sensed, geographically referenced elevation measurements collected cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area on March 19 and 24, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography-Cape Canaveral, Florida, 2009: First Surface

A digital elevation model (DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Cape Cod National Seashore, Massachusetts, 2002: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Cape Cod National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation ...

Info
EAARL Coastal Topography--Cape Cod National Seashore, Massachusetts, 2002: Bare Earth

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Cape Cod National Seashore was produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Cape Cod National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system ...

Info
EAARL Coastal Topography--Cape Cod National Seashore, Massachusetts, 2002: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Cape Cod National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation ...

Info
EAARL Coastal Topography--Cape Cod National Seashore, Massachusetts, 2002: First Surface

A first-surface topography Digital Elevation Model (DEM) mosaic for the Cape Cod National Seashore was produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Cape Cod National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging ...

Info
EAARL Coastal Topography--Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: Bare Earth

A digital elevation model (DEM) of a portion of the Cape Hatteras National Seashore in North Carolina, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground ...

Info
EAARL Coastal Topography--Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: First Surface

A digital elevation model (DEM) of a portion of the National Park Service Southeast Coast Network's Cape Hatteras National Seashore in North Carolina, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system ...

Info
EAARL Coastal Topography--Central Wetlands, Louisiana, 2010

A digital elevation model (DEM) of a portion of the Central Wetlands, Louisiana was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on March 4 and 5, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser ...

Info
EAARL Coastal Topography—Chandeleur Islands, Louisiana, 12-13 February 2011: Seamless (Bare Earth and Submerged)

ASCII XYZ point-cloud data for the Chandeleur Islands in Louisiana were produced from remotely sensed, geographically referenced elevation measurements collected on February 12 and 13, 2011 by the U.S. Geological Survey. Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ...

Info
EAARL Coastal Topography--Chandeleur Islands, Louisiana, 2010: Bare Earth

A bare-earth digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Chandeleur Islands, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft ...

Info
EAARL Coastal Topography—Chandeleur Islands, Louisiana, 4-5 September 2010: Seamless (Bare Earth and Submerged)

ASCII XYZ point-cloud data for the Chandeleur Islands in Louisiana were produced from remotely sensed, geographically referenced elevation measurements collected on September 4 and 5, 2010 by the U.S. Geological Survey. Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ...

Info
EAARL Coastal Topography--Chandeleur Islands, Louisiana, Post-Hurricane Katrina, 2005: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired by the U.S. Geological Survey (USGS). Elevation measurements were collected over the Chandeleur Islands, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal ...

Info
EAARL Coastal Topography--Chandeleur Islands, Louisiana, Post-Hurricane Katrina, 2005: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired by the U.S. Geological Survey (USGS). Elevation measurements were collected over the Chandeleur Islands, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, 2010: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Tropical Storm Bonnie (July 2010 tropical storm), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, 2010: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Tropical Storm Bonnie (July 2010 tropical storm), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, Post-Hurricane Katrina, 2005: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, Post-Hurricane Katrina, 2005: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Frances, 2004: Bare Earth

A bare-earth digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Frances, 2004: First Surface

A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: Bare Earth

A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography–Eastern Louisiana Barrier Islands, 09 March 2008: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over some of the eastern Louisiana barrier islands in cooperation with the National Park Service (NPS), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ...

Info
EAARL Coastal Topography–Eastern Louisiana Barrier Islands, 09 March 2008: Bare Earth

A Digital Elevation Model (DEM) mosaic was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over some of the eastern Louisiana barrier islands in cooperation with the National Park Service (NPS), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system ...

Info
EAARL Coastal Topography–Eastern Louisiana Barrier Islands, 09 March 2008: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over some of the eastern Louisiana barrier islands in cooperation with the National Park Service (NPS), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ...

Info
EAARL Coastal Topography–Eastern Louisiana Barrier Islands Barrier Islands, 09 March 2008: First Surface

A Digital Elevation Model (DEM) mosaic was data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over some of the eastern Louisiana barrier islands in cooperation with the National Park Service (NPS), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

A digital elevation model (DEM) of a portion of the eastern Louisiana barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Fire Island National Seashore, New York, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Fire Island National Seashore in New York, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Gateway National Recreation Area, New Jersey and New York, 2009

A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Gateway National Recreation Area in New Jersey and New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a ...

Info
EAARL Coastal Topography-Louisiana, Alabama, and Florida, June 2008

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography-Louisiana, Alabama, and Florida, June 2008

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography--Maryland and Delaware, post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the eastern Maryland and Delaware coastline, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

A digital elevation model (DEM) of a portion of the Mississippi and Alabama barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ...

Info
EAARL Coastal Topography--Northern Assateague Island National Seashore, Maryland and Virginia, 2003: Bare Earth

A bare-earth topography Digital Elevation Model (DEM) mosaic for the northern half of Assateague Island National Seashore was produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over northern Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research ...

Info
EAARL Coastal Topography--Northern Assateague Island National Seashore, Maryland and Virginia, 2003: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over northern Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground ...

Info
EAARL Coastal Topography--Northern Outer Banks, North Carolina, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the northern North Carolina coastline beachface, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--North Shore, Lake Pontchartrain, Louisiana, 2010

A digital elevation model (DEM) of a portion of the north shore of Lake Pontchartrain, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on February 28, March 1, and March 5, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography–Northwest Florida, Post-Hurricane Katrina, 2005: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over northwest Florida, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography–Northwest Florida, Post-Hurricane Katrina, 2005: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over northwest Florida, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--Sandy Hook Unit, Gateway National Recreation Area, New Jersey, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Sandy Hook Unit of the Gateway National Recreation Area in New Jersey, post-Nor'Ida (November 2009 nor'easter) was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography–Texas, Post-Hurricane Ike, 2008: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Ike (September 2008 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ...

Info
EAARL Coastal Topography–Texas, Post-Hurricane Ike, 2008: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Ike (September 2008 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ...

Info
EAARL Coastal Topography–Texas, Post-Hurricane Rita, 2005: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Rita (September 2005 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ...

Info
EAARL Coastal Topography–Texas, Post-Hurricane Rita, 2005: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Rita (September 2005 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ...

Info
EAARL Coastal Topography--Virginia, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Virginia coastline beachface, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The EAARL sensor ...

Info
EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: First Surface

A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an ...

Info
EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: Seamless (Bare Earth and Submerged)

A seamless (bare-earth and submerged) elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system ...

Info
EAARL Submarine Topography-Florida Keys National Marine Sanctuary

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through its subsequent fluorescence. Airborne ranging Lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high spatial density. The USGS in cooperation with NASA, NOAA, and NPS is using airborne Lidar to measure the submerged topography of the northern Florida reef tract; secondarily, the data will ...

Info
EAARL Submarine Topography-Northern Florida Keys Reef Tract

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through its subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high spatial density. The USGS, in cooperation with NASA and NPS, is using airborne lidar to measure the submerged topography of the Northern Florida Keys Reef Tract (NFKRT); secondarily, the ...

Info
EAARL Topography-Assateague Island National Seashore-Lidar GeoTIFF

LiDAR is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging LiDAR is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne LiDAR to measure the topography of Assateague Island National Seashore land features. Elevation measurements were ...

Info
EAARL Topography-Cape Cod National Seashore

Elevation maps (also known as Digital Elevation Models or DEMs) of Cape Cod National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Massachusetts, over Cape Cod National Seashore using the NASA Experimental Advanced Airborne Research LiDAR (EAARL), a pulsed ...

Info
EAARL Topography-Dry Tortugas National Park

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne lidar to measure the submerged topography of the Dry Tortugas reef tract and Subaerail topography of land features ...

Info
EAARL Topography-Fire Island National Seaashore

A first return elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft ...

Info
EAARL Topography - Gateway National Recreation Area

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Gateway National Recreation Area was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an ...

Info
EAARL Topography George Washington Birthplace National Monument

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of George Washington Birthplace National Monument was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), the National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted ...

Info
EAARL Topography-Gulf Islands National Seashore-Florida

Elevation maps (also known as Digital Elevation Models or DEMs) of Gulf Islands National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Florida, Mississippi and Texas, over Gulf Islands National Seashore, using the NASA Experimental Advanced Airborne Research ...

Info
EAARL Topography-Gulf Islands National Seashore-Mississippi

Abstract: Elevation maps (also known as Digital Elevation Models or DEMs) of Gulf Islands National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Florida, Mississippi and Texas, over Gulf Islands National Seashore, using the NASA Experimental Advanced ...

Info
EAARL Topography-Padre Island National Seashore

Elevation maps (also known as Digital Elevation Models or DEMs) of Padre Island National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Texas, over Padre Island National Seashore, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Topography--Potato Creek Watershed, Georgia, 2010

A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on February 27, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
EAARL Topography-Sagamore Hill National Historic Site

Elevation maps (also known as Digital Elevation Models or DEMs) of the Sagamore Hill National Historic Site were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in New York, over the Sagamore Hill National Historic Site using the NASA Experimental Advanced Airborne Research ...

Info
EAARL Topography-Thomas Stone National Historic Site

A first surface elevation map (also known as a Digital Elevation Model or DEM) of Thomas Stone National Historic Site was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an ...

Info
EAARL Topography--Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010

A digital elevation model (DEM) of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area (bathymetry was irresolvable) using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
Edited 2015 shoreline shapefile for Ship, Horn, Petit Bois, Mississippi

The 2015 Mississippi coastal shorelines were originally extracted from 2015 Landsat imagery and published within United States Geological Survey (USGS) Open-File Report (OFR) 2015-1179 (https://doi.org/10.3133/ofr20151179). Shoreline files for Ship, Horn, and Petit Bois Islands were merged to a single shapefile and spatially adjusted using 2015/2016 USGS bathymetric survey tracklines (Dewitt and others, 2017) to more closely match island shoreline positions during USGS surveys.

Info
Eelgrass distributions and bathymetry derived from an acoustic survey of the Nisqually River delta, Washington, 2012

This portion of the USGS data release presents eelgrass distribution and bathymetry data derived from acoustic surveys of the Nisqually River delta, Washington in 2012 (USGS Field Activity Number D-01-12-PS). Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The sonar system consisted of a Biosonics DT-X single-beam echosounder and 420 kHz transducer with a 6-degree beam angle. Depths from ...

Info
Eelgrass distributions and bathymetry derived from an acoustic survey of the Nisqually River delta, Washington, 2014

This portion of the USGS data release presents eelgrass distribution and bathymetry data derived from acoustic surveys of the Nisqually River delta, Washington in 2014 (USGS Field Activity Number D-01-14-PS). Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The sonar system consisted of a Biosonics DT-X single-beam echosounder and 420 kHz transducer with a 6-degree beam angle. Depths from ...

Info
Eelgrass distributions and bathymetry derived from an acoustic survey of the Nisqually River delta, Washington, 2017

This portion of the USGS data release presents eelgrass distribution and bathymetry data derived from acoustic surveys of the Nisqually River delta, Washington in 2017 (USGS Field Activity Number 2017-614-FA). Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The sonar system consisted of a Biosonics DT-X single-beam echosounder and 420 kHz transducer with a 6-degree beam angle. Depths ...

Info
Eelgrass distributions and bathymetry of Bellingham Bay, Washington, 2019

This data release presents eelgrass distributions and bathymetry data derived from acoustic surveys of Bellingham Bay, Washington. Survey operations were conducted between February 16 and February 21, 2019 (USGS Field Activity Number 2019-606-FA) by a team of scientists from the U.S. Geological Survey Pacific Coastal and Marine Science Center and Washington State Department of Ecology. Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Initial_Elevations_RS)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Initial_Elevations_RS_MP)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Initial_Elevations_RS_MP_PH)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Initial_Elevations_RS_PH)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Velocity_Residual_RS)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Velocity_Residual_RS_MP)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Velocity_Residual_RS_MP_PH)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Velocity_Residual_RS_PH)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Water_Level_RS)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Water_Level_RS_MP)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Water_Level_RS_MP_PH)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Water_Level_RS_PH)

Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ...

Info
Elevation Data Collected in 2010 from Sabine National Wildlife Refuge, Louisiana

Data release doi:10.5066/F7BR8QBH associated with this metadata record serves as an archive of elevation data collected in August 2010 from Sabine National Wildlife Refuge (SNWR), Louisiana (U.S. Geological Survey [USGS] Field Activity Number [FAN] 10SWL01). Point (xyz) elevations were collected from historically formed open-water bodies and the surrounding emergent marsh using a combination of stop-and-go (semi-kinematic) and kinematic differential Global Positioning System (DGPS) surveying techniques. ...

Info
Elevation data for four sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from July 2018 through January 2020

To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ...

Info
Elevation data for four sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from October 2016 through October 2017

To understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites in the Grand Bay National Estuarine Research Reserve, Mississippi (GNDNERR). Each site consisted of four plots located along a transect perpendicular to the marsh-estuary shoreline at 5-meter (m) increments (5, 10, 15, and 20 m from the shoreline). Each plot contained four net sedimentation tiles (NST) that were secured ...

Info
Elevation of marsh units in Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia

Elevation distribution in the Assateague Island National Seashore (ASIS) salt marsh complex and Chincoteague Bay is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal ...

Info
Elevation of marsh units in Blackwater salt marsh complex, Chesapeake Bay, Maryland

This data release contains coastal wetland synthesis products for the geographic region of Blackwater salt marsh complex, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and ...

Info
Elevation of marsh units in Chesapeake Bay salt marshes

This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing ...

Info
Elevation of marsh units in Connecticut salt marshes

This data release contains coastal wetland synthesis products for the state of Connecticut. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, wave power, and exposure potential to environmental health stressors are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change ...

Info
Elevation of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024)

This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with ...

Info
Elevation of marsh units in Eastern Shore of Virginia salt marshes

This data release contains coastal wetland synthesis products for the Atlantic-facing Eastern Shore of Virginia (the data release for the Chesapeake Bay-facing portion of the Eastern Shore of Virginia is found here: https://doi.org/10.5066/P997EJYB). Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland ...

Info
Elevation of marsh units in Fire Island National Seashore and central Great South Bay salt marsh complex, New York

Elevation distribution in the Fire Island National Seashore and central Great South Bay salt marsh complex is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands ...

Info
Elevation of marsh units in Hudson Valley and New York City salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey ...

Info
Elevation of marsh units in Jamaica Bay to western Great South Bay salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy ...

Info
Elevation of marsh units in Maine salt marshes

This data release contains coastal wetland synthesis products for the state of Maine. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, and lifespan, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the ...

Info
Elevation of marsh units in Massachusetts salt marshes

This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal ...

Info
Elevation of marsh units in north shore Long Island salt marsh complex, New York

This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been ...

Info
Elevation of marsh units in Plum Island Estuary and Parker River salt marsh complex, Massachusetts

This data release provides elevation distribution in the Plum Island Estuary and Parker River (PIEPR) salt marsh complex. Elevation distribution was calculated in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data was based on the 1-meter gridded Digital Elevation Model and supplemented by 1-meter resampled 1/9 arc-second resolution National Elevation Data, where data gaps exist. Through scientific efforts initiated with the Hurricane Sandy Science Plan, ...

Info
Elevation of the bedrock surface within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI GRID, DSUELEV)

In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ...

Info
Elevation of the late Wisconsinan to early Holocene regressive unconformity (Ur) beneath Vineyard and western Nantucket Sounds, Massachusetts (Esri binary grid; UTM, Zone 19N, WGS 84)

Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ...

Info
Elevation point cloud from low-altitude aerial imagery from UAS flights over Black Beach, Falmouth, Massachusetts on 18 March 2017 (LAZ file)

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info
Elevation point clouds of the north coast of Barter Island, Alaska acquired July 01 2014, September 07 2014, and July 05 2015 (LAZ file)

Six elevation point cloud files in LAZ format (compressed LAS binary data) are included in this data release: 3 raw point clouds of unclassified and unedited points and 3 modified point clouds that were spatially shifted and edited to remove outliers and spurious elevation values associated with moving water surfaces. An XYZ coordinate shift was applied to each data set in order to register the data sets to an earth-based datum established from surveyed ground control points. Points are unclassified and ...

Info
Elevations surveyed at Black Beach, Falmouth, Massachusetts on 18 March 2016 (text file)

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info
ElevMHW: Elevation adjusted to local mean high water: Assateague Island, MD & VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Assawoman Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cape Hatteras, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cape Lookout, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cedar Island, VA, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cedar Island, VA, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cedar Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Coast Guard Beach, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cobb Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Edwin B. Forsythe NWR, NJ, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Edwin B. Forsythe NWR, NJ, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Edwin B. Forsythe NWR, NJ, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Fisherman Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Metompkin Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Monomoy Island, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Myrtle Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Parker River, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Parramore Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Rhode Island National Wildlife Refuge, RI, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Rockaway Peninsula, NY, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Rockaway Peninsula, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Rockaway Peninsula, NY, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Ship Shoal Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Smith Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Wreck Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Esri Binary 1-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12324 in Narragansett Bay (UTM Zone 19, NAD 83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along southern Narragansett Bay, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During September 2014, bottom photographs and surficial ...

Info
ESRI Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11995 in Rhode Island Sound (H11995_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ...

Info
ESRI Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11995 in Rhode Island Sound (H11995_2M_UTM, UTM Xone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ...

Info
ESRI Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11999 in Long Island Sound, North of Duck Pond Point, New York (H11999_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
ESRI Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11999 in Long Island Sound, North of Duck Pond Point, New York (H11999_2M_UTM, UTM Zone 18, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ...

Info
Esri Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ...

Info
Esri Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_2M_UTM, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ...

Info
Esri Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12296 in Block Island Sound (H12296_2M_GEO, Geographic, WGS 84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat.