02031 - Geophysical Surveys of Bear Lake, Utah-Idaho, September, 2002 - Bathymetry Tracklines (BATHY_TRK)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
02031 - Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Chirp Seismic Tracklines (CHRPTRK)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
02031 : Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Seismic Navigation: Start of Line (CHRP_SOL)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
02031 - Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Shot Point Navigation 500 shot interval (CHRP_500)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
02031 - Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Shot Point Navigation (CHRPSHT)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
02031 - Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Sidescan-sonar Tracklines (SSS_TRK)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
02031 - Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Sound Velocity Profiles (SVP)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
0.25 meter backscatter JPEG image (with world file) of the nearshore seafloor off of Kill Devil Hills, NC (mosaic5.jpg, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
0.3 meter backscatter JPEG image (with world file) of the nearshore seafloor off of Avalon Beach, NC (mosaic4.jpg, UTM Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
0.3 meter backscatter JPEG image (with world file) of the nearshore seafloor off of Duck, NC (mosaic2.jpg UTM, Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
0.5-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in the Vicinity of Woods Hole, Massachusetts (H11077_05GEO, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
0.5-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in the Vicinity of Woods Hole, Massachusetts (H11077_05UTM, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
0.5-m Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 of the Sea Floor in the Vicinity of Woods Hole, Massachusetts (H11077_0.5MUTM19_XYZ.TXT, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
0.5 meter backscatter JPEG image (with world file) of the nearshore seafloor off of northern Cape Hatteras National Seashore, NC (mosaic8.jpg, UTM Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
0.5-m Stretched Grayscale Image of the Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11077 of the Sea Floor in the Vicinity of Woods Hole, Massachusetts (H11077_SSS100_GEO.TIF, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
0.5-m Stretched Grayscale Image of the Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11077 of the Sea Floor in the Vicinity of Woods Hole, Massachusetts (H11077_SSS100_UTM19.TIF, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
0.6 meter backscatter JPEG image (with world file) of the nearshore seafloor north of Duck, NC (mosaic1.jpg UTM, Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
0.8 meter backscatter JPEG image (with world file) of the nearshore seafloor off of Kitty Hawk, NC (mosaic3.jpg, UTM Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
0.8 meter backscatter JPEG image (with world file) of the nearshore seafloor off of Nags Head, NC (mosaic6.jpg, UTM Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
0.8 meter backscatter JPEG image (with world file) of the nearshore seafloor off of Whalebone, NC (mosaic7.jpg, UTM Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
100-meter grid representing the coastal plain unconformity (in meters) beneath the inner-continental shelf offshore of Fire Island, NY (FI_CPUN, UTM Zone 18N, WGS 84, Esri Binary Grid)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island ... |
Info |
10BIM03_Terrestrial_core_locations: Cat Island Terrestrial Core Locations from field activity 10BIM03
Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), in collaboration with the U.S. Army Corps of Engineers (USACE), conducted geophysical and sedimentological surveys around Cat Island, the westernmost island in the Mississippi-Alabama barrier island chain. The objectives of the study were to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico and to identify relationships between the ... |
Info |
10BIM03_Terrestrial_Vibracore_Table: Cat Island Terrestrial Core Locations from field activity 10BIM03
Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), in collaboration with the U.S. Army Corps of Engineers (USACE), conducted geophysical and sedimentological surveys around Cat Island, the westernmost island in the Mississippi-Alabama barrier island chain. The objectives of the study were to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico and to identify relationships between the ... |
Info |
10cct01_v2rbf_50m.tif: 50-Meter Resolution Grid of Swath Bathymetry Data Collected Offshore of Cat Island, Mississippi in March 2010
In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys east of Cat Island, Mississippi. The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U. S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex. The data ... |
Info |
10cct02_MOSAIC_GC.tif - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in St. Petersburg, FL offshore of the Gulf Islands, MS, 2010 (UTM Zone 16N GeoTIFF)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
10cct02_MOSAIC_GE.tif - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in St. Petersburg, FL offshore of the Gulf Islands, MS, 2010 (UTM Zone 16N GeoTIFF)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
10cct02_MOSAIC_GN.tif - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in St. Petersburg, FL offshore of the Gulf Islands, MS, 2010 (UTM Zone 16N GeoTIFF)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
10cct02_MOSAIC_GW.tif - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in St. Petersburg, FL offshore of the Gulf Islands, MS, 2010 (UTM Zone 16N GeoTIFF)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
10cct02_ss_v1_1m - Side scan sonar mosaic of Petit Bois Pass, Alabama, Mississippi Barrier Islands, March 2010
In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi, and Dauphin Island, Alabama. These efforts were part of the U.S. Geological Survey Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geologic stratigraphic framework ... |
Info |
10cct02_sw_v2_50m - 50 meter interpolated bathymetric grid of Petit Bois Pass, Mississippi Barrier Islands, March 2010
In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi and Dauphin Island, Alabama. These efforts were part of the U.S. Geological Survey Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project, by mapping the shallow geologic stratigraphic framework ... |
Info |
10CCT03_ss_1m.tif: the 1-m resolution grid of the side scan sonar data from USGS Cruise 10cct03
In April of 2010, the U.S. Geological Survey (USGS) conducted a geophysical survey from the east end of West Ship Island, MSiss., extending to the middle of Dauphin Island, Ala. This survey had a dual purpose: (1) to interlink previously conducted nearshore geophysical surveys (shoreline to ~2 kilometers, km) with those of offshore surveys (~2 km to ~9 km) in the ares and (2) to extend the geophysical survey to include a portion of the Dauphin Island nearshore zone. The efforts were part of the USGS Gulf of ... |
Info |
10-m backscatter mosaic produced from backscatter intensity data from sidescan sonar and multibeam datasets (BS_composite_10m.tif GeoTIFF Image; UTM, Zone 19N, WGS 84)
These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ... |
Info |
10-m Bathymetry grid of Vineyard and western Nantucket Sounds produced from lead-line and single-beam sonar soundings, swath-interferometric, multibeam, and lidar datasets (Esri binary grid, UTM Zone 19N, WGS84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ... |
Info |
10-m Bathymetry grid produced from lead-line and single-beam sonar soundings, swath interferometric, multibeam, and lidar datasets (bb_navd88_10m, Esri binary grid, UTM Zone 19N, WGS84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
10 meter bathymetric grid of Barnegat Bay, New Jersey produced from trackline bathymetry collected by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri binary grid, UTM 18N, WGS 84)
Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS)in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events, ... |
Info |
10 meter ESRI binary grid of nearshore bathymetry data collected at Duck, NC (vims_2002, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
10-meter swath bathymetric grid collected by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (UTM Zone 18N, WGS 84, Esri Binary Grid, FI_BATHYGRD)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island ... |
Info |
10-m Hillshaded-relief image of Vineyard and western Nantucket Sounds produced from lead-line and single-beam sonar soundings, swath-interferometric, multibeam, and lidar datasets (TIFF image, UTM Zone 19N, WGS84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and Western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ... |
Info |
10-m Interpolated Bathymetric Grid of the Northern Part of National Oceanic and Atmospheric Administration (NOAA) Survey H11044 off Milford, Connecticut (H11044N_10UTM, UTM Zone 18, WGS84)
During 2001 the NOAA Ship RUDE completed charting survey H11044 that covered a roughly 293 km2 area of the sea floor in north-central Long Island Sound, off Milford Connecticut. Although 100 percent coverage was achieved with sidescan sonar for charting purposes, only reconnaissance (spaced line) bathymetry was acquired with shallow-water multibeam and single-beam systems. Therefore, further processing was conducted at the USGS's Woods Hole Science Center to provide bathymetric datasets with more continuous ... |
Info |
10-m resolution gray-scale image of multibeam backscatter intensity in Massachusetts Bay (MB_BACKGS10M.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
10-m resolution gray-scale image of multibeam bathymetry in Massachusetts Bay (MB_BATHYGS10M.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
10-m resolution grid of multibeam bathymetry in Massachusetts Bay (MB_BATHY10M)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
10-m resolution image of shaded relief multibeam bathymetry in Massachusetts Bay, colored by water depth (MB_BATHYCLR10M.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
10-m resolution image of shaded relief multibeam bathymetry in Massachusetts Bay (MB_SRELIEF10M.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
10-m resolution image of shaded relief multibeam bathymetry in Massachusetts Bay, pseudocolored by backscatter intensity (MB_BACKPC10M.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
14CCT01_metadata: Sedimentary Data From Grand Bay, Alabama/Mississippi, 2014-2016
This data release is an archive of sedimentary field and laboratory analytical data collected in Grand Bay, Alabama/Mississippi from 2014-2016 by scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC). This work, a component of the SPCMSC’s Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, provides the necessary data to quantify sedimentation rates and sediment sources for the marsh and estuary. The SSIEES project ... |
Info |
150-meter bathymetry grid acquired in August and September 2003 aboard the Ronald H. Brown on U.S. Geological Survey Cruise 2003-032-FA from the Puerto Rico Trench region (RB2003august, Esri binary and ASCII grid, UTM zone 19, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
150-meter bathymetry grid acquired in February and March of 2003 aboard the Ronald H. Brown on U.S. Geological Survey Cruise 2003-008-FA from the Puerto Rico Trench region (RB2003, Esri binary and ASCII grid, UTM zone 19, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
150-meter bathymetry grid acquired in September 2002 aboard the Ronald H. Brown on U.S. Geological Survey Cruise 2002-051-FA from the Puerto Rico Trench region (RB2002, Esri binary and ASCII grid, UTM zone 19, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
150-meter Fledermaus bathymetry grid from U.S. Geological Survey Cruise 02051, National Oceanic and Atmospheric Administration RB0208, September 24 to 30, 2002 aboard the Ronald H. Brown in the Puerto Rico Trench region (RB2002sd.sd)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
150-meter Fledermaus bathymetry grid from U.S. Geological Survey Cruise 03008, National Oceanic and Atmospheric Administration RB0303, February 18 to March 7, 2003 aboard the Ronald H. Brown in the Puerto Rico Trench region (RB2003sd.sd)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
150-meter Fledermaus bathymetry grid from U.S. Geological Survey Cruise 03032, National Oceanic and Atmospheric Administration RB0305, 28 August to 4 September 2003 (RB2003Augustsd.sd)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
15CCT02_metadata: Sedimentary Data From Grand Bay, Alabama/Mississippi, 2014-2016
This data release is an archive of sedimentary field and laboratory analytical data collected in Grand Bay, Alabama/Mississippi from 2014-2016 by scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC). This work, a component of the SPCMSC’s Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, provides the necessary data to quantify sedimentation rates and sediment sources for the marsh and estuary. The SSIEES project ... |
Info |
1.5-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in the Vicinity of Woods Hole, Massachusetts (H11077_1-5GEO, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
1.5-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in the Vicinity of Woods Hole, Massachusetts (H11077_1-5UTM, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
15-Minute Navigation for Seismic-Reflection Data Collected in Eastern Rhode Island Sound in 1975 (A75_6NAV_SORT.SHP)
During 1975, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in eastern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
15-Minute Navigation for Seismic-Reflection Data Collected in Southern Rhode Island Sound in 1980 (A80_6NAV_SORT.SHP)
During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in southern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 3 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
15-Minute Navigation for Seismic-Reflection Data Collected in Western Rhode Island Sound (N80_1NAV.SHP)
During 1980, a seismic-reflection survey utilizing Uniboom seismics was conducted by the U.S. Geological Survey (USGS) in western Rhode Island Sound aboard the Research Vessel Neecho. This cruise consisted of 2 legs totalling 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. As a result of recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from ... |
Info |
16CCT03_metadata: Sedimentary Data From Grand Bay, Alabama/Mississippi, 2014-2016
This data release is an archive of sedimentary field and laboratory analytical data collected in Grand Bay, Alabama/Mississippi from 2014-2016 by scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC). This work, a component of the SPCMSC’s Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, provides the necessary data to quantify sedimentation rates and sediment sources for the marsh and estuary. The SSIEES project ... |
Info |
16CCT04_metadata: Sedimentary Data From Grand Bay, Alabama/Mississippi, 2014-2016
This data release is an archive of sedimentary field and laboratory analytical data collected in Grand Bay, Alabama/Mississippi from 2014-2016 by scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC). This work, a component of the SPCMSC’s Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, provides the necessary data to quantify sedimentation rates and sediment sources for the marsh and estuary. The SSIEES project ... |
Info |
1997 seismic shotpoint navigation at 100 shot intervals off the coast of Washington and Oregon (geographic coordinates)
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
1997 seismic tracklines off the coast of Washington and Oregon (geographic coordinates)
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
1997 shotpoint navigation at 500 shot intervals off the coast of Washington and Oregon (geographic coordinates)
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
1998 Atlantic coast NASA/NOAA/USGS Spring ATM Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Atlantic Coast ... |
Info |
1998 East Coast NASA/NOAA/USGS Winter ATM Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Atlantic Coast ... |
Info |
1998 Fall Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Fall Gulf Coast ... |
Info |
1998 MA, NY, MD, and VA USGS/NASA ATM2 Lidar-derived dune crest, toe and shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
1998 seismic shotpoint navigation at 100 shot intervals off the coast of Washington and Oregon (geographic coordinates)
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
1998 seismic tracklines off the coast of Washington and Oregon (geographic coordinates)
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
1998 shotpoint navigation at 500 shot intervals off the coast of Washington and Oregon (geographic coordinates)
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
1998 Southeast ATM Lidar-derived dune crest, toe and shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Southeast USGS/NASA ... |
Info |
1999 Atlantic Coast NASA/NOAA/USGS ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Floyd
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1999 Atlantic Coast ... |
Info |
1999 Fall Texas USGS/NASA/NOAA ATM Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1999 Fall Gulf Coast ... |
Info |
1-m backscatter mosaic in Vineyard and western Nantucket Sounds produced from multiple sidescan-sonar datasets (GeoTIFF Image; UTM, Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ... |
Info |
1-m backscatter mosaic produced from backscatter intensity data from sidescan sonar and multibeam datasets (BS_composite_1m.tif, GeoTIFF Image; UTM, Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
1-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11076 of Quicks Hole, Massachusetts (H11076_UTM_B, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
1-m Bathymetric ArcRaster Grid of NOAA Survey H11310 in Central Narragansett Bay (H11310_UTM19, UTM Zone 19)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The mosaic and bathymetry presented herein covers an area ... |
Info |
1-m Bathymetric Grid Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12007 in the Vicinity of Cross Rip Channel, Nantucket Sound (H12007_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ... |
Info |
1-m Bathymetric Grid Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12007 in the Vicinity of Cross Rip Channel, Nantucket Sound (H12007_UTM, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ... |
Info |
1 m Digital Bathymetric Contours from NOAA Charts as Organized for the LISSGIS Library (LISBATHY)
The Long Island Sound Study (LISS) compiled data from a number of different sources, integrated new data, and assembled a comprehensive spatial database for areas of the States of Connecticut, New York, and portions of Rhode Island which border Long Island Sound. |
Info |
1-meter backscatter imagery collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (GeoTIFF image)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
1-meter backscatter imagery collected in 2013 by the U.S. Geological Survey south of Martha's Vineyard and north of Nantucket, Massachusetts (2013-003-FA_Backscatter_1m.tif, 8-bit GeoTIFF, UTM Zone 19N, WGS 84)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish ... |
Info |
1-meter composite digital sidescan sonar mosaic of National Oceanic and Atmospheric Administration (NOAA) survey H11043 in north-central Long Island Sound off Branford, Connecticut (H11043_GEO_WGS84.TIF)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
1-meter Composite Grayscale Image of the Sidescan Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of the Sea Floor in Great Round Shoal Channel, Offshore Massachusetts (H11079_1MUTM19_SSS.TIF, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
1-meter Composite Mosaic of the Sidescan Sonar Survey National Oceanic and Atmospheric Administration (NOAA) H11045 in west-central Long Island Sound off Bridgeport, Connecticut in Geographic (H11045_GEO1M_WGS84_INV.TIF)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
1 meter Klein 3000 sidescan-sonar backscatter GeoTIFF mosaic of the nearshore portion of the Cape Ann to Salisbury Beach Massachusetts survey area (KLEIN_BS1M.tif, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
1-meter per pixel sidescan-sonar mosaic collected in Moultonborough Bay, Lake Winnipesaukee, New Hampshire by the U.S. Geological Survey in 2005 (GeoTIFF, UTM Zone 19N, WGS 84, WINNI_SONAR.TIF)
In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ... |
Info |
1 meter resolution GeoTIFF image of the sidescan sonar backscatter imagery of Boston Harbor and Approaches (BH_1MBS.TIF, UTM 19, WGS84)
These data are high-resolution acoustic backscatter measurements of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km square of sidescan sonar data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS). |
Info |
1 meter resolution sidescan sonar image of data acquired during the U.S. Geological Survey Geophysical Surveys 02031 of Bear Lake, Utah-Idaho, September, 2002 (BEARLAKE.TIF, UTM)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
1-meter resolution sidescan-sonar mosaic image collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA in 2015 (8-bit GeoTIFF, UTM Zone 18N, WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Surveys conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
1-meter sidescan-sonar mosaic image collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA in 2014 (GeoTIFF, UTM Zone 18N, WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
1-meter swath bathymetric grid collected by the U.S. Geological Survey in Moultonborough Bay, Lake Winnipesaukee, New Hampshire in 2005 (UTM Zone 19N, WGS 84, Esri Binary Grid, WINNI_BATHY)
In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ... |
Info |
1 meter unenhanced GeoTIFF Sidescan-Sonar Mosaic of Las Vegas Wash - Lake Mead, Nevada (LVWASH_UNG.TIF, geographic)
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
1 minute interval navigation points for the R/V GYRE cruise 97006 seismic tracklines (G97_1MNPTS.SHP)
Since 1982 the, U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the growing ... |
Info |
1 Minute Navigation Points for R/V ASTERIAS 90-1 (90_1NAVP)
This GIS layer contains the shiptrack navigation points collected aboard the RV ASTERIAS during a 1990 geophysical cruise to Fishers Island Sound and eastern Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
1m Sidescan-Sonar Mosaic of Apalachicola Bay, Florida (APBAYMOS1M.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
1m Sidescan-Sonar Mosaic of St. George Sound, Florida Collected 8 April 2005 (JD098) (STGSNDJD0981M.TIF )
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
1m Sidescan-Sonar Mosaic of St. George Sound, Florida (STGSNDMOS1M.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
1-m Stretched Sidescan Sonar Image of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_1M_SSS_UTM_STR.TIF, UTM)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan-sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
1-m Stretched Sidescan-Sonar Image of National Oceanic and Atmospheric Administration (NOAA) Survey H11322 in Western Rhode Island Sound (H11322_1M_SSS_UTM_STR.TIF, UTM)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan-sonar and bathymetric data collected onboard the NOAA Ship RUDE as well as historic seismic-reflection data. The mosaic, bathymetry, ... |
Info |
2000 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2000 U.S. Army Corps of ... |
Info |
2001 Gulf Coast USGS/NASA ATM Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2001 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 U.S. Army Corps of ... |
Info |
2002 NOAA/NASA/USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2002 Post-Hurricane Lili ... |
Info |
2002 Post-Tropical Storm Fay University of Texas Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2002 University of Texas ... |
Info |
2002 USGS Virgina and Maryland Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ... |
Info |
2003 NOAA Oahu Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2003 NOAA Oahu lidar ... |
Info |
2003 Pre- and Post-Hurricane Isabel USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2003 Pre- and Post ... |
Info |
2004 Maine NOAA Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 NOAA Maine lidar ... |
Info |
2004 Post-Hurricane Charley West Florida EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Post-Hurricane ... |
Info |
2004 Post-Hurricane Frances USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Post-Hurricane ... |
Info |
2004 Post-Hurricane Ivan Northern Gulf of Mexico EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 USGS Post-Ivan ... |
Info |
2004 Post-Hurricane Jeanne USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Post-Hurricane ... |
Info |
2004 Pre-Hurricane Ivan Eastern Gulf Coast United States Army Corps of Engineers (USACE) Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 Pre-Ivan Eastern ... |
Info |
2004 USACE Post-Ivan Florida Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 U.S. Army Corps of ... |
Info |
2005-2006 Atlantic Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005-2006 Atlantic Coast ... |
Info |
2005 EAARL Fire Island Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 Fire Island USGS ... |
Info |
2005 East Coast (DE, MD, NJ, NY, NC, and VA) USACE NCMP Topobathy Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2005 Padre Island USGS EAARL Lidar-derived dune crest, toe and shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 Experimental ... |
Info |
2005 Post-Hurricane Dennis Florida U.S. Army Corps of Engineers Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 USACE Post-Dennis ... |
Info |
2005 Post-Hurricane Katrina EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 Post-Hurricane ... |
Info |
2005 USGS Post-Hurricane Rita Texas and Louisiana Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 USGS Post-Hurricane ... |
Info |
2006 FEMA Oahu Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2006 Federal Emergency ... |
Info |
2007 Northeast Barrier Islands USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Northeast Barrier ... |
Info |
2007 South Florida FDEM Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Florida Division of ... |
Info |
2007 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 U.S. Army Corps of ... |
Info |
2008-2017 Globigerinoides ruber Sediment Trap Data Collected from the Gulf of Mexico
This data release includes results of a high-resolution (1–2 weeks) and long-term sediment trap time series collected from the northern Gulf of Mexico. This dataset allows for a detailed assessment of the seasonal distribution, size, morphological variability and geochemistry of co-occurring pink and white chromotypes of the shallow-water foraminifera, Globigerinoides ruber. The flux of both chromotypes is highly correlated, and both represent mean annual conditions in the marine surface mixed layer. ... |
Info |
2008 Assateague Island USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Assateague Island ... |
Info |
2008 North Carolina and Virginia NOAA/NGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Atlantic Coast ... |
Info |
2008 Post-Hurricane Gustav Northern Gulf of Mexico USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Post-Hurricane ... |
Info |
2008 South Louisiana USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 South Louisiana ... |
Info |
2008 USGS Post-Hurricane Ike Texas Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 USGS Post-Hurricane ... |
Info |
2009 Cape Canaveral USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Cape Canaveral ... |
Info |
2009 Florida USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Florida U.S. Army ... |
Info |
2009 North Carolina USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 U.S. Army Corps of ... |
Info |
2009 Post-NorIda USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Post-NorIda USGS ... |
Info |
2009 Western Gulf of Mexico USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2009 Western Gulf of ... |
Info |
2010-012-FA_MOSAIC_CI.tif - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in Woods Hole, MA offshore of the Gulf Islands, MS, 2010 (UTM Zone 16N GeoTIFF)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
2010-012-FA_MOSAIC_GC.tif - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in Woods Hole, MA offshore of the Gulf Islands, MS, 2010 (UTM Zone 16N GeoTIFF)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
2010-012-FA_MOSAIC_GE.tif - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in Woods Hole, MA offshore of the Gulf Islands, MS, 2010 (UTM Zone 16N GeoTIFF)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
2010-012-FA_MOSAIC_GW.tif - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in Woods Hole, MA offshore of the Gulf Islands, MS, 2010 (UTM Zone 16N GeoTIFF)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
2010-2022 New Jersey and New York Beach Shoreline Change
This dataset defines shoreline change rates for each 10-meter (m)-wide profile calculated via endpoint rate and linear regression from Himmelstoss and others (2018). Shoreline change rates were calculated for two time periods: pre-Sandy (2010-2012) and post-Sandy (2012-2022). The profiles were derived from light detection and ranging (lidar) digital elevation models (DEMs). Refer to Doran and others (2017) for more information about the source lidar data. These data support the National Fish and Wildlife ... |
Info |
2010-2022 New Jersey and New York Beach Volumes
This dataset defines the volume of sand along a 10-meter (m) wide profile between the seaward-most dune toe and the mean high water shoreline derived from light detection and ranging (lidar) digital elevation models (DEMs). Refer to Doran and others (2017) for more information about the source lidar data. These data support the National Fish and Wildlife Foundation (NFWF)-funded project entitled “Monitoring Hurricane Sandy Beach and Marsh Resilience in New York and New Jersey” (NFWF project ID 2300.16 ... |
Info |
2010 Alabama and Florida USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Alabama and Florida ... |
Info |
2010 Assateague Island National Seashore USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Assateague Island ... |
Info |
2010 Delaware USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Delaware U.S. Army ... |
Info |
2010 Florida West Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Florida West Coast ... |
Info |
2010 Louisiana and Mississippi USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Louisiana and ... |
Info |
2010 Maryland USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Maryland U.S. Army ... |
Info |
2010 New Jersey USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 New Jersey U.S. ... |
Info |
2010 New York USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 New York U.S. Army ... |
Info |
2010 Northeast Atlantic USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Northeast Atlantic ... |
Info |
2010 Southeast Atlantic USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Southeast Atlantic ... |
Info |
2010 Virginia USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Virginia U.S. Army ... |
Info |
2011 East Coast New York/New Jersey NOAA/NGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 East Coast New York ... |
Info |
2011 Northern Gulf Coast USACE Lidar-derived dune crest, toe and shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 Northern Gulf Coast ... |
Info |
2011 USGS New York Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 Atlantic Coast ... |
Info |
2012 Post-Hurricane Isaac USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ... |
Info |
2012 Post-Hurricane Sandy Fire Island, New York Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ... |
Info |
2012 Post-Hurricane Sandy Long Island, New York USACE Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2012 Post-Hurricane Sandy New Jersey USGS EAARL-B Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ... |
Info |
2012 Post-Hurricane Sandy Northeast Atlantic Coast USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post ... |
Info |
2012 Post-Sandy New York and New Jersey USACE NCMP Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Sandy New York ... |
Info |
2012 Pre-Hurricane Sandy Fire Island National Seashore, USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Hurricane ... |
Info |
2012 Pre-Sandy New York and New Jersey USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Pre Hurricane Sandy ... |
Info |
2013-14 Massachusetts Lidar-Derived Dune Crest Point Data
This data release of dune metrics for the Massachusetts coast is part of a 2018 update to the Massachusetts Shoreline Change Project. Because of continued coastal population growth and the increased threat of coastal erosion, the Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. Maps of historic shoreline locations from the mid-1800s to 1978 were produced from multiple data sources, and in 2001, a 1994 shoreline ... |
Info |
2013-14 Massachusetts Lidar-Derived Dune Toe Point Data
This data release of dune metrics for the Massachusetts coast is part of a 2018 update to the Massachusetts Shoreline Change Project. Because of continued coastal population growth and the increased threat of coastal erosion, the Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. Maps of historic shoreline locations from the mid-1800s to 1978 were produced from multiple data sources, and in 2001, a 1994 shoreline ... |
Info |
2013-2014 Northeast USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013-2014 Post� ... |
Info |
2013 Dauphin Island USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 Dauphin Island ... |
Info |
2013 Maine USACE/NAE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 Maine United States ... |
Info |
2013 NOAA Oahu Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 National Oceanic ... |
Info |
2013 USACE NAE Topobathy Lidar: Maine Point Cloud files with Orthometric Vertical Datum North American Vertical Datum of 1988 (NAVD88) using GEOID12B
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ... |
Info |
2013 USACE Oahu Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 U.S. Army Corps of ... |
Info |
2014 East Coast Maine USACE/NAE ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Sandy
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 East Coast Maine ... |
Info |
2014 East Coast New Hampshire USACE/NAE ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Sandy
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 East Coast New ... |
Info |
2014 East Coast Rhode Island NOAA/NGS ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Sandy
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 East Coast Rhode ... |
Info |
2014 Mobile County, Alabama Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 Mobile County, ... |
Info |
2014 Post-Hurricane Sandy SC to NY NOAA NGS Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2014 USGS CMGP Post-Sandy Long Island Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2014 USGS CMGP Post ... |
Info |
2015-330-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2015-330-FA Offshore of Dauphin Island, Alabama, September 2015
From September 16 through 23, 2015, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Dauphin Island, Alabama. Geophysical data were collected as part of the Alabama Barrier Island Restoration Feasibility Study. This shapefile represents a point dataset of field activity number (FAN) 2015-330-FA chirp subbottom profile 1,000-shot-interval locations. |
Info |
2015-330-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2015-330-FA Offshore of Dauphin Island, Alabama, September 2015
From September 16 through 23, 2015, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Dauphin Island, Alabama. Geophysical data were collected as part of the Alabama Barrier Island Restoration Feasibility Study. This shapefile represents a point dataset of field activity number (FAN) 2015-330-FA chirp subbottom profile start of trackline locations. |
Info |
2015-330-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2015-330-FA Offshore of Dauphin Island, Alabama, September 2015
From September 16 through 23, 2015, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Dauphin Island, Alabama. Geophysical data were collected as part of the Alabama Barrier Island Restoration Feasibility Study. This shapefile represents a line dataset of field activity number (FAN) 2015-330-FA chirp tracklines. |
Info |
2015 Mississippi and Alabama USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2015 Mississippi and ... |
Info |
2015 USACE Florida Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2015 U.S. Army Corps of ... |
Info |
2016 Florida East Coast USACE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2016 U.S. Army Corps of ... |
Info |
2016 Massachusetts NOAA Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2016 USACE Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2016 U.S. Army Corps of ... |
Info |
2016 USACE Post-Hurricane Matthew Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2017 East Coast USACE/FEMA ATM Lidar-Derived Dune Crest, Toe and Shoreline, post-Hurricane Irma
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2017 Atlantic Coast ... |
Info |
2017 Florida West Coast NOAA Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches.Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2017 Georgia through New York USACE NCMP Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ... |
Info |
2017 USGS Lidar: Chenier Plain, LA Point Cloud files with Orthometric Vertical Datum North American Vertical Datum of 1988 (NAVD88) using GEOID12B
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ... |
Info |
2018 Alabama and Florida USGS Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2018 East Coast (NC) USACE NCMP Topobathy Lidar Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2018 East Coast (VA, NC, SC) USACE NCMP Post-Florence Topobathy Lidar-Derived Dune Crest, Toe, and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2018 Florida USGS Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2018 Mississippi and Alabama USACE Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2018 Puerto Rico USACE Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2018 South Texas USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline derived from the 2018 United States ... |
Info |
2018 USGS Florida Panhandle Post-Michael Lidar-derived Dune Crest, Toe, and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2018 United States Army ... |
Info |
2019-333-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2019-333-FA Offshore of the Rockaway Peninsula, New York, September–October 2019
From September 27 through October 5, 2019, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of the Rockaway Peninsula, New York. This shapefile represents a point dataset of field activity number (FAN) 2019-333-FA chirp subbottom profile 1,000-shot-interval locations. |
Info |
2019-333-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2019-333-FA Offshore of the Rockaway Peninsula, New York, September–October 2019
From September 27 through October 5, 2019, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of the Rockaway Peninsula, New York. This shapefile represents a point dataset of field activity number (FAN) 2019-333-FA chirp subbottom profile start of trackline locations. |
Info |
2019-333-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2019-333-FA Offshore of the Rockaway Peninsula, New York, September–October 2019
From September 27 through October 5, 2019, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of the Rockaway Peninsula, New York. This shapefile represents a line dataset of field activity number (FAN) 2019-333-FA chirp tracklines. |
Info |
2019 North Carolina and Virginia Post-Dorian USACE Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2019 North Carolina and Virginia USACE Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (L=lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2020 New Jersey and New York USACE Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2020 New Jersey USACE USGS Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2021-322-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Pensacola Beach, Florida, June 2021
From June 2 through 9, 2021, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). This shapefile represents a point dataset of field activity number (FAN) 2021-322-FA chirp subbottom profile 1,000-shot-interval locations collected inshore and offshore of Pensacola Beach, FL. |
Info |
2021-322-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Pensacola Beach, Florida, June 2021
From June 2 through 9, 2021, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). This shapefile represents a point dataset of field activity number (FAN) 2021-322-FA chirp subbottom profile start of trackline locations collected inshore and offshore of Pensacola Beach, FL. |
Info |
2021-322-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Pensacola Beach, Florida, June 2021
From June 2 through 9, 2021, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). This shapefile represents a line dataset of field activity number (FAN) 2021-322-FA chirp tracklines collected inshore and offshore of Pensacola Beach, FL. |
Info |
2021 Experimental Discrete Field and Laboratory CO2 System Measurements from the Hillsborough River, Florida
This dataset contains carbon dioxide (CO2) system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) to investigate the effects of Mercuric chloride (HgCl2) on low salinity, organic-rich estuarine water samples acquired from the Tampa Bay estuary located in west central Florida. Discrete water samples were collected using two, 30-liter (30L) Niskin bottles to capture surficial waters from the lower Hillsborough River. Filtered water ... |
Info |
2021 New York State Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ... |
Info |
2022-309-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2022-309-FA Offshore of Seven Mile Island, New Jersey, April and May 2022
From April 29 through May 2, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Seven Mile Island, New Jersey. Geophysical data were collected as part of the Coastal Sediment Availability and Flux project. This shapefile represents a point dataset of field activity number (FAN) 2022-309-FA chirp subbottom profile 1,000-shot-interval locations. |
Info |
2022-309-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2022-309-FA Offshore of Seven Mile Island, New Jersey, April and May 2022
From April 29 through May 2, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Seven Mile Island, New Jersey. Geophysical data were collected as part of the Coastal Sediment Availability and Flux project. This shapefile represents a point dataset of field activity number (FAN) 2022-309-FA chirp subbottom profile start of trackline locations. |
Info |
2022-309-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2022-309-FA Offshore of Seven Mile Island, New Jersey, April and May 2022
From April 29 through May 2, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Seven Mile Island, New Jersey. Geophysical data were collected as part of the Coastal Sediment Availability and Flux project. This shapefile represents a line dataset of field activity number (FAN) 2022-309-FA chirp tracklines. |
Info |
2022-312-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2022-312-FA Near Panama City, Florida, November 2022
From June 20-30, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport near Panama City, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2022-312-FA chirp subbottom profile 1,000-shot-interval locations. |
Info |
2022-312-FA _sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2022-312-FA Near Panama City, Florida, June 2022
From June 20-30, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport near Panama City, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2022-312-FA chirp subbottom profile start of trackline locations. |
Info |
2022-312-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2022-312-FA Near Panama City, Florida, November 2022
From June 20-30, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport near Panama City, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a line dataset of field activity number (FAN) 2022-312-FA chirp tracklines. |
Info |
2022-328-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2022-328-FA Offshore of Breton Island, Louisiana, August 2022
On August 5, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Breton Island, Louisiana (LA). Geophysical data were collected as part of the Breton Island Post Construction Monitoring project. This shapefile represents a point dataset of field activity number (FAN) 2022-328-FA chirp subbottom profile 1,000-shot-interval locations. |
Info |
2022-328-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2022-328-FA Offshore of Breton Island, Louisiana, August 2022
On August 5, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Breton Island, Louisiana (LA). Geophysical data were collected as part of the Breton Island Post Construction Monitoring project. This shapefile represents a point dataset of field activity number (FAN) 2022-328-FA chirp subbottom profile start of trackline locations. |
Info |
2022-328-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2022-328-FA Offshore of Breton Island, Louisiana, August 2022
On August 5, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Breton Island, Louisiana (LA). Geophysical data were collected as part of the Breton Island Post Construction Monitoring project. This shapefile represents a line dataset of field activity number (FAN) 2022-328-FA chirp tracklines. |
Info |
2022-334-FA_BocaChica_Polecam_Imagery: High-resolution Geophysical and Imagery Data Collected in November 2022 Offshore of Boca Chica Key, FL
Underwater images totaling 23,948 in number were collected offshore of Boca Chica Key, the Florida Keys , during November 2022, using the Polecam system developed by the U.S. Geological Survey (USGS). The Polecam system is a single downward-looking underwater Teledyne FLIR camera with a Computar V1228-MPY lens and with a rigidly-attached Global Navigation Satellite System (GNSS) antenna mounted directly above the camera's central axis. The pole camera was attached to the gunwale of the USGS research vessel ... |
Info |
2022-334-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2022-334-FA Offshore of Boca Chica Key, Florida, November 2022
From November 8-13, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Boca Chica Key, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2022-334-FA chirp subbottom profile 1,000-shot-interval ... |
Info |
2022-334-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2022-334-FA Offshore of Boca Chica Key, Florida, November 2022
From November 8-13, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Boca Chica Key, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2022-334-FA chirp subbottom profile start of trackline ... |
Info |
2022-334-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2022-334-FA Offshore of Boca Chica Key, Florida, November 2022
From November 8-13, 2022, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and sediment transport offshore of Boca Chica Key, Florida (FL). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a line dataset of field activity number (FAN) 2022-334-FA chirp tracklines. |
Info |
2022 New Jersey and New York USACE USGS Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ... |
Info |
2023-310-FA_Oahu_Polecam_Imagery: High-resolution Geophysical and Imagery Data Collected in May 2023 Near Fort Hase, Marine Corps Base Hawaii
Underwater images totaling 78,924 in number were collected offshore Fort Hase, Marine Corps Base Hawaii (MCBH) and Coconut Island, Oahu, Hawaii, during May 2023, using the Polecam system developed by the U.S. Geological Survey (USGS). The Polecam system is a single downward-looking underwater Teledyne FLIR camera with a Computar V1228-MPY lens and with a rigidly-attached Global Navigation Satellite System (GNSS) antenna mounted above and forward of the camera's central axis. The Polecam system captured ... |
Info |
2023-310-FA_shots: Digital Chirp Subbottom Profile Shotpoint Data Collected During USGS Field Activity Number 2023-310-FA Offshore of Kailua, Hawaii, May 2023
From May 7-13, 2023, the U.S. Geological Survey (USGS) conducted a geologic assessment, including bathymetric mapping, near Kailua, Hawaii in support of efforts to construct an artificial coral reef offshore of Marine Corps Base Hawaii (MCBH). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a point dataset of field activity number (FAN) 2023-310-FA chirp subbottom ... |
Info |
2023-310-FA_sol: Digital Chirp Subbottom Profile Start of Line Data Collected During USGS Field Activity Number 2023-310-FA Offshore of Kailua, Hawaii, May 2023
From May 7-13, 2022, the U.S. Geological Survey (USGS) conducted a geologic assessment, including bathymetric mapping, near Kailua, Hawaii in support of efforts to construct an artificial coral reef offshore of Marine Corps Base Hawaii (MCBH). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced ... |
Info |
2023-310-FA_trkln: Digital Chirp Subbottom Profile Trackline Data Collected During USGS Field Activity Number 2023-310-FA Offshore of Kailua, Hawaii, May 2023
From May 7-13, 2022, the U.S. Geological Survey (USGS) conducted a geologic assessment, including bathymetric mapping, near Kailua, Hawaii in support of efforts to construct an artificial coral reef offshore of Marine Corps Base Hawaii (MCBH). Geophysical data were collected as part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects. This shapefile represents a line dataset of field activity number (FAN) 2023-310-FA chirp tracklines. |
Info |
210Pb and 137Cs measurements from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay
This data release provides 210Pb and 137Cs measurements in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay. |
Info |
25m Bathymetric ArcRaster Grid of Apalachicola Bay and St. George Sound, Florida (APBAYBATH25M)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
25-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the Vicinity of Edgartown Harbor, Massachusetts (H11346_GEO25, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
25-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the Vicinity of Edgartown Harbor, Massachusetts (H11346_UTM25, UTM Zone 19, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
25 m GLORIA sidescan sonar mosaic detail for the Gulf of Mexico Mississippi Fan study area
This image is an enlarged, detailed area from the Gulf of Mexico GLORIA sidescan sonar mosaic. The image was co-registered with SeaMARC 1A sidescan sonar data collected during R/V FARNELLA 90-3 cruise. |
Info |
25m Hillshaded Bathymetric ArcRaster Grid of Apalachicola Bay and St. George Sound, FL (APBAY25HS)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
2D micromodel studies of pore-throat clogging by pure fine-grained sediments and natural sediments from NGHP-02, offshore India
Fine-grained sediments, or “fines,” are nearly ubiquitous in natural sediments, even in the predominantly coarse-grained sediments that host gas hydrates. Fines within these sandy sediments can be mobilized and subsequently clog flow pathways while methane is being extracted from gas hydrate as an energy resource. Using two-dimensional (2D) micromodels to test the conditions in which clogging occurs provides insights for choosing production operation parameters that optimize methane recovery in the ... |
Info |
2-m ASCII Bathymetric Grid from National Oceanic and Atmospheric Administration (NOAA) Survey H11361 of the Sea Floor in Eastern Long Island Sound (H11361_2MUTM18_XYZ.TXT, UTM Zone18)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11250 of Eastern Long Island Sound (H11250U, UTM, Zone 18)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11252 from Eastern Long Island Sound (H11252U_2M, UTM Zone 18)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11361 from Eastern Long Island Sound (H11361U_2M, UTM Zone 18)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_2M_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_2M_UTM, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11445 in Long Island Sound, North of Plum Island, New York (H11445_2M_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11445 in Long Island Sound, North of Plum Island, New York (H11445_2M_UTM, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11446 in Long Island Sound, North of Orient Point, New York (H11446_2M_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11446 in Long Island Sound, North of Orient Point, New York (H11446_2M_UTM, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11922 in Rhode Island Sound West of Gay Head, Massachusetts (H11922_2M_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During July-August 2008 NOAA completed hydrographic ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11922 in Rhode Island Sound West of Gay Head, Massachusetts (H11922_2M_UTM, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During July-August 2008 NOAA completed hydrographic ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11996 in Rhode Island Sound (H11996_2M_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11996 in Rhode Island Sound (H11996_2M_UTM, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_2M_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_2M_UTM, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12012 Offshore in Northeastern Long Island Sound (UTM Zone 18, NAD83, H12012_2M_UTM)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), has produced detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Northeastern Long Island Sound (H12013_2MUTM, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
2-m Bathymetric Grid of NOAA Survey H11255 in Long Island Sound (BATHY2M_UTM18, UTM Zone 18)
Digital terrain models (DTMs) produced from multibeam bathymetric data provide valuable base maps for marine geological interpretations. These maps help define the geological variability of the seafloor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, and the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, ... |
Info |
2-m Bathymetry from the NOAA Survey H11255 of the Sea Floor in Southeastern Long Island Sound (H11255_2MUTM18_XYZ.TXT, UTM Zone 18)
Digital terrain models (DTMs) produced from multibeam bathymetric data provide valuable base maps for marine geological interpretations. These maps help define the geological variability of the seafloor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, and the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, ... |
Info |
2 meter Arc Raster grid of bathymetry acquired along cross lines using a SEA Ltd. SWATHplus-H interferometric sonar within Barnegat Bay New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri binary grid, UTM 18N, WGS 84)
Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events ... |
Info |
2 meter Arc Raster grid of bathymetry acquired using a SEA Ltd. SWATHplus-H interferometric sonar within Barnegat Bay New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri binary grid, UTM 18N, WGS 84)
Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events ... |
Info |
2 meter ArcRaster Grid of Swath Bathymetry of St. George Sound, Florida (STG2MBath)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
2 meter ArcRaster grid of the Swath Bathymetry of Apalachicola Bay, Florida (APBAY2MBATH)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
2-meter backscatter images produced from 20 multibeam hydrographic surveys collected off the Delmarva Peninsula by the National Oceanic and Atmospheric Administration's National Ocean Service between 2006 and 2011 (TIFF, UTM Zone 18N, WGS 84)
Between 2006 and 2011 Science Applications International Corporation (SAIC), under contract by the National Oceanic and Atmospheric Administration's (NOAA) National Ocean Service (NOS), collected twenty-three hydrographic surveys totaling over 4100 square-kilometers of Reson multibeam bathymetric and Klein sidescan-sonar data for the purposes of updating nautical charts. Data extended from the entrance of Delaware Bay south to Parramore Island in water depths from about 3 to 35 meters below mean lower low ... |
Info |
2-meter bathymetric data collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (bathymetry and depth-colored hillshade relief GeoTIFFs)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
2-meter bathymetric data collected in 2016 by the U.S. Geological Survey off Town Neck Beach in Sandwich, Massachusetts, during field activity 2016-017-FA (GeoTIFF image)
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ... |
Info |
2-meter Swath interferometric backscatter data collected in 2014 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (8-bit GeoTIFF, UTM Zone 18N, WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
2 meter unenhanced GeoTIFF Sidescan-Sonar Mosaic East of Virgin Basin - Lake Mead, Nevada (TEMPICE_UNGEOG.TIF , geographic)
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
2 meter unenhanced GeoTIFF Sidescan-Sonar Mosaic of Overton Arm - Lake Mead, Nevada (OVERTON_UNGEOG.TIF, geographic)
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
2 meter unenhanced GeoTIFF Sidescan-Sonar Mosaic of Virgin Basin - Lake Mead, Nevada (VBASIN_UNGEOG.TIF, geographic)
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
2m GeoTIFF image of Swath Bathymetry of St. George Sound, Florida (STGSND2M_BATH.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program are to collect marine geophysical data and develop a suite of seafloor maps to better define the extent of oyster habitats and the overall seafloor geology of the bay to provide updated information for management of ... |
Info |
2m GeoTIFF of Swath Bathymetry of Apalachicola Bay, Florida (APBAY2M_BATH.tif)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
30-m Hillshaded relief image produced from swath interferometric, multibeam, and lidar datasets (navd_bath_30m.tif GeoTIFF Image; UTM, Zone 19N, WGS 84)
These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ... |
Info |
30-m Topography and bathymetry grid produced from swath interferometric, multibeam, and lidar datasets (navd_bath_30m Esri binary grid, UTM Zone 19N, WGS84)
These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ... |
Info |
3 arc second digital elevation model of the Gulf of Maine
A gap-free, region-wide combined topographic/bathymetric grid at a fixed resolution is useful for describing the topography of the seafloor and for a wide variety of oceanographic studies. Generating a bathymetric grid of this type consists of (1) locating and retrieving digital datasets from a variety of sources, (2) correcting errors and determining the dataset that best represents the topography in specific regions, (3) converting the depth data to common horizontal and vertical datums, and (4) selecting ... |
Info |
3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai
3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai, were created using structure-from-motion (SfM) techniques. The two study sites are located approximately 640 m from shore and approximately 20 m apart in the alongshore direction. At each site, an approximate 12-meter diameter area was imaged in three passes by a swimmer using a handheld digital camera. These images were fed into Structure-from-Motion (SfM) software to produce high-resolution (fine-scale), ... |
Info |
3-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of Great Round Shoal Channel, Offshore Massachusetts (H11079_UTM_B, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
3-m Hill-Shaded Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of Great Round Shoal Channel (H11079_UTM_HS, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
40 meter ESRI binary grid of single beam and swath bathymetry of inner continental shelf north of Cape Hatteras, NC to Virginia border (nhatt, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
40 meter ESRI binary grid of swath bathymetry of inner continental shelf south of Cape Hatteras, NC to Cape Lookout, NC (shatt, UTM Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
40-m Hillshaded relief image produced from elevation of the late-Wisconsinan regressive unconformity beneath Buzzards Bay, Massachusetts (GeoTIFF Image; UTM, Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
45-m ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_UTM45M, UTM Zone 19)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of central Rhode Island Sound using sidescan-sonar imagery, bathymetry data, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
45-m ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11322 in Western Rhode Island Sound (H11322_UTM45M, UTM19)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of western Rhode Island Sound using sidescan-sonar imagery and bathymetry data collected aboard the NOAA Ship RUDE, as well as historic seismic records. The mosaic, ... |
Info |
45-m Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_GEO45M, Geographic)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of central Rhode Island Sound using sidescan-sonar imagery, multibeam bathymetry and seismic records. The mosaic, bathymetry, and their interpretations serve many ... |
Info |
4-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11320 in UTM Zone 19 (H11320_UTM_4M)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
4 meter composite sidescan sonar mosaic of the New York Bight Apex (APEX_OF.TIF)
In 1995, the USGS, in cooperation with the U. S. Army Corps of Engineers, New York District, began a program designed to generate reconnaissance maps of the sea floor offshore of the New York-New Jersey metropolitan area, one of the most populated coastal regions within the United States. The goal of this mapping program is to provide a regional synthesis of the sea-floor environment, including a description of sedimentary environments, sediment texture, sea-floor morphology, geologic history, and the ... |
Info |
4 meter ESRI binary grid of nearshore bathymetry data collected south of Oregon Inlet (vims_2005, UTM Zone18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
4 meter sidescan-sonar GeoTIFF image of inner shelf from Cape Hatteras, NC to Cape Lookout, NC (composite_shatt.tif, UTM, Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
4 meter sidescan-sonar GeoTIFF image of inner shelf from Virginia border to Cape Hatteras, NC (composite_nhatt.tif, UTM, Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
4 meter sidescan-sonar GeoTIFF image of inner shelf with stretched histogram, from Cape Hatteras, NC to Cape Lookout, NC (composite_shatt_str.tif, UTM, Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
4 meter sidescan-sonar GeoTIFF image of inner shelf with stretched histogram, from Virginia border to Cape Hatteras, NC (composite_nhatt_str.tif, UTM, Zone 18N, WGS84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441 and H11224 offshore of New London, Connecticut (NLONDON_GEO, Geographic, WGS84)
Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ... |
Info |
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441, H11442, H11224, and H11225 offshore of New London and Niantic, Connecticut (NLNB_GEO, Geographic, WGS84)
Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ... |
Info |
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441, H11442, H11224, and H11225 offshore of New London and Niantic, Connecticut (NLNB_UTM, UTM Zone 18, NAD83)
Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ... |
Info |
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442 and H11225 offshore of Niantic, Connecticut (NIANTIC_GEO, Geographic, WGS84)
Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ... |
Info |
4-m Grid of the Combined Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 Offshore in Eastern Long Island Sound and Westernmost Block Island Sound (ELISCOMB_GEO, Geographic, WGS84)
The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ... |
Info |
4-m Grid of the Combined Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 Offshore in Eastern Long Island Sound and Westernmost Block Island Sound (ELISCOMB_UTM, UTM Zone 18, NAD83)
The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ... |
Info |
4-m Grid of the Combined Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11922, H11995, H11996, H12009, H12010, H12011, H12015, H12023, H12033, H12137, H12139, H12296, H12298, and H12299 Offshore in Rhode Island and Block Island Sounds (RICOMB_4MGEO, Geographic, WGS 84)
Detailed bathymetric maps of the sea floor in Block Island and Rhode Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models (DTMs) from individual surveys provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited ... |
Info |
4-m Grid of the Combined Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11922, H11995, H11996, H12009, H12010, H12011, H12015, H12023, H12033, H12137, H12139, H12296, H12298, H12299 Offshore in Rhode island and Block Island Sound (RICOMB_4MUTM, UTM Zone 19, NAD 83)
Detailed bathymetric maps of the sea floor in Block Island and Rhode Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models (DTMs) from individual surveys provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited ... |
Info |
4-m Grid of the Combined Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H12009, H12010, H12011, H12015, H12033, H12137, and H12139 Offshore in Block Island Sound (BISOUND_4MGEO, Geographic, WGS84)
The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ... |
Info |
4-m Grid of the Combined Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H12009, H12010, H12011, H12015, H12033, H12137, and H12139 Offshore in Block Island Sound (BISOUND_4MUTM, UTM Zone 19, NAD83)
The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ... |
Info |
4-m Hill-Shaded Bathymetric GeoTIFF Image of National Oceanic and Atmospheric Administration (NOAA) Survey H11320 in UTM Zone 19 (H11320_UTM_4M.TIF)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
4-m Image of the Northern Half of the Backscatter Intensity Mosaic of the Sea Floor off Northeastern Cape Cod from USGS Cruise 98015 (CAPENORTHMOS_GEO4M_WGS84.TIF, Geographic, WGS84)
This data set includes backscatter intensity of the sea floor offshore of northern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echo sounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea ... |
Info |
4-m Image of the Northern Half of the Pseudo-colored Backscatter Intensity of the Sea Floor off Northeastern Cape Cod (CAPENORTHPSEUDO_GEO4M_WGS84.TIF, Geographic, WGS84)
This data set includes pseudo-colored backscatter intensity of the sea floor offshore of northeastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echo sounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify ... |
Info |
4-m Image of the Southern Half of the Backscatter Intensity Mosaic of the Sea Floor off Eastern Cape Cod from USGS Cruise 98015 (CAPESOUTHMOS_GEO4M_WGS84.TIF, Geographic, WGS84)
This data set includes backscatter intensity of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echo sounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea ... |
Info |
4-m Image of the Southern Half of the Pseudo-colored Backscatter Intensity of the Sea Floor off Eastern Cape Cod (CAPESOUTHPSEUDO_GEO4M_WGS84.TIF, Geographic, WGS84)
This data set includes pseudo-colored backscatter intensity of the sea floor offshore of northeastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echo sounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify ... |
Info |
50-meter grid representing the Holocene sediment thickness (in meters) on the inner-continental shelf offshore of Fire Island, NY (FI_HISO, UTM Zone 18N, WGS 84, Esri Binary Grid)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island ... |
Info |
50-meter grid representing the Holocene transgressive surface (in meters) beneath the inner-continental shelf offshore of Fire Island, NY (FI_HTS, UTM Zone 18N, WGS 84, Esri Binary Grid)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island ... |
Info |
5-m backscatter mosaic from south and west of Martha's Vineyard and north of Nantucket produced from sidescan-sonar and interferometric backscatter datasets
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This ... |
Info |
5 m Bathymetric Contours for Long Island Sound (LIS1992)
This bathymetric contour data set was derived from a gridded data set obtained from URI (B.Tyce, G. Hatcher). They used the "Gridder" program to obtain the grid. This gridded data set was generated from the original NOS soundings from 9 track tape that was cleaned up and edited at URI. This work was done with the intention of producing the color poster called "Long Island Sound Estuary" (Connecticut Dept. of Environmental Protection"), 1993. The accuracy is questionable. |
Info |
5-meter acoustic backscatter image collected by Alpine Ocean Seismic Survey, Inc., offshore of Fire Island, NY in 2014, as part of a collaborative U.S. Army Corp of Engineers and U.S. Geological Survey mapping effort (UTM zone 18N, WGS 84, Esri binary grid file format)
Hurricane Sandy, the largest storm of historical record in the Atlantic basin, severely impacted southern Long Island, New York in October 2012. In 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a high-resolution multibeam echosounder survey with Alpine Ocean Seismic Survey, Inc., offshore of Fire Island and western Long Island, New York to document the post-storm conditions of the inner continental shelf. The objectives of the survey were ... |
Info |
5-meter acoustic backscatter image collected by Alpine Ocean Seismic Survey, Inc., offshore of The Rockaways to Jones Inlet, NY in 2014, as part of a collaborative U.S. Army Corp of Engineers and U.S. Geological Survey mapping effort (UTM zone 18N, WGS 84, Esri binary grid file format)
Hurricane Sandy, the largest storm of historical record in the Atlantic basin, severely impacted southern Long Island, New York in October 2012. In 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a high-resolution multibeam echosounder survey with Alpine Ocean Seismic Survey, Inc., offshore of Fire Island and western Long Island, New York to document the post-storm conditions of the inner continental shelf. The objectives of the survey were ... |
Info |
5 meter ArcRaster Bathymetric grid of both the inshore and offshore area of Cape Ann - Salisbury Beach Survey Area (CABATH5M, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
5 meter ArcRaster Bathymetric Hillshade of both the inshore and offshore portions of the Cape Ann - Salisbury Beach Massachusetts Survey Area (CABATH5MHS, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
5 meter ArcRaster grid (gaps filled) of bathymetry acquired using a SEA Ltd. SWATHplus interferometric sonar offshore of Massachusetts within northern Cape Cod Bay (CCB_BATH_F Esri BINARY GRID, UTM Zone 19N).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
5 meter ArcRaster grid of bathymetry acquired using a SEA Ltd. SWATHplus interferometric sonar offshore of Massachusetts within northern Cape Cod Bay (CCB_BATH_5m Esri BINARY GRID, UTM 19N).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
5 meter ArcRaster grid of bathymetry data collected in Buzzards Bay by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts in 2004, 2009, 2010, and 2011 (BB_bathy5m, UTM Zone 19N, Esri BINARY GRID)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
5 meter ArcRaster grid of hillshaded bathymetry data collected in Buzzards Bay by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts in 2004, 2009, 2010, and 2011 (BB_hlshd5m, UTM Zone 19N, Esri BINARY GRID)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
5 meter ArcRaster grid of hillshaded bathymetry (Revised) acquired by the U.S. Geological Survey using a SEA Ltd. SWATHplus interferometric sonar in 2009, 2010, 2011 offshore of Massachusetts within Vineyard Sound (VS_BATHHS_V2, Esri BINARY GRID, UTM 19N, WGS 84).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ... |
Info |
5 meter ArcRaster grid of multibeam bathymetry of the offshore area of Cape Ann - Salisbury Beach Massachusetts Survey Area (BATH_OS5m, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
5 meter ArcRaster grid of swath bathymetry of inshore area of Cape Ann - Salisbury Beach Massachusetts survey area (BATH_IS5m, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
5 meter ArcRaster hillshade of bathymetry acquired with a SEA Ltd. SWATHplus interferometric sonar offshore of Massachusetts within northern Cape Cod Bay (CCB_FILL_HS Esri BINARY GRID, UTM Zone 19N).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
5 meter bathymetric contours derived from data collected during U.S. Geological Survey Geophysical Surveys of Bear Lake, Utah-Idaho, September, 2002 cruise 02031(02031_BATHY_5M)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
5-meter bathymetric data collected in 2013 by the U.S. Geological Survey south of Martha's Vineyard and north of Nantucket, Massachusetts (32-bit floating-point bathymetry GeoTIFF and depth-colored hillshaded GeoTIFF, UTM Zone 19N, WGS 84)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish ... |
Info |
5-meter bathymetric data collected in 2014 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (32-bit GeoTIFF, UTM Zone 18N, WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
5 meter color-hillshaded relief GeoTIFF of both the inshore and offshore area of Cape Ann - Salisbury Beach Survey Area (CABATH5M_GEOG.TIF, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
5-meter interferometric bathymetry data collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (32-bit GeoTIFF, UTM Zone 18N, WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
5 meter multibeam-sonar backscatter GeoTIFF mosaic of the offshore portion of the Cape Ann to Salisbury Beach Massachusetts survey area (RESON_BS5M.tif, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
5-meter per pixel acoustic backscatter mosaic collected by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (FI_SONAR_5M, UTM Zone 18N, WGS 84, GeoTIFF)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents maps of bathymetry, acoustic backscatter, the coastal plain unconformity, the Holocene marine transgressive surface and modern sediment thickness. These spatial data support research on the Quaternary evolution of the Fire Island ... |
Info |
5-meter swath bathymetric grid collected by Alpine Ocean Seismic Survey, Inc., offshore of Fire Island, NY in 2014, as part of a collaborative U.S. Army Corp of Engineers and U.S. Geological Survey mapping effort (UTM zone 18N, WGS 84, Esri binary grid file format)
Hurricane Sandy, the largest storm of historical record in the Atlantic basin, severely impacted southern Long Island, New York in October 2012. In 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a high-resolution multibeam echosounder survey with Alpine Ocean Seismic Survey, Inc., offshore of Fire Island and western Long Island, New York to document the post-storm conditions of the inner continental shelf. The objectives of the survey were ... |
Info |
5-meter swath bathymetric grid collected by Alpine Ocean Seismic Survey, Inc., offshore of The Rockaways to Jones Inlet, NY in 2014, as part of a collaborative U.S. Army Corp of Engineers and U.S. Geological Survey mapping effort (UTM zone 18N, WGS 84, Esri binary grid file format)
Hurricane Sandy, the largest storm of historical record in the Atlantic basin, severely impacted southern Long Island, New York in October 2012. In 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a high-resolution multibeam echosounder survey with Alpine Ocean Seismic Survey, Inc., offshore of Fire Island and western Long Island, New York to document the post-storm conditions of the inner continental shelf. The objectives of the survey were ... |
Info |
5-meter swath bathymetric grid collected by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (UTM Zone 18N, WGS 84, Esri Binary Grid)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island. For more information about the WHCMSC Field Activity, see https:/ ... |
Info |
5 minute Navigation fixes for cruise R/V ASTERIAS 81-2 (81_2NAVP)
This GIS layer contains the shiptrack navigation collected aboard the RV ASTERIAS during a 1981 geophysical cruise to Block Island Sound and easternmost Long Island Sound. |
Info |
5 Minute Navigation Points for R/V ASTERIAS 82-3 (AST82-3) (82_3NAVP)
This GIS layer contains the shiptrack navigation points collected aboard the RV ASTERIAS during a 1982 geophysical cruise to eastern Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
5 Minute Navigation Points for R/V ASTERIAS 85-8 (AST85-8) (85_8NAVP)
This GIS layer contains the shiptrack navigation points collected aboard the RV ASTERIAS during a 1985 geophysical cruise to western Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
5 Minute Navigation Points for R/V UCONN 84-1 (UCONN84-1)(84_1NAVP)
This GIS layer contains the shiptrack navigation points collected aboard the RV UCONN during a 1984 geophysical cruise to west-central Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
5-second shot points along chirp seismic lines collected during the 2002 MARION DUFRESNE cruise (02018) in the Gulf of Mexico (MD02CHIRPPNTS.SHP)
Since 1982, the U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the growing ... |
Info |
5year_R0_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
5year_R1_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
5year_R2_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
5year_R3_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
5year_R4_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using the Delft3D 4 Suite (Lesser and others, 2004), sediment transport and morphologic change was simulated at Little Dauphin Island, Alabama (AL) for 5-year simulations of restoration alternatives as described in Passeri and others (2025). The two-dimensional Delft3D model can be applied to coastal systems to solve for time-dependent bed level elevations. The Delft3D model setup requires the input of bathymetric elevations at each grid cell. Model inputs and outputs in the form of elevation at each grid ... |
Info |
6-m resolution gray-scale image of multibeam backscatter intensity in western Massachusetts Bay map Quadrangle 1 (Q1_BACKGS.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution gray-scale image of multibeam backscatter intensity in western Massachusetts Bay map Quadrangle 2 (Q2_BACKGS.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution gray-scale image of multibeam backscatter intensity in western Massachusetts Bay map Quadrangle 3 (Q3_BACKGS.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution gray-scale image of shaded-relief multibeam bathymetry in western Massachusetts Bay map Quadrangle 1 (Q1_SRELIEF.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution gray-scale image of shaded-relief multibeam bathymetry in western Massachusetts Bay map Quadrangle 2 (Q2_SRELIEF.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution gray-scale image of shaded-relief multibeam bathymetry in western Massachusetts Bay map Quadrangle 3 (Q3_SRELIEF.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution grid of multibeam bathymetry in western Massachusetts Bay map Quadrangle 1 (Q1_BATHY6M)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution grid of multibeam bathymetry in western Massachusetts Bay map Quadrangle 2 (Q2_BATHY6M)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution grid of multibeam bathymetry in western Massachusetts Bay map Quadrangle 3 (Q3_BATHY6M)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution grid of multibeam bathymetry of western Massachusetts Bay map Quadrangles 1-3 (WMB_BATHY6M)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution image of shaded relief multibeam bathymetry in western Massachusetts Bay map Quadrangle 1, pseudo-colored by backscatter intensity (Q1_BACKPC.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution image of shaded relief multibeam bathymetry in western Massachusetts Bay map Quadrangle 2, pseudo-colored by backscatter intensity (Q2_BACKPC.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
6-m resolution image of shaded relief multibeam bathymetry in western Massachusetts Bay map Quadrangle 3, pseudo-colored by backscatter intensity (Q3_BACKPC.TIF)
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping ... |
Info |
a100sc.m77t and a100sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity A-1-00-SC in Southern California from Port Hueneme to Mexican Border from 06/05/2000 to 06/29/2000
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-00-SC. The cruise was conducted from Port Hueneme, California, to the Mexican border from June 5 to June 29, 2000. The chief scientists were Chris Gutmacher, Stephanie Ross, Brian Edwards all from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to identify and map active and potentially active faults, folds, and submarine slide-prone areas ... |
Info |
a193yb.m77t and a193yb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity A-1-93-YB in Yakukat Bay, Alaska from 08/21/1993 to 08/27/1993
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-93-YB. The cruise was conducted in Yakukat Bay, Alaska from August 21 to August 27, 1993. The chief scientists were Paul Carlson of the USGS Coastal and Marine Geology office in Menlo Park, CA and Ellen Cowan of Appalachian State University and Ross Powell of Northern Illinois University. The overall purpose of this study was to characterize seismic facies for interpreting past glacier ... |
Info |
a194gb.m77t and a194gb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity A-1-94-GB in Prince William Sound, Yakutat Bay, Glacier Bay and Icy Strait, Alaska from 08/08/1994 to 08/17/1994
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-94-GB. The cruise was conducted in Prince William Sound, Yakutat Bay, Glacier Bay and Icy Strait, Alaska from August 8 to August 17, 1994. The chief scientists were Paul Carlson and Rob Kayen from the USGS Coastal and Marine Geology office in Menlo Park, CA, Ellen Cowan (Appalachian State University), and Ross Powell (Northern Illinois University). The overall purpose of this study was ... |
Info |
a194yb.m77t and a194yb.h77t: MGD77T data and header files for single-beam bathymetry for field activity A-1-94-YB in Yakutat Bay and Yakutat Sea Valley, Alaska from 08/05/1994 to 08/08/1994
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-94-YB. The cruise was conducted in Yakutat Bay and Yakutat Sea Valley, Alaska from August 5 to August 8, 1994. The chief scientists were Paul Carlson, Rob Kayen from the USGS Coastal and Marine Geology office in Menlo Park, CA and Ellen Cowan (Appalachian State University) and Ross Powell(North Illinois University). The purpose of this cruise was to study Hi-Res seismic facies to ... |
Info |
a298sc.m77t and a298sc.h77t: MGD77T data and header file for single-beam bathymetry for field activity A-2-98-SC in Santa Monica Bay from 08/23/1998 to 08/31/1998
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-2-98-SC. The cruise was conducted in Santa Monica Bay from August 23 to August 31, 1998. The chief scientists were Homa Lee and Brian Edwards from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to collect box core, gravity and piston core samples to understand anthropogenic affects on sedimentation. The geophysical source was an ODEC 3.5 ... |
Info |
AA_Q01.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q02.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q03.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q04.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q05.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q06.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q07.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q08.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q09.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q10.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q11.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q12.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q13.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q14.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q15.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q16.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q17.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q18.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q19.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q20.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q21.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q22B.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (31 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q22.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q23.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q24.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q25.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q26.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q27.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q28.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q29.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
AA_Q30.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (30 of 31) (LCC, 50 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 ... |
Info |
A bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada. (30-meter resolution, 32-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid)
This data publication is a compilation of six different multibeam surveys covering the previously unmapped Queen Charlotte Fault offshore southeast Alaska and Haida Gwaii, Canada. These data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, Natural Resources Canada, and the National Oceanic and Atmospheric Administration. The six source surveys from different multibeam sonars are combined into one terrain model with a 30-meter resolution. A complementary ... |
Info |
Acidification and Increasing CO2 Flux Associated with Five, Springs Coast, Florida Springs (1991-2014)
Scientists from the South West Florida Management District (SWFWMD) acquired and analyzed over 20 years of seasonally-sampled hydrochemical data from five first-order-magnitude (springs that discharge 2.83 m3 s-1 or more) coastal springs located in west-central Florida. These data were subsequently obtained by the U.S. Geological Survey (USGS) for further analyses and interpretation. The spring study sites (Chassahowitzka, Homosassa, Kings Bay, Rainbow, and Weeki Wachee), which are fed by the Floridan ... |
Info |
Acoustic backscatter data collected in 2007 from the San Miguel Passage in the Channel Islands, California
This portion of the data release presents acoustic backscatter data from the San Miguel Passage, in the Channel Islands, California. The data were collected in August 2007 by the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC) using a 234.5 kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonar mounted on the NOAA, Channel Islands National Marine Sanctuary R/V Shearwater as part of the research cruise S-2-07-SC. Data were collected in water depths up to 89 meters. ... |
Info |
Acoustic backscatter data collected in 2008 offshore Tijuana River Estuary, California, during USGS Field Activity S-5-08-SC
These metadata describe acoustic backscatter data collected during a 2008 SWATHPlus-M survey offshore Tijuana River Estuary, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number S-5-08-SC. The acoustic backscatter data are provided as a GeoTIFF image. |
Info |
Acoustic-backscatter data collected in 2016 offshore the Elwha River mouth, Washington, during USGS Field Activity 2016-605-FA
These metadata describe acoustic-backscatter data collected during a 2016 SWATHPlus-M survey offshore the Elwha River mouth, Strait of Juan de Fuca, Washington. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-605-FA. The acoustic-backscatter data are provided as a GeoTIFF image in UTM, zone 10, NAD83 coordinates. |
Info |
Acoustic-backscatter data collected in the Cache Slough Complex and the Sacramento River Deep Water Ship Channel, California, during field activity 2018-684-FA
Acoustic-backscatter data were collected during a 2018 swath survey in the Cache Slough Complex and the Sacramento River Deep Water Ship Channel, California. Data were collected by the U.S. Geological Survey (USGS) during USGS field activity 2018-684-FA, using interferometric bathymetric sidescan sonar systems mounded to the USGS R/V San Lorenzo and the R/V Kelpfly. The backscatter data are provided as GeoTIFF images. |
Info |
Acoustic-backscatter data for Jenkinson Lake, California collected during USGS field activity 2022-604-FA
Here January 2022 1-m resolution acoustic-backscatter data are provided for Jenkinson Lake, California. Acoustic-backscatter data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July 2023). Data are provided as a GeoTIFF image. |
Info |
Acoustic-backscatter data for Jenkinson Lake, California collected during USGS field activity 2022-649-FA
Here August 2022 1-m resolution acoustic-backscatter data are provided for Jenkinson Lake, California. Acoustic-backscatter data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July 2023). Data are provided as a GeoTIFF image. |
Info |
Acoustic-backscatter data for Jenkinson Lake, California collected during USGS field activity 2023-634-FA
Here July 2023 1-m resolution acoustic-backscatter data are provided for Jenkinson Lake, California. Acoustic-backscatter data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July 2023). Data are provided as a GeoTIFF image. |
Info |
Acoustic-backscatter data for Ozette Lake, Washington collected during USGS field activity 2019-622-FA
2-m resolution acoustic-backscatter data were collected during a July 2019 SWATHPlus survey of Ozette Lake, Washington. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2019-622-FA. The 2-m acoustic-backscatter data are provided as a GeoTIFF image. |
Info |
Acoustic-backscatter data for Santa Cruz Harbor, California collected during USGS field activity 2022-609-FA
1-m resolution acoustic-backscatter data were collected during a January 2022 SWATHPlus survey in and near the Santa Cruz harbor, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2022-609-FA. The 1-m acoustic-backscatter data are provided as a GeoTIFF file. |
Info |
Acoustic-backscatter data from three locations in the Sacramento-San Joaquin Delta, California, 2017 to 2018
This part of the data release contains high-resolution acoustic-backscatter data collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center at three study locations in the Sacramento-San Joaquin Delta, California. Data were collected in Lindsey Slough in April 2017, Middle River in March 2018, and Mokelumne River in March 2018, using an interferometric bathymetric sidescan sonar systems mounted to the USGS R/V Parke Snavely. Data are provided in 1-m resolution GeoTIFF formats. ... |
Info |
Acoustic backscatter data from USGS Field Activity S-8-08-SC, northern Santa Barbara Channel, southern California
Acoustic backscatter data were collected by the U.S. Geological Survey in July 2008 in the northern Santa Barbara Channel in southern California. Data were collected aboard the R/V Parke Snavely, during USGS Field Activity S-9-08-SC, using a bathymetric sidescan system. |
Info |
Acoustic-backscatter data of USGS field activity 2016-666-FA collected in the Santa Barbara Basin in September and October of 2016
These metadata describe acoustic-backscatter data collected during an October 2016 multibeam-echosounder survey of the northern portion of the Santa Barbara Channel, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-666-FA. The acoustic-backscatter data are provided as a GeoTIFF image. |
Info |
Acoustic backscatter from 2013 interferometric swath bathymetry systems survey of Columbia River Mouth, Oregon and Washington
This part of the USGS data release presents acoustic backscatter data for the Columbia River Mouth, Oregon and Washington. The acoustic backscatter data of the Columbia River Mouth, Oregon and Washington were collected by the U.S. Geological Survey (USGS). Mapping was completed in 2013, using a 234-kHz SEA SWATHPlus interferometric system. These data are not intended for navigational purposes. |
Info |
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Arcata, California
This 2-m-resolution acoustic backscatter data for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Backscatter data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping. The acoustic backscatter data are available as a georeferenced TIFF image. Within the ... |
Info |
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Cape Mendocino, California
This 2-m-resolution acoustic backscatter data for the Offshore of Cape Mendocino, California, map area is part of USGS Data Series 781 (Golden, 2019). Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab. The acoustic backscatter data are available as a georeferenced TIFF image. Within the ... |
Info |
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Eureka, California
This 2-m-resolution acoustic backscatter data for the Offshore of Eureka, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Backscatter data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping. The acoustic backscatter data are available as a georeferenced TIFF image. Within the ... |
Info |
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Morro Bay, California
This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution acoustic backscatter data for the Offshore of Morro Bay, California, map area. Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The ... |
Info |
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Point Buchon, California
This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution acoustic backscatter data for the Offshore of Point Buchon, California, map area. Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. ... |
Info |
Acoustic backscatter intensity from multibeam echosounder data collected offshore of Point Estero, California
This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution acoustic backscatter data for the Offshore of Point Estero, California, map area. Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. ... |
Info |
Acoustic backscatter intensity from multibeam echosounder data collected offshore of the Eel River, California
This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution acoustic backscatter data for the Offshore of the Eel River, California, map area. Backscatter data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab. The acoustic backscatter data are available as a georeferenced TIFF image. Within ... |
Info |
Acoustic Doppler Current Profiler time series measurements collected at Madeira Beach, Florida
Teledyne© RDI Sentinel-V Acoustic Doppler Current Profilers (ADCPs) were deployed at Madeira Beach, Florida at site MB2, located 1.9 kilometers (km) from the shoreline at 5.6-meters (m) depth (27.78897, -82.81229). The ADCPs measured pressure, bottom temperature, velocity profiles, and derived waves parameters. This data release includes data from March 2021 to September 2023. ADCP data collection at this site has been ongoing since 2017 and will be added in future releases. |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during six surveys by the U.S. Geological Survey aboard the R/V Auk, May 2016 to April 2019
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during three surveys by the U.S. Geological Survey aboard the R/V Auk, September 2020 to August 2021
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2013-044-FA, aboard the R/V Auk, November 5, 15, and 21, 2013
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2014-015-FA, aboard the R/V Auk, May 22-23 and 29-30, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2014-055-FA, aboard the R/V Auk, September 23 and 24, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2014-066-FA, aboard the R/V Auk, November 10, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2014-070-FA, aboard the R/V Auk, December 12, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2015-017-FA, aboard the R/V Auk, May 18-19, 29, and June 3, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2015-074-FA, aboard the R/V Auk, December 1, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2016-004-FA, aboard the R/V Auk, January 28, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2016-038-FA, aboard the R/V Auk, Sept. 16 and 19, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2017-030-FA, aboard the R/V Auk, May 18-23, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2017-044-FA, aboard the R/V Auk, September 12-14, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank during U.S. Geological Survey field activity 2019-008-FA, aboard the R/V Auk, July 30, 31, and August 1, 2019
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank on U.S. Geological Survey field activity 2015-062-FA, aboard the R/V Auk, Oct. 21 and 22 and Nov. 3 and 4 2015 (PDF files)
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank on U.S. Geological Survey field activity 2017-009-FA, aboard the R/V Auk, Jan. 30, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Acquisition and observation logs for seabed video and sediment samples from Stellwagen Bank on U.S. Geological Survey field activity 2017-043-FA, aboard the R/V Auk, Aug. 22 and 23, 2017 (PDF file)
This field activity is part of an effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000-scale) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The data collected in this study will aid research on the ecology of fish and invertebrate species that inhabit the region. On August 22 and 23, 2017, the U.S. Geological ... |
Info |
Acquisition and processing logs maintained by Alpine Ocean Seismic Survey, Inc., during U.S. Geological Survey Field Activity 2014-072-FA offshore of southern Long Island, NY in 2014, as part of a collaborative U.S. Army Corp of Engineers and U.S. Geological Survey mapping effort (Excel spreadsheet, PDF, and Microsoft word formats)
Hurricane Sandy, the largest storm of historical record in the Atlantic basin, severely impacted southern Long Island, New York in October 2012. In 2014, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a high-resolution multibeam echosounder survey with Alpine Ocean Seismic Survey, Inc., offshore of Fire Island and western Long Island, New York to document the post-storm conditions of the inner continental shelf. The objectives of the survey were ... |
Info |
Acquisition log maintained during field activity 2011-015-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management offshore of Massachusetts around Cape Cod and the Islands in September 2011 (PDFs of Excel spreadsheets)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The project is focused on the inshore waters (5–30 meters deep) of Massachusetts. This dataset is from U ... |
Info |
Acquisition log maintained during field activity 2012-035-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management in Ipswich Bay and Massachusetts Bay, Massachusetts, in August 2012 (Excel spreadsheet)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The program is focused on the inshore waters (primarily 5-30 meters deep, although the region surveyed in ... |
Info |
Acquisition log maintained in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (PDF of scanned spreadsheet)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Acquisition logs maintained on U.S. Geological Survey Field Activity 2000-005-FA in the Gulf of Mexico in 2000 (PDF and Excel spreadsheet formats)
The U.S. Geological Survey (USGS) mapped approximately 22 square miles of the Madison Swanson Marine Protected Area (MPA) and Steamboat Lumps MPA, which are located on the Florida shelf edge in the northeastern Gulf of Mexico in 2000 using sidescan sonar and high-resolution chirp seismic-reflection systems. This survey was conducted as part of a larger study of the effectiveness of no-fishing reserves in protecting grouper spawning aggregations. Field activity information for this cruise is available on ... |
Info |
Acquistion Log in PDF Format Maintained on USGS Cruise 07005 in the Corsica River Estuary (FA07005_LOGBOOK.PDF)
Submarine groundwater discharge (SGD) into Maryland's Corsica River Estuary was investigated as part of a larger study to determine the importance of nutrient delivery to Chesapeake Bay via this pathway. Resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge from this primarily agricultural watershed that may be contributing to eutrophication, harmful algal blooms, and fish kills. An interdisciplinary U.S. Geological Survey (USGS) science team ... |
Info |
Aerial imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents raw aerial imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted in a nadir orientation using a fixed mount. Before each flight, the camera’s digital ISO, aperture, and shutter speed were adjusted for ambient light ... |
Info |
Aerial imagery from the UAS survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents the raw aerial imagery collected during the unoccupied aerial system (UAS) survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. A total of six flights were conducted for the ... |
Info |
Aerial imagery from UAS survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, on 2019-06-05. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. For flights F01, F02, F03, F04, and F05 the ... |
Info |
Aerial imagery from UAS survey of the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents the raw aerial imagery collected during an Unmanned Aerial System (UAS) survey of the intertidal zone at Post Point, Bellingham Bay, WA, on 2019-06-06. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The UAS was flown on pre-programmed autonomous ... |
Info |
Aerial imagery from UAS survey of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents the raw aerial imagery collected during an Unmanned Aerial System (UAS) survey of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, on 2019-06-03. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The UAS was flown on pre ... |
Info |
Aerial imagery from UAS survey of the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents the raw aerial imagery collected during the unmanned aerial system (UAS) survey of the intertidal zone at West Whidbey Island, WA, on 2019-06-04. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. Flights using both a nadir camera orientation and an oblique camera orientation were conducted. For the nadir flights (F04, F05, F06, F07, and F08), the camera was mounted ... |
Info |
Aerial imagery from UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The imagery was acquired using two Department of Interior owned 3DR Solo quadcopters fitted with Ricoh GR II digital cameras featuring global shutters. The cameras were mounted using a fixed mount on the bottom of the UAS and oriented in a roughly nadir orientation. The ... |
Info |
Aerial imagery from UAS surveys of beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents the raw aerial imagery collected during the uncrewed aerial system (UAS) survey conducted on the ocean beaches adjacent to the Columbia River Mouth at the Oregon-Washington border in August 2017. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The ... |
Info |
Aerial imagery from UAS surveys of beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents the raw aerial imagery collected during the uncrewed aerial system (UAS) survey conducted on the ocean beaches adjacent to the Columbia River Mouth at the Oregon-Washington border in July 2021. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The ... |
Info |
Aerial Imagery of the Florida Gulf Coast: 2022-09-25, Pre-Hurricane Ian
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the Florida Gulf Coast: 2022-09-30 to 2022-10-03, Post-Hurricane Ian
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the Florida Gulf Coast: 2023-04-03
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the Florida Gulf Coast: 2023-09-06 to 2023-09-07, Post-Hurricane Idalia
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the Florida Gulf Coast: 2024-04-21 to 2024-05-21
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the Florida Gulf Coast: 2024-10-01 to 2024-10-04, Post-Hurricane Helene
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the Florida Gulf Coast: 2024-10-16 to 2024-10-22, Post-Hurricane Milton
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the North Carolina Coast: 2019-08-30 and 2019-09-02, Pre-Hurricane Dorian
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2019-10-11
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2019-11-26
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2020-02-08 to 2020-02-09
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2020-05-08 to 2020-05-09
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal ... |
Info |
Aerial Imagery of the North Carolina Coast: 2020-08-02, Pre-Hurricane Isaias
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the North Carolina Coast: 2020-08-05 to 2020-08-08, Post-Hurricane Isaias
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the North Carolina Coast: 2020-09-28
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the North Carolina Coast: 2021-04-30
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the North Carolina Coast: 2021-09-20
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the North Carolina Coast: 2022-06-15
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial Imagery of the North Carolina Coast: 2022-10-27 to 2022-10-28
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Aerial images from a UAS survey of the debris flow at South Fork Campground, Sequoia National Park, CA
This portion of the data release presents aerial images of the debris flow at South Fork Campground in Sequoia National Park. The images were acquired during an uncrewed aerial systems (UAS) survey on 30 April 2024, conducted under authorization from the National Park Service. The imagery was acquired with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted to the UAS using a fixed mount, in an approximately nadir orientation. The camera was set to acquire images at 1 hertz, ... |
Info |
Aerial_Shorelines_1940_2015.shp - Dauphin Island, Alabama Shoreline Data Derived from Aerial Imagery from 1940 to 2015
Aerial_WDL_Shorelines.zip features digitized historic shorelines for the Dauphin Island coastline from October 1940 to November 2015. This dataset contains 10 Wet Dry Line (WDL) shorelines separated into 58 shoreline segments alongshore Dauphin Island, AL. The individual sections are divided according to location along the island and shoreline type: open-ocean, back-barrier, marsh shoreline. Imagery of Dauphin Island, Alabama was acquired from several sources including the United States Geological Survey ... |
Info |
Aerial video acquired during the UAS survey of the debris flow at South Fork Campground, Sequoia National Park, CA
This portion of the data release presents aerial video acquired during the uncrewed aerial systems (UAS) survey of the debris flow at South Fork Campground in Sequoia National Park, conducted under authorization from the National Park Service. The video shows low-altitude oblique and nadir perspectives of the lower 1.3 kilometers of the debris flow. The video is being included as part of the data release to provide additional context for the geohazards assessment of the area. |
Info |
ALEU_250M_LCC_WGS84.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Aleutian Arc Exclusive Economic Zone (EEZ) region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. Thirty-one digital mosaics of a 3 degree by ... |
Info |
All Autonomous Surface Vessel IRIS Shotpoint Navigation for Chirp Seismic Data in Apalachicola Bay collected on U.S. Geological Survey Cruise 06001 (ALLASV_NODUPES_SORT.SHP, Geographic, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
AllCases_Final_Bed_Elevations: Model Sensitivity to Sediment Parameters and Bed Composition in Delft3D: Model Output
The sensitivity to sediment parameterization and initial bed configuration on sediment transport processes and morphological evolution are assessed through process-based numerical modeling. Six sensitivity cases using a previously validated model for Dauphin Island, Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on bed level morphology, barrier island evolution, and sediment fluxes. Delft3D model output of suspended and bedload sediment fluxes, and final bed levels data are ... |
Info |
AllCases_Sediment_Fluxes: Model Sensitivity to Sediment Parameters and Bed Composition in Delft3D: Model Output
The sensitivity to sediment parameterization and initial bed configuration on sediment transport processes and morphological evolution are assessed through process-based numerical modeling. Six sensitivity cases using a previously validated model for Dauphin Island, Alabama were modeled using Delft3D (developed by Deltares) to understand impacts on bed level morphology, barrier island evolution, and sediment fluxes. Delft3D model output of suspended and bedload sediment fluxes, and final bed levels data are ... |
Info |
AllScenarios_Bin1thru18_SSC: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ... |
Info |
AllScenarios_Initial_and_Final_Bed_Elevations: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ... |
Info |
AllScenarios_Sediment_Fluxes: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ... |
Info |
AllScenarios_Spatial_Flow: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ... |
Info |
AllScenarios_Spatial_Waves: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ... |
Info |
Anthropogenic metals and other elements from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay
This data release provides the measurement of anthropogenic metals and other elements in sediments of a core obtained off San Francisquito Creek in South San Francisco Bay. |
Info |
Archive of Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 01RCE02, Southern Louisiana, April and May 2001
This archive consists of two-dimensional marine seismic reflection profile data collected in the Mississippi River Delta, Atchafalaya River Delta, and Shell Island Pass in southern Louisiana. These data were acquired in April and May of 2001 aboard the R/V G. K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, shapefiles, and GIF and JPEG images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or ... |
Info |
Archive of Boomer and Sparker Data Collected During USGS Cruise DIAN 97032 Long Island, NY Inner Shelf -- Fire Island, 24 September - 19 October, 1997
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS Diane G 97032 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
Archive of Boomer Seismic Reflection Data Collected During USGS Cruise 96CCT01, Nearshore South Central South Carolina Coast, June 26 - July 1, 1996
This archive consists of marine seismic reflection profile data collected in four survey areas from southeast of Charleston Harbor to the mouth of the North Edisto River of South Carolina. These data were acquired June 26 - July 1, 1996, aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper Text Markup Language (HTML), Portable Document Format (PDF), Rich Text Format (RTF), Graphics Interchange Format ... |
Info |
Archive of Boomer Seismic Reflection Data Collected During USGS Cruises 00SCC02 and 00SCC04, Barataria Basin, Louisiana, May 12 - 31 and June 17 - July 2, 2000
This archive consists of two-dimensional marine seismic reflection profile data collected in the Barataria Basin of southern Louisiana. These data were acquired in May, June, and July of 2000 aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, ASCII, HTML, PDF, RTF, shapefiles, and GIF and JPEG images. Binary data are in SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with a web ... |
Info |
Archive of Boomer Seismic Reflection Data Collected During USGS Cruises 01SCC01 and 01SCC02, Timbalier Bay and Offshore East Timbalier Island, Louisiana, June - August 2001
This archive consists of two-dimensional marine seismic reflection profile data collected in Timbalier Bay and in the Gulf of Mexico offshore East Timbalier Island, Louisiana. These data were acquired June 30 - July 9 (01SCC01) and August 1 - 18 (01SCC02), 2001, aboard the R/V G.K. Gilbert and a University of New Orleans 21-foot Proline. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper Text Markup Language (HTML), Portable ... |
Info |
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 97KEY01, Upper and Middle Florida Keys, 12 October - 1 November, 1997.
This report consists of two-dimensional marine seismic reflection profile data from the upper and middle Florida Keys. The area of operations extended from just north of Molasses Reef off north Key Largo (Upper Keys) to the east boundary of Looe Key National Marine Sanctuary (Lower Keys). These data were acquired in October and November of 1997 with the Charter Vessel Captain's Lady. The data are available in a variety of formats, including binary, ASCII, HTML, Shapefiles, JPG and GIF images. Binary data ... |
Info |
Archive of Boomer Seismic Reflection Data, collected on USGS Cruise 99ASR01, Lake Okeechobee, Florida, 29 June - 30 June, 1999.
This report consists of two-dimensional marine seismic reflection profile data from Lake Okeechobee, Fla., that were acquired in June of 1999 aboard the R/V G. K. Gilbert. These data are available in a variety of formats, including binary, ASCII and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g399fl/html/g-3-99-fl.meta.html ... |
Info |
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 99LCA01, Crescent Beach Spring, Florida, 26 April - 27 April, 1999.
This report consists of two-dimensional marine seismic reflection profile data from Crescent Beach Spring, Florida. These data were acquired in April of 1999 with the Research Vessel G.K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Trackline maps and GIF images of the profiles may be viewed with your WWW browser. For ... |
Info |
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 99SCE01, Little River Inlet to the entrance of Winyah Bay, South Carolina, 8 June - 16 June, 1999.
This report consists of two-dimensional marine seismic reflection profile data from South Carolina. These data were acquired in June of 1999 with the Research Vessel G.K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, and GIF images. Binary data are in Society of Exploration Geologists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with your Web browser. For more information on ... |
Info |
Archive of Boomer Subbottom Data Collected During USGS Cruise DIAN 96040, Fire Island, New York, 4-24 September 1996
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97011 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
Archive of Boomer Subbottom Data Collected During USGS Cruise SEAX 96004, New York Bight, 1 May - 9 June, 1996
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS SEAX 96004 cruise.The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems ... |
Info |
Archive of boomer subbottom data collected offshore Eureka, California during USGS field activity W-1-96-NC from 1996-06-29 to 1996-07-07
This data release contains boomer subbottom data collected in June and July of 1996 on the shelf and slope offshore Eureka, California. Subbottom acoustic penetration spans up to several tens of meters, and is variable by location. This data release contains digital SEG-Y data. The data were collected aboard the R/V Wecoma using a Huntec Hydrosonde Deep-Tow system. |
Info |
Archive of Chirp Seismic Reflection Data Collected During USGS Cruises 00SCC02 and 00SCC04, Barataria Basin, Louisiana, May 12-31 and June 17 - July 2, 2000
This archive consists of two-dimensional marine seismic reflection profile data collected in the Barataria Basin of southern Louisiana. These data were acquired in May, June, and July of 2000 aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper-Text Markup Language (HTML), shapefiles, and Graphics Interchange Format (GIF) and Joint Photographic Experts Group (JPEG) images. Binary data are in Society of ... |
Info |
Archive of Chirp Seismic Reflection Data Collected During USGS Cruises 01SCC01 and 01SCC02, Timbalier Bay and Offshore East Timbalier Island, Louisiana, June 30 - July 9 and August 1 - 12, 2001
This archive consists of two-dimensional marine seismic reflection profile data collected in Timbalier Bay and in the Gulf of Mexico offshore East Timbalier Island, Louisiana. These data were acquired in June, July, and August of 2001 aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper Text Markup Language (HTML), Portable Document Format (PDF), Rich Text Format (RTF), Graphics Interchange Format (GIF ... |
Info |
Archive of Chirp Subbottom Data Collected During USGS Cruise ORGN00005, Northeastern Gulf of Mexico, 15 February - 2 March, 2000
This DVD-ROM contains digital high-resolution seismic-reflection data collected during the USGS ORGN00005 cruise. The seismic-reflection data are stored as SEG-Y standard format which can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. Software is available on this DVD-ROM for viewing and processing the individual swaths using computer systems running a UNIX operating system. |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2015 from the Northern Chandeleur Islands, Louisiana
From September 14 to 28, 2015, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2016 from the Northern Chandeleur Islands, Louisiana
From June 10 to 19, 2016, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months to ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2017 from the Louisiana Chenier Plain
June 2–10 and July 2, 2017, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of the Louisiana Chenier Plain to document the changing morphology of the coastal environment. Data were collected under the Barrier Island Coastal Monitoring (BICM) program, an ongoing collaboration between the State of Louisiana Coastal Protection and Restoration Authority (CPRA), the University of New Orleans (UNO) Pontchartrain Institute for Environmental Sciences (PIES), and the USGS. Project ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2017 From the Northern Chandeleur Islands, Louisiana
From August 7 to 16, 2017, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2018 from the Northern Chandeleur Islands, Louisiana
From August 16 to 21, 2018, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in 2019 from Cedar Island, Virginia
From August 9 to 14, 2019, researchers from the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate shoreface morphology and geology near Cedar Island, Virginia. The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. This publication serves as an archive of high-resolution ... |
Info |
Archive of Chirp Subbottom Profile Data Collected in June 2018 From Fire Island, New York
Researchers from the U.S. Geological Survey (USGS) conducted a long-term, coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal System Change project (https://coastal.er.usgs.gov/fire-island/) objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. From ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2015 Offshore of Dauphin Island, Alabama
From September 16 through 23, 2015, researchers from the U.S. Geological Survey (USGS) conducted an offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Dauphin Island, Alabama (AL). The Alabama Barrier Island Restoration Feasibility Study project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2019 from Rockaway Peninsula, New York
From September 27 through October 5, 2019, researchers from the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate shoreface morphology and geology near the Rockaway Peninsula, New York. The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. This publication serves as an ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2021 Near Pensacola Beach, Florida
From June 2 through 9, 2021, researchers from the U.S. Geological Survey (USGS) conducted an inshore and offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Pensacola Beach, Florida (FL). The Coastal Resource Evaluation for Management Applications (CREMA) project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2022 from Boca Chica Key, Florida
As part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey at the nearshore ledge offshore of Boca Chica Key, Florida (FL) November 8-13, 2022. The objective of the project was to collect bathymetric maps and conduct a geologic assessment of the nearshore ledge off Boca Chica Key in support ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2022 from Seven Mile Island, New Jersey
From April 29 through May 2, 2022, researchers from the U.S. Geological Survey (USGS) conducted a nearshore geophysical survey to map the shoreface and inner shelf, as well as characterizing stratigraphy near Seven Mile Island, New Jersey (NJ). The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2022 Offshore of Breton Island, Louisiana
On August 5, 2022, researchers from the U.S. Geological Survey (USGS) conducted an offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Breton Island, Louisiana (LA). The Breton Island Post Construction Monitoring project objective includes the investigation of nearshore geologic controls on surface morphology in addition to mapping the seafloor to evaluate coastal change. This publication (Forde and others, 2023) serves as an archive of high-resolution chirp subbottom ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in June 2022 Near Panama City, Florida
As part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey to map back-barrier and lagoonal areas, as well as characterizing stratigraphy near Panama City, Florida (FL) in June 2022. The purpose of this study was to conduct a geologic assessment (including bathymetric mapping) of the environs ... |
Info |
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in May 2023 from Oahu, Hawaii
As part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey to map the shoreface and inner shelf, as well as characterizing stratigraphy near Oahu, Hawaii (HI) May 7-13, 2023. The purpose of this study was to conduct a geologic assessment (including bathymetric mapping) near Fort Hase Beach, ... |
Info |
Archive of Chirp Sub-Bottom Profile, Imagery, and Navigational Data Collected During USGS Field Activity Number 2024-320-FA in 2024 Offshore of Breton Island, Louisiana
As part of the Breton Island Post Construction Monitoring project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey in August 2024 to map the borrow site created during the Breton Island, Louisiana (LA) restoration effort that began in December 2020. The restoration effort was part of the Deepwater Horizon oil spill settlement to restore natural resources and services injured by the spill. Following ... |
Info |
Archive of Chirp Sub-Bottom Profile, Imagery, and Navigational Data Collected During USGS Field Activity Numbers 2021-326-FA and 2022-326-FA in 2021 and 2022 from Duck, North Carolina
In June/December 2021 and July 2022, the U.S. Geological Survey (USGS) and U.S. Army Corps of Engineers, Engineer Research and Development Center (USACE-ERDC) conducted repeat, nearshore geologic assessments, including bathymetric mapping, near Duck, North Carolina (NC). This work was performed in support of efforts to map the shoreface, characterize stratigraphy, and investigate changes in seafloor elevations near the USACE Field Research Facility and to measure the co-evolution of the morphology and ... |
Info |
Archive of Chirp Sub-Bottom Profile, Imagery, and Navigational Data Collected in June and August 2023 from the Chandeleur Islands, Louisiana
As part of the 2022 Disaster Supplemental project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey to map the shoreface and inner shelf, as well as characterize stratigraphy near the Chandeleur Islands, Louisiana (LA) in June and August 2023. The purpose of this study was to conduct a morphologic and geologic assessment of the impacts of the 2020 and 2021 hurricane seasons within part of the Breton National ... |
Info |
Archive of Chirp Sub-Bottom Profile, Imagery, and Navigational Data Collected in June and July 2014 from Fire Island, New York
During June 15-23 and July 10-12, 2014, the U.S. Geological Survey (USGS) conducted a nearshore geologic assessment, including bathymetric mapping, along Fire Island, New York (NY). This work was conducted in support of efforts to map the shoreface, characterize stratigraphy, and investigate changes in seafloor elevations near Fire Island, NY to assess the impacts of Hurricane Sandy to the area in October 2012. Geophysical data were collected as part of the Hurricane Sandy Supplemental Project (GS2-2B). The ... |
Info |
Archive of Datasonics SIS-1000 Boomer and Sparker Subbottom Data Collected During USGS Cruise DIAN 97011 Long Island, NY Inner Shelf
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97011 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise DIAN 96040 Long Island, NY Inner Shelf -- Fire Island, NY, 4-24 September, 1996
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 96040 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise DIAN 97011 Long Island, NY Inner Shelf -- Fire Island, NY, 5-26 May, 1997
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97011 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise MGNM 00014, Central South Carolina, 13-30 March 2000
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS MGNM 00014 cruise. The coverage is the nearshore of central South Carolina. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the ... |
Info |
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise SEAX 95007 New York Bight, 7-25 May, 1995
This DVD-ROM contains copies of the navigation and field chirp subbottom data collected aboard the R/V Seaward Explorer, from 7-25 May, 1995. The coverage is in the New York Bight area. This DVD-ROM (Digital Versatile Disc-Read Only Memory) has been produced in accordance with the UDF (Universal Disc Format) DVD-ROM Standard (ISO 9660 equivalent) and is therefore capable of being read on any computing platform that has appropriate DVD-ROM driver software installed. Access to the data and information ... |
Info |
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise SEAX 96004 New York Bight, 1 May - 9 June, 1996
This DVD-ROM contains copies of the navigation and field chirp subbottom data collected aboard the R/V Seaward Explorer, from 1 May - 9 June, 1996. The coverage is in the New York Bight area. This DVD-ROM (Digital Versatile Disc-Read Only Memory) has been produced in accordance with the UDF (Universal Disc Format) DVD-ROM Standard (ISO 9660 equivalent) and is therefore capable of being read on any computing platform that has appropriate DVD-ROM driver software installed. Access to the data and information ... |
Info |
Archive of Digital and Digitized Analog Boomer Seismic Reflection Data Collected During USGS Cruise 96CCT02 in Copano, Corpus Christi, and Nueces Bays and Corpus Christi Bayou, Texas, July 1996
In June of 1996, the U.S. Geological Survey conducted geophysical surveys from Nueces to Copano Bays, Texas. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, cruise log, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles and high resolution scanned TIFF images of the original paper printouts are also provided. The archived trace data are in standard Society of Exploration Geophysicists ... |
Info |
Archive of Digital Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 03SCC03 in Lake Pelto and Timbalier and Terrebonne Bays, Louisiana, September 2003
In September of 2003, the U.S. Geological Survey conducted geophysical surveys in Lake Pelto, Timbalier Bay, Terrebonne Bay, and nearby waterbodies offshore south-central Louisiana. This report serves as an archive of unprocessed digital boomer and chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The ... |
Info |
Archive of Digital Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 04SCC01 in Terrebonne, Timbalier, and Barataria Bays and Lake Pelto, Louisiana, June and July 2004
In June and July of 2004, the U.S. Geological Survey, in cooperation with the University of New Orleans, conducted geophysical surveys in Terrebonne Bay, Timbalier Bay, Lake Pelto, and Barataria Bay, Louisiana, and nearby waterbodies. This report serves as an archive of unprocessed digital boomer and chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Filtered and gained digital images ... |
Info |
Archive of Digital Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 06FSH03 Offshore of Fort Lauderdale, Florida, September 2006
In September of 2006, the U.S. Geological Survey conducted geophysical surveys offshore of Fort Lauderdale, FL. This report serves as an archive of unprocessed digital boomer and Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists ... |
Info |
Archive of Digital Boomer and Chirp Seismic Reflection Data Collected During USGS Cruises 01RCE05 and 02RCE01 in the Lower Atchafalaya River, Mississippi River Delta, and Offshore Southeastern Louisiana, October 23-30, 2001, and August 18-19, 2002
In October of 2001 and August of 2002, the U.S. Geological Survey conducted geophysical surveys of the Lower Atchafalaya River, the Mississippi River Delta, Barataria Bay, and the Gulf of Mexico south of East Timbalier Island, Louisiana. This report serves as an archive of unprocessed digital marine seismic reflection data, trackline maps, navigation files, observers' logbooks, GIS information, and formal FGDC metadata. In addition, a filtered and gained GIF image of each seismic profile is provided. The ... |
Info |
Archive of Digital Boomer and CHIRP Seismic Reflection Data Collected During USGS Field Activity 08LCA03 in Lake Panasoffkee, Florida, May 2008
From May 13 to May 14 of 2008, the U.S. Geological Survey conducted geophysical surveys in Lake Panasoffkee, Florida. Thisreport serves as an archive of unprocessed digital boomer and CHIRP seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and (or) gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruise 94CCT02, South-Central South Carolina Coastal Region, August 1994
In August of 1994, the U.S. Geological Survey, in cooperation with Coastal Carolina University, conducted marine geophysical surveys in numerous water bodies adjacent to the south-central South Carolina coastal region. Data were collected aboard the MS Coastal in the Ashley, North Edisto, Wadmalaw, Dawho, South Edisto, and Ashepoo Rivers; the Wappoo, North, Steamboat, Bohicket, and Toogoodoo Creeks; Charleston Harbor; Wadmalaw Sound; Fenwick Cut; and the Atlantic Ocean from offshore Isle of Palms to Kiawah ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruise 97CCT01 Offshore of Central South Carolina, June 1997
In June of 1997, the U.S. Geological Survey, in cooperation with Coastal Carolina University, conducted a geophysical survey of the shallow geologic framework of the continental shelf offshore of central South Carolina from the Isle of Palms to Bull Island. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, observers' logbooks, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Filtered and gained ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruises 94CCT01 and 95CCT01, Eastern Texas and Western Louisiana, 1994 and 1995
In June of 1994 and August and September of 1995, the U.S. Geological Survey, in cooperation with the University of Texas Bureau of Economic Geology, conducted geophysical surveys of the Sabine and Calcasieu Lake areas and the Gulf of Mexico offshore eastern Texas and western Louisiana. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, observers' logbooks, GIS information, and formal FGDC metadata. In addition, a filtered and gained GIF ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruises 94GFP01, 95GFP01, 96GFP01, 97GFP01, and 98GFP02 in Lakes Pontchartrain, Borgne, and Maurepas, Louisiana, 1994-1998
The U.S. Geological Survey, in cooperation with the University of New Orleans, the Lake Pontchartrain Basin Foundation, the National Oceanic and Atmospheric Administration, the Coalition to Restore Coastal Louisiana, the U.S. Army Corps of Engineers, the Environmental Protection Agency, and the University of Georgia, conducted five geophysical surveys of Lakes Pontchartrain, Borgne, and Maurepas in Louisiana from 1994 to 1998. This report serves as an archive of unprocessed digital boomer seismic reflection ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activities 93LCA01 and 94LCA01 in Kingsley, Orange, and Lowry Lakes, Northeast Florida, 1993 and 1994
In August and September of 1993 and January of 1994, the U.S. Geological Survey, under a cooperative agreement with the St. Johns River Water Management District (SJRWMD), conducted geophysical surveys of Kingsley Lake, Orange Lake, and Lowry Lake in northeast Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, observer's logbook, Field Activity Collection System (FACS) logs, and formal FGDC metadata. A filtered ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activities 95LCA03 and 96LCA02 in the Peace River of West-Central Florida, 1995 and 1996
In October and November of 1995 and February of 1996, the U.S. Geological Survey, in cooperation with the Southwest Florida Water Management District, conducted geophysical surveys of the Peace River in west-central Florida from east of Bartow to west of Arcadia. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, observers' logbooks, and formal FGDC metadata. Filtered and gained ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 02LCA02 in Lakes Ada, Crystal, Jennie, Mary, Rice, and Sylvan, Central Florida, July 2002
In July of 2002, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Ada, Crystal, Jennie, Mary, Rice, and Sylvan, Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 04SGI01 in the Withlacoochee River of West-Central Florida, March 2004
In March of 2004, the U.S. Geological Survey conducted a geophysical survey in the Withlacoochee River of west-central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 08LCA01 in 10 Central Florida Lakes, March 2008
In March of 2008, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Avalon, Big, Colby, Helen, Johns, Prevatt, Searcy, Saunders, Three Island, and Trout, located in central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 08LCA04 in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, Central Florida, September 2008
From September 2 through 4, 2008, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 96LCA04 in Lakes Mabel and Starr, Central Florida, August 1996
In August of 1996, the U.S. Geological Survey conducted geophysical surveys in Lakes Mabel and Starr, Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, cruise log, and formal FGDC metadata. For detailed information about the hydrologic setting of Lake Starr and the interpretation of some of these seismic reflection data, see Swancar and others (2000) at http://fl.water.usgs.gov/publications/Abstracts/wri00_4030 ... |
Info |
Archive of Digital Boomer Seismic reflection Data Collected Offshore East-Central Florida During USGS Cruise 00FGS01, July 14-22, 2000
In July of 2000, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted a geophysical survey of the Atlantic Ocean offshore Florida's east coast from Brevard County to northern Martin County. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, digital and handwritten Field Activity Collection System (FACS) logs, and Federal Geographic Data Committee (FGDC) metadata. A ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected Offshore East-Central Florida during USGS Cruises 96FGS01 and 97FGS01 in November of 1996 and May of 1997
In November of 1996 and May of 1997, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted geophysical surveys of the shallow geologic framework of the continental shelf offshore east-central Florida from Cape Canaveral to Sebastian Inlet. This report serves as an archive of unprocessed digital boomer seismic reflection data, navigation files, trackline maps, GIS files, FACS logs, and FGDC metadata. Filtered and gained digital images of the seismic profiles ... |
Info |
Archive of Digital Boomer Seismic Reflection Data Collected Offshore Northeast Florida during USGS Cruise 02FGS01 in October 2002
In October of 2002, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted a geophysical survey of the Atlantic Ocean offshore Nassau and Duval Counties in northeast Florida, from the northern tip of Amelia Island to Jacksonville Beach. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS files, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained digital ... |
Info |
Archive of Digital Boomer Subbottom Data Collected During USGS Cruise 05FGS01, Offshore East-Central Florida, July 17-29, 2005
In July of 2005, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted a geophysical survey of the Atlantic Ocean offshore of Florida's east coast from Flagler Beach to Daytona Beach. This report serves as an archive of unprocessed digital boomer subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard ... |
Info |
Archive of Digital Boomer Subbottom Data Collected During USGS Cruises 99FGS01 and 99FGS02 Offshore Southeast and Southwest Florida, July and November, 1999
During July 19 - 26 and November 17 - 18 of 1999, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted geophysical surveys of the Atlantic Ocean offshore of Florida's southeast coast from Orchid to Jupiter, FL and the Gulf of Mexico offshore of Venice, FL. This report serves as an archive of unprocessed digital boomer subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Filtered and gained digital images of the seismic ... |
Info |
Archive of Digital Boomer Sub-bottom Data Collected During USGS Field Activities 97LCA01, 97LCA02, and 97LCA03, West-Central and East Coast Florida, February through July 1997
From February through July of 1997, the U.S. Geological Survey conducted geophysical surveys of Lakes Dosson, Halfmoon and Round, Sebastian Inlet, and Indian River Lagoon, within west-central and offshore of the eastern Florida coast. Field activity 97LCA01 was conducted in cooperation with the Southwest Florida Water Management District (SWFWMD), and field activities 97LCA02 and 97LCA03 were conducted in cooperation with the St. Johns River Water Management District (SJRWMD). This report serves as an ... |
Info |
Archive of Digital Boomer Subbottom Profile Data Collected in the Atlantic Ocean Offshore Northeast Florida During USGS Cruises 03FGS01 and 03FGS02 in September and October of 2003
In September and October of 2003, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey, conducted geophysical surveys of the Atlantic Ocean offshore northeast Florida from St. Augustine, Florida, to the Florida-Georgia border. This report serves as an archive of unprocessed digital boomer subbottom profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data ... |
Info |
Archive of Digital Chirp Seismic Reflection Data Collected During USGS Cruise 05SCC01 Offshore of Port Fourchon and Timbalier Bay, Louisiana, August 2005
In August of 2005, the U.S. Geological Survey conducted geophysical surveys offshore of Port Fourchon and Timbalier Bay, Louisiana, and in nearby waterbodies. This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard ... |
Info |
Archive of Digital Chirp Seismic Reflection Data Collected During USGS Cruise 06FSH01 Offshore of Siesta Key, Florida, May 2006
In May of 2006, the U.S. Geological Survey conducted geophysical surveys offshore of Siesta Key, Florida. This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and ... |
Info |
Archive of Digital Chirp Seismic Reflection Data Collected During USGS Cruise 06SCC01 Offshore of Isles Dernieres, Louisiana, June 2006
In June of 2006, the U.S. Geological Survey conducted a geophysical survey offshore of Isles Dernieres, Louisiana. This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format ... |
Info |
Archive of Digital CHIRP Seismic Reflection Data Collected During USGS Cruise 06SCC02 Offshore of the Chandeleur Islands, Louisiana, July 2006
In July of 2006, the U.S. Geological Survey conducted geophysical surveys offshore of Chandeleur Islands, LA, and in nearby waterbodies. This report serves as an archive of unprocessed digital CHIRP seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists ... |
Info |
Archive of Digital Chirp Seismic Reflection Data Collected During USGS Cruise 06SCC03 Offshore of Cheniere Caminada, Louisiana, July 2006
In July of 2006, the U.S. Geological Survey conducted a geophysical survey offshore of Cheniere Caminada, Louisiana. This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format ... |
Info |
Archive of Digital Chirp Sub-bottom Profile Data Collected During USGS Cruise 07SCC01 Offshore of the Chandeleur Islands, Louisiana, June 2007
In June of 2007, the U.S. Geological Survey (USGS), in cooperation with the Louisiana Department of Natural Resources (LDNR), conducted a geophysical survey offshore of the Chandeleur Islands, Louisiana. This report serves as an archive of unprocessed digital Chirp sub-bottom profile data, trackline maps, navigation files, GIS information, FACS logs, observer's logbook, and formal FGDC metadata. Gained digital images of the sub-bottom profiles are also provided. For more information on the seismic surveys ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 08CCT01, Mississippi Gulf Islands, July 2008
In July of 2008, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, Mississippi, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. Funding was provided through the Geologic Framework and Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php); this project is also part of a broader USGS study on Coastal Change and ... |
Info |
Archive of Digital Chirp Sub-bottom Profile Data Collected During USGS Cruise 09CCT01 Offshore of Sabine Pass and Galveston, Texas, March 2009
In March of 2009, the U.S. Geological Survey and Texas A&M University at Galveston conducted geophysical surveys to investigate the shallow geologic framework from Sabine Pass to Galveston, TX, as part of the USGS's Coastal Change and Transport (CCT) study. This report serves as an archive of unprocessed digital Chirp sub-bottom profile data, trackline maps, navigation files, GIS information, FACS logs, observer's logbook, and formal FGDC metadata. Gained digital images of the sub-bottom profiles are also ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 10BIM04 Offshore Cat Island, Mississippi, September 2010
In September of 2010, the U.S. Geological Survey conducted a geophysical survey offshore of Cat Island, Miss., to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 11BIM01 Offshore of the Chandeleur Islands, Louisiana, June 2011
In June of 2011, the U.S. Geological Survey conducted a geophysical survey offshore of the Chandeleur Islands, LA to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 12BIM03 Offshore of the Chandeleur Islands, Louisiana, July 2012
In July of 2012, the U.S. Geological Survey conducted a geophysical survey offshore of the Chandeleur Islands, La. to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 13CCT04 Offshore of Petit Bois Island, Mississippi, August 2013
In August of 2013, the U.S. Geological Survey conducted a geophysical survey offshore of Petit Bois Island, Mississippi to investigate the geologic controls on barrier island framework and long-term sediment transport. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are provided. The archived trace data are in standard Society of Exploration Geophysicists ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 13GFP01, Brownlee Dam and Hells Canyon Reservoir, Idaho and Oregon, 2013
From March 16 - 31, 2013, the U.S. Geological Survey conducted a geophysical survey to investigate sediment deposits and long-term sediment transport within the Snake River from Brownlee Dam to Hells Canyon Reservoir, Idaho; this effort will help the USGS to better understand geologic processes. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are also ... |
Info |
Archive of digital chirp subbottom profile data collected during USGS cruise 14BIM05 offshore of Breton Island, Louisiana, August 2014
In August of 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service (USFWS), conducted a geophysical survey offshore of Breton Island, Louisiana to investigate the geologic controls on barrier island framework and long-term sediment transport. Additional details related to this activity can be found by searching the USGS's Coastal and Marine Geoscience Data System (CMGDS), for field activity 2014-317-FA (also known as 14BIM05). This report serves as an archive of ... |
Info |
Archive of Digital Chirp Sub-bottom Profile Data Collected During USGS Cruises 08CCT02 and 08CCT03, Mississippi Gulf Islands, July and September 2008
In July and September of 2008, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, MS, as part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp sub-bottom profile data, trackline maps, navigation files, GIS information, FACS logs, observer's logbook, and formal FGDC metadata. Gained digital images of the sub-bottom profiles are also ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruises 09CCT03 and 09CCT04, Mississippi and Alabama Gulf Islands, June and July 2009
In June and July of 2009, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on island framework from Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study of Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruises 10CCT01, 10CCT02, and 10CCT03, Mississippi and Alabama Gulf Islands, March and April 2010
In March and April of 2010 the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted geophysical surveys to investigate the geologic controls on island framework from just east of Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) ... |
Info |
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruises 13BIM02 and 13BIM07 Offshore of the Chandeleur Islands, Louisiana, 2013
On July 5–19 (13BIM02) and August 22–September 1 (13BIM07) of 2013, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the oil spill mitigation sand berm constructed at the north end and offshore of the Chandeleur Islands, La. This investigation is part of a broader USGS study, which seeks to understand barrier island evolution better over medium time scales (months to ... |
Info |
Archive of Digitized Analog Boomer and Minisparker Seismic Reflection Data Collected from the Alabama-Mississippi-Louisiana Shelf During Cruises Onboard the R/V Carancahua and R/V Gyre, April and July, 1981
In April and July of 1981, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the shallow geologic framework of the Alabama-Mississippi-Louisiana Shelf in the northern Gulf of Mexico. Work was conducted onboard the Texas A&M University R/V Carancahua and the R/V Gyre to develop a geologic understanding of the study area and to locate potential hazards related to offshore oil and gas production. While the R/V Carancahua only collected boomer data, the R/V Gyre used a 400-Joule ... |
Info |
Archive of Digitized Analog Boomer and Minisparker Seismic Reflection Data Collected from the Northern Gulf of Mexico: 1981, 1990 and 1991
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. As part of the National Geological and Geophysical Data Preservation Program (https:/ ... |
Info |
Archive of digitized analog boomer seismic reflection data collected along the Louisiana Shelf, 1982–1984
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. As part of the National Geological and Geophysical Data Preservation Program (https:/ ... |
Info |
Archive of digitized analog boomer seismic reflection data collected during U.S. Geological S cruises Erda 90-1_HC, Erda 90-1_PBP, and Erda 91-3 in Mississippi Sound, June 1990 and September 1991
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic-reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. A large portion of this data resides in a single repository with minimal metadata. As part of the ... |
Info |
Archive of digitized analog boomer seismic reflection data collected during U.S. Geological Survey cruise Acadiana 87-2 in the northern Gulf of Mexico, June 1987
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic-reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. A large portion of this data resides in a single repository with minimal metadata. As part of the ... |
Info |
Archive of Digitized Analog Boomer Seismic-Reflection Data Collected During U.S. Geological Survey Cruises Erda 92-2 and Erda 92-4 in Mississippi Sound, June and August 1992
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. As part of the National Geological and Geophysical Data Preservation Program (NGGDPP) (https:/ ... |
Info |
Archive of digitized analog boomer seismic reflection data collected during USGS Cruise Kit Jones 92-1 along the Florida Shelf, July 1992
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. As part of the National Geological and Geophysical Data Preservation Program (NGGDPP; https:/ ... |
Info |
Archive of digitized analog boomer seismic reflection data collected during USGS Cruise USFHC in Mississippi Sound and Bay St. Louis, September 1989
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. As part of the National Geological and Geophysical Data Preservation Program (NGGDPP, https:/ ... |
Info |
Archive of Digitized Analog Boomer Seismic Reflection Data Collected from Lake Ponchartrain, Louisiana to Mobile Bay, Alabama, During Cruises Onboard the R/V ERDA-1, June and August, 1992
In June and August of 1992, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the shallow geologic framework from Lake Pontchartrain, Louisiana, to Mobile Bay, Alabama. This work was conducted onboard the Argonne National Laboratorys R/V ERDA-1 as part of the Mississippi/Alabama Pollution Project. This report is part of a series to digitally archive the legacy analog data collected from the Mississippi-Alabama SHelf (MASH). The MASH data rescue project is a cooperative effort by ... |
Info |
Archive of Digitized Analog Boomer Seismic Reflection Data Collected from the Mississippi-Alabama-Florida shelf During Cruises Onboard the R/V Kit Jones, June 1990 and July 1991
In June of 1990 and July of 1991, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the shallow geologic framework of the Mississippi-Alabama-Florida shelf in the northern Gulf of Mexico, from Mississippi Sound to the Florida Panhandle. Work was done onboard the Mississippi Mineral Resources Institute R/V Kit Jones as part of a project to study coastal erosion and offshore sand resources. This report is part of a series to digitally archive the legacy analog data collected from ... |
Info |
Archive of Digitized Analog Boomer Seismic Reflection Data Collected from the Northern Gulf of Mexico: 1982, 1985, 1986, 1989, 1991, and 1992
The U.S. Geological Survey (USGS) Coastal and Marine Hazards and Resources Program (CMHRP) has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters long. As part of the National Geological and Geophysical Data Preservation Program ... |
Info |
Archive of Digitized Analog Boomer Seismic Reflection Data Collected from the Northern Gulf of Mexico: Intersea 1980
The U.S. Geological Survey (USGS) Coastal and Marine Hazards and Resources Program (CMHRP) has actively collected geophysical and sedimentological data in the northern Gulf of Mexico for several decades, including shallow subsurface data in the form of high-resolution seismic reflection profiles (HRSP). Prior to the mid-1990s most HRSP data were collected in analog format as paper rolls of continuous profiles up to 25 meters (m) long. As part of the National Geological and Geophysical Data Preservation ... |
Info |
Archive of Ground Penetrating Radar and Differential Global Positioning System Data Collected in April 2016 from Fire Island, New York
Researchers from the U.S. Geological Survey (USGS) conducted a long-term, coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal Change project (https://coastal.er.usgs.gov/fire-island/) objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. In April ... |
Info |
Archive of Sediment Data Collected around the Chandeleur Islands and Breton Island in 2007 and 1987 (Vibracore Surveys: 07SCC04, 07SCC05, and 87039)
In 2006 and 2007, the U.S. Geological Survey (USGS) and collaborators at the University of New Orleans (UNO) collected high-resolution seismic profiles and subsurface cores around the Chandeleur and Breton Islands, Louisiana. To ground-truth the acoustic seismic surveys conducted in 2006, 124 vibracores were acquired during the 07SCC04 and 07SCC05 cruises in 2007. These cores were collected within the back-barrier, nearshore, and offshore environments. The surveys were conducted as part of a post-hurricane ... |
Info |
Archive of sediment data collected from Sandy Point to Belle Pass, Louisiana, 1983 through 2000 (Vibracore surveys: 00SCC, CR83, P86, and USACE borehole cores)
In 2000, the U.S. Geological Survey (USGS), in cooperation with the University of New Orleans (UNO) and the U.S. Army Corps of Engineers (USACE), conducted geophysical surveys in Barataria Bight from Sandy Point to Belle Pass, LA (Study Area Map). Sediment cores were collected as part of the USGS Subsidence and Coastal Change (SCC) Project, which included the Barataria Sand-Resource Study (bss) vibracore surveys (Kindinger and others, 2001). This report also contains information from other cruise data sets, ... |
Info |
Archive of Sediment Data from Vibracores Collected in 2016 from Fire Island, New York
Researchers from the U.S. Geological Survey (USGS) conducted a long-term coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal Change project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. In April 2016, scientists from the USGS St. Petersburg ... |
Info |
Archive of side scan sonar and bathymetry data collected during USGS cruise 06FSH01 offshore of Siesta Key, Florida, May 2006.
This data set contains swath bathymetric data collected during USGS cruise 06FSH01 aboard the R/V G.K. Gilbert. A side scan sonar, bathymetric, and high-resolution seismic-reflection survey was conducted off Sarasota, FL to describe the relationship between the sediments and morphology of the inner shelf and adjacent shoreface. These data are part of the Florida Shelf Habitat (FLaSH) map project. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g106fl/html/g-1-06 -fl ... |
Info |
Archive of Water Gun Subbottom Data Collected During USGS Cruise SEAX 95007 New York Bight, 7-25 May, 1995
This DVD-ROM contains copies of the navigation and field water gun subbottom data collected aboard the R/V Seaward Explorer, from 7-25 May, 1995. The coverage is in the New York Bight area. This DVD-ROM (Digital Versatile Disc-Read Only Memory) has been produced in accordance with the UDF (Universal Disc Format) DVD-ROM Standard (ISO 9660 equivalent) and is therefore capable of being read on any computing platform that has appropriate DVD-ROM driver software installed. Access to the data and information ... |
Info |
Archive of Water Gun Subbottom Data Collected During USGS Cruise SEAX 96004, New York Bight, 1 May - 9 June, 1996
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS SEAX 96004 cruise. The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is UDF (Universal Disc Format--ISO 9660 equivalent) which can be read ... |
Info |
ArcInfo GRID format of the 2004 Multibeam Backscatter Data in the Northeastern Channel Islands Region, Southern California [mos.zip]
ArcInfo GRID format data generated from the 2004 multibeam sonar survey of the Northeastern Channel Islands, CA Region. The data include high-resolution, acoustic, corrected backscatter. |
Info |
ArcInfo GRID format of the 2004 Multibeam Bathymetry Data in the Northeastern Channel Islands Region, Southern California [bathy.zip]
ArcInfo GRID format data generated from the 2004 multibeam sonar survey of the Northeastern Channel Islands, CA Region. The data include high-resolution bathymetry. |
Info |
ArcInfo Grid of the 30 meter pixel Composite Bathymetry of Boston Harbor and Approaches (BH_30MBATH, UTM 19, WGS84)
These data are high-resolution bathymetric measurements of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km square of sidescan sonar and bathymetric data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed and gridded by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS). |
Info |
Army Corps Sediment Data from Maine and New Hampshire acquired in 1994 (MNHACOE shapefile)
The data in this layer are from a study that evaluated and documented the historic and projected future dredging and dredged material disposal needs of the coastal rivers and harbors of the states of Maine and New Hampshire. Documentation of historic dredging and disposal activities was accomplished through the collection of data primarily from the files of the ACOE, New England Division, in Waltham, Massachusetts, supplemented by information from the states of Maine and New Hampshire and previously ... |
Info |
ASCII formatted file of the 4-m bathymetry from the northern half of USGS survey 98015 of the Sea Floor off Eastern Cape Cod (CAPENORTH_GEO4M_XYZ.TXT, Geographic, NAD83)
This data set includes bathymetry of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echosounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up to 7.5 ... |
Info |
ASCII formatted file of the 4-m bathymetry from the southern half of USGS Survey 98015 of the Sea Floor off Eastern Cape Cod (CAPESOUTH_GEO4M_XYZ.TXT, Geographic, NAD83)
This data set includes bathymetry of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echosounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up to 7.5 ... |
Info |
ASCII grid of bathymetry data collected by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts between Duxbury and Hull with data gaps (DH_bathy_wgaps.asc, ARC/INFO ASCII GRID, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
ASCII Text File of the Original 1-m Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Survey H11320 in Rhode Island Sound (H11320_1M_UTM19NAD83.TXT)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
ASCII Text File of the Original 1-m Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_1M_UTM19NAD83.TXT)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of central Rhode Island Sound using sidescan-sonar imagery, bathymetry data, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
ASCII Text File of the Original 1-m Bathymetry (Partial Coverage) from National Oceanic and Atmospheric Administration (NOAA) Survey H11322 in Western Rhode Island Sound (H11322_1M_UTM19NAD83.TXT)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of western Rhode Island Sound using sidescan-sonar imagery and bathymetry data collected aboard the NOAA Ship RUDE, as well as historic seismic records. The mosaic, ... |
Info |
ASCII text file of the Original 1-m Gridded Bathymetry from NOAA Survey H11310 in Central Narragansett Bay (H11310_1M_UTM19NAD83.TXT)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The bathymetry presented herein covers an area of the sea ... |
Info |
ASIS2015_HRJQ_BE_z18_n88g12B_mosaic_metadata: Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Assateague Island, Maryland and Virginia, Post-Hurricane Joaquin, 26 November 2015
A digital elevation model (DEM) mosaic was produced for Assateague Island, Maryland and Virginia, post-Hurricane Joaquin, from remotely sensed, geographically referenced elevation measurements collected by Quantum Spatial using a Leica ALS70 (1064-nm wavelength) lidar sensor. |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Initial_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Initial_Elevations_N.txt)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_114_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_114_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_134_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_134_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_152_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_152_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_155_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_155_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_158_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_158_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_186_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_186_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_191_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_191_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_23_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_23_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_257_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_257_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_4_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_4_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_71_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_71_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_95_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Storm_95_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Year_30_Elevations_N)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Assessing the Effectiveness of Nourishment in Decadal Barrier Island Morphological Resilience: Model Inputs and Outputs (Year_30_Elevations_NA)
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Dauphin Island, Alabama (AL), for a 30-year forecast of multiple storms and sea level rise, considering scenarios of no-action and beach and dune nourishment as described in Passeri and others (2021). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent topography and bathymetry. The XBeach model setup requires the input of topographic ... |
Info |
Atlantic and Gulf coast sandy coastline topo-bathy profile and characteristic database
Seamless topographic-bathymetric (topo-bathy) profiles and their derived morphologic characteristics were developed for sandy coastlines along the Atlantic and Gulf coasts of the United States. As such, the rocky coasts of Maine, the coral reefs in southern Florida and the Keys, and the marsh coasts in the Mississippi Delta and the Florida Big Bend region and are not included in this dataset. Topographic light detection and ranging (lidar) data (dune crest, dune toe, and shorelines) from Doran and others ... |
Info |
Attendee Survey Results from the April and May 2020 Gulf Islands National Seashore Workshop
In early 2020, scientists gathered to advance sediment budget modeling efforts by conducting a “Needs Assessment Workshop” for the Gulf Island National Seashore (GINS) to understand the coastal processes affecting island resiliency. The “Gulf Islands Sediment Budget Needs Assessment Workshop” was held, virtually, April 23–24 and May 27–28, 2020. The workshop series was organized by researchers from North Carolina State University in collaboration with National Park Service (NPS) and U.S. ... |
Info |
Attenuation Factor model results for Upper Floridan aquifer vulnerability to Bromacil and Ethylene Dibromide
This dataset includes Attenuation Factor (AF; Rao and others, 1985) model results for Upper Floridan aquifer vulnerability to Bromacil and 1,2-Dibromoethane or Ethylene Dibromide (EDB). The AF value serves as an index for assessing the transport of pesticide mass from the vadose zone. The AF model setup requires the input of raster soil bulk density, soil organic carbon content, soil field capacity, soil air filled porosity, recharge to the aquifer, depth to groundwater, the pesticide sorption coefficient, ... |
Info |
Autonomous Flow-Thru (AFT) CO2 data of the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Autonomous Flow-Thru (AFT) CO2 data of the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25 - 30, ... |
Info |
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25 - 30, ... |
Info |
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from Cat Point and East Hole Bars, St. George Sound, Florida (ASV173.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from Cat Point Bar, Apalachicola Bay, Florida (ASV157.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from Cat Point Bar, St. George Sound, Florida (ASV158.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from Cat Point Bar, St. George Sound, Florida (ASV160.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from Cat Point Bar, St. George Sound, Florida (ASV165.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from Green Point and East Hole Bars in St. George Sound, Florida (ASV172.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from Hotel Bar, Apalachicola Bay, Florida (ASV162.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from Norman's Bar, Apalachicola Bay, Florida (ASV174.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from North Spur, Apalachicola Bay, Florida (ASV178.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from Porter's Bar, St. George Sound, Florida (ASV154.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from St. Vincent Bar, Apalachicola Bay, Florida (ASV175.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from St. Vincent Bar, Apalachicola Bay, Florida (ASV177.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Autonomous Surface Vehicle Sidescan-sonar mosaic from St Vincent Bar, St. George Sound, Florida (ASV176.TIF)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
b172sc.m77t - MGD77 data file for Geophysical data from field activity B-1-72-SC in Central California from 11/11/1972 to 11/15/1972
Single-beam bathymetry, gravity, and magnetics data along with transit satellite navigation data was collected as part of field activity B-1-72-SC in Central California from 11/11/1972 to 11/15/1972, http://walrus.wr.usgs.gov/infobank/b/b172sc/html/b-1-72-sc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/b/b172sc/html/b-1-72-sc.bath.html http://walrus.wr ... |
Info |
b174ar.m77t - MGD77 data file for Geophysical data from field activity B-1-74-AR in Arctic from 07/13/1974 to 08/30/1974
Single-beam bathymetry, gravity, and magnetics data along with transit satellite navigation data was collected as part of field activity B-1-74-AR in Arctic from 07/13/1974 to 08/30/1974, http://walrus.wr.usgs.gov/infobank/b/b174ar/html/b-1-74-ar.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/b/b174ar/html/b-1-74-ar.bath.html http://walrus.wr.usgs.gov ... |
Info |
Backscatter [5m]--Offshore Monterey, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_5m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ... |
Info |
Backscatter [7125]-- Offshore of Monterey, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_7125_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ... |
Info |
Backscatter [8101]--Offshore of Monterey, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_8101_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ... |
Info |
Backscatter A [8101]--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Drakes Bay and Vicinity, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_DrakesBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, ... |
Info |
Backscatter A [8101]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_2004_OffshoreBolinas.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
Backscatter A [8101]--Offshore Half Moon Bay, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Half Moon Bay map area, California. Backscatter data are provided as two separate grids depending on mapping system (Reson 7125 and Reson 8101). The raster data file is included in "BackscatterA_8101_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., ... |
Info |
Backscatter A [8101]--Offshore of Bodega Head, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_OffshoreBodegaHead.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell ... |
Info |
Backscatter A [8101]--Offshore of Fort Ross, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_OffshoreFortRoss.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
BackscatterA [8101]--Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterA_8101_PtReyes.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., ... |
Info |
Backscatter A [8101]--Offshore of San Francisco, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate grids depending on mapping system used and processing techniques. The raster data file is included in "BackscatterA_8101_2004_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y ... |
Info |
BackscatterA [8101]--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterA_8101_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., ... |
Info |
Backscatter A [8101]--Offshore of Tomales Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_8101_ OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
BackscatterA [8101]--Offshore Pacifica, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids depending on mapping system. The raster data files are included in "BackscatterA_8101_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, ... |
Info |
BackscatterA [8101]--Offshore Pigeon Point, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. This metadata file refers to the data included in "BackscatterA_8101_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, ... |
Info |
Backscatter A [8101]--Offshore San Gregorio, California
This part of SIM 3306 presents data for the acoustic-backscatter map of the Offshore of San Gregorio map area, California. Backscatter data are provided as two separate grids depending on mapping system (Reson 7125 and Reson 8101). The raster data file is included in "BackscatterA_8101_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., ... |
Info |
BackscatterA [8210]--Offshore of Salt Point map area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "Backscatter8101_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
Backscatter A [CSUMB]--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Hueneme Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterA_CSUMB_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, ... |
Info |
Backscatter A [CSUMB]--Offshore Coal Oil Point, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., ... |
Info |
Backscatter A [CSUMB]--Offshore of Carpinteria, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Carpinteria map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz ... |
Info |
Backscatter A [CSUMB]--Offshore of Santa Barbara, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Santa Barbara map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G. ... |
Info |
Backscatter A [CSUMB]--Offshore of Ventura, California
This part of DS 781 presents acoustic-backscatter data for the Offshore of Ventura map area, California. The raster data file is included in "BackscatterA_CSUMB_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, ... |
Info |
BackscatterA [SWATH]--Offshore Aptos, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids depending on mapping system and processing method. This metadata file refers to the data included in "BackscatterA_SWATH_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ... |
Info |
BackscatterA [USGS SWATH]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterA_USGS_SWATH_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. These data accompany the pamphlet and map ... |
Info |
Backscatter B [7125]--Offshore Half Moon Bay, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Half Moon Bay map area, California. Backscatter data are provided as two separate grids depending on mapping system (Reson 7125 and Reson 8101). The raster data file is included in "BackscatterB_7125_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., ... |
Info |
Backscatter B [7125]--Offshore of Bodega Head, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_7125_OffshoreBodegaHead.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell ... |
Info |
Backscatter B [7125]--Offshore of Fort Ross, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_7125_OffshoreFortRoss.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
BackscatterB [7125]--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterB_7125_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., ... |
Info |
Backscatter B [7125]--Offshore of Tomales Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_7125_OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
BackscatterB [7125]--Offshore Pacifica, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pacifica map area, California. Backscatter data are provided as two separate grids depending on mapping system. The raster data files are included in "Backscatter7125_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R ... |
Info |
BackscatterB [7125]--Offshore Pigeon Point, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. This metadata file refers to the data included in "BackscatterB_7125_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, ... |
Info |
Backscatter B [7125]--Offshore San Gregorio, California
This part of SIM 3306 presents data for the acoustic-backscatter map of the Offshore of San Gregorio map area, California. Backscatter data are provided as two separate grids depending on mapping system (Reson 7125 and Reson 8101). The raster data file is included in "BackscatterB_7125_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., ... |
Info |
Backscatter B [8101]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_8101_2007_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
Backscatter B [8101]--Offshore of San Francisco, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate grids depending on mapping system used and processing techniques. The raster data file is included in "BackscatterB_8101_2007_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y ... |
Info |
BackscatterB [EM300]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by Monterey Bay Aquarium Research Institute (MBARI) and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterB_EM300_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. ... |
Info |
BackscatterB [EM300]--Offshore Aptos, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Aptos map area, California. Backscatter data are provided as two separate grids depending on mapping system and processing method. This metadata file refers to the data included in "BackscatterB_EM300_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ... |
Info |
Backscatter B [Swath]--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Drakes Bay and Vicinity, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_Swath_DrakesBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson ... |
Info |
BackscatterB [Swath]--Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterB_Swath_PtReyes.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., ... |
Info |
BackscatterB [Swath]--Offshore of Salt Point map area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterSwath_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
Backscatter B [USGS]--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Hueneme Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterB_USGS_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N ... |
Info |
Backscatter B [USGS]--Offshore of Carpinteria, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Carpinteria map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, ... |
Info |
Backscatter B [USGS]--Offshore of Coal Oil Point, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., ... |
Info |
Backscatter B [USGS]--Offshore of Santa Barbara, California
This part of DS 781 presents data for part of the acoustic-backscatter map of the Offshore of Santa Barbara map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., ... |
Info |
Backscatter B [USGS]--Offshore of Ventura, California
This part of DS 781 presents acoustic-backscatter data for the Offshore of Ventura map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C ... |
Info |
Backscatter C [7125]--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Drakes bay and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_7125_DrakesBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. The acoustic-backscatter map of Drakes Bay and Vicinity map area, California, was generated from backscatter collected by California ... |
Info |
BackscatterC [7125]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by California State University, Monterey Bay and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterC_7125_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4. These ... |
Info |
Backscatter C [7125]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterC_7125_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
BackscatterC [7125]--Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Point Reyes map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "BackscatterB_Swath_PtReyes.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., ... |
Info |
BackscatterC [7125]--Offshore of Salt Point Map Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Salt Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files are included in "Backscatter7125_SaltPoint.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
Backscatter C [8101]--Offshore of San Francisco, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate grids depending on mapping system used and processing techniques. The raster data file is included in "BackscatterC_8101_2008_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y ... |
Info |
Backscatter C [Fugro]--Offshore of Coal Oil Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterC_Fugro_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., ... |
Info |
Backscatter C [Swath]--Offshore of Bodega Head, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bodega Head map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_Swath_OffshoreBodegaHead.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
Backscatter C [Swath]--Offshore of Fort Ross, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Fort Ross map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_Swath_OffshoreFortRoss.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., ... |
Info |
BackscatterC [SWATH]--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate grids depending on mapping system. The raster data files are included in "BackscatterC_SWATH_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., ... |
Info |
Backscatter C [Swath]--Offshore of Tomales Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterC_Swath_OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
BackscatterC [SWATH]--Offshore Pigeon Point, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Pigeon Point map area, California. Backscatter data are provided as three separate grids depending on mapping system. This metadata file refers to the data included in "BackscatterC_SWATH_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson ... |
Info |
Backscatter D [7125]--Offshore of San Francisco, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of San Francisco map area, California. Backscatter data are provided as separate grids depending on mapping system used and processing techniques. The raster data file is included in "BackscatterD_7125_2008_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y ... |
Info |
BackscatterD [CSUMB Swath]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the acoustic-backscatter map of Monterey Canyon and Vicinity map area, California. Backscatter data are provided as separate grids depending on mapping system and processing method. These metadata describe acoustic-backscatter data collected by California State University, Monterey Bay and processed by the U.S. Geological Survey. The raster data files are included in "BackscatterD_CSUMB_SWATH_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4 ... |
Info |
Backscatter D [Snippets]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterD_Snippets_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
Backscatter D [USGS]--Offshore of Tomales Point, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Tomales Point map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data file is included in "BackscatterD_USGS_OffshoreTomalesPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., ... |
Info |
Backscatter E [Swath]--Offshore Bolinas, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Bolinas map area, California. Backscatter data are provided as separate grids depending on mapping system or processing method. The raster data files is included in "BackscatterE_Swath_OffshoreBolinas.zip", which are accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., ... |
Info |
Backscatter [Fugro]--Offshore of Gaviota Map Area, California
This part of DS 781 presents 2-m-resolution data collected by Fugro Pelagos for the acoustic-backscatter map of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Backscatter_[Fugro]_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State ... |
Info |
Backscatter imagery collected in 2016 by the U.S. Geological Survey off Town Neck Beach Sandwich, Massachusetts, during field activity 2016-017-FA (GeoTIFF image)
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ... |
Info |
Backscatter Imagery from Sidescan Sonar 5 meter/pixel of Boston Harbor and Approaches (bh_5mBS.tif)
These data are high-resolution acoustic backscatter measurements of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km² of sidescan sonar data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS). |
Info |
Backscatter intensity and sun-illuminated topographic imagery of the seafloor in the Stellwagen Bank National Marine Sanctuary region (bcksctter.tif)
This data set contains the sun-illuminated topographic imagery and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the ... |
Info |
Backscatter--Offshore of Point Conception Map Area, California
This part of DS 781 presents 2-m-resolution data for the acoustic-backscatter map of the Offshore of Point Conception Map Area, California. The GeoTiff is included in "Backscatter_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series� ... |
Info |
Backscatter--Offshore of Refugio Beach Area, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Refugio Beach map area, California. The raster data file is included in "Backscatter_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G., ... |
Info |
Backscatter-Oregon OCS Floating Wind Farm Site
This Data Release contains data from the U.S. Geological Survey (USGS) survey of the Oregon outer Continental shelf (OCS) Floating Wind Farm Site in 2014. The backscatter intensity data was collected along with bathymetry data by USGS during the period from August 20 to September 1, 2014, using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy ... |
Info |
Backscatter [Swath]-- Offshore of Monterey, California
This part of DS 781 presents data for the acoustic-backscatter map of the Offshore of Monterey map area, California. Backscatter data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Backscatter_Swath_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., ... |
Info |
Backscatter [SWATH]--Offshore Santa Cruz, California
This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Santa Cruz map area, California. Backscatter data are provided as a raster file included in "Backscatter_Swath_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, ... |
Info |
Backscatter [USGS07]--Offshore of Gaviota Map Area, California
This part of DS 781 presents 2-m-resolution data collected by the U.S. Geological Survey in 2007 for the acoustic-backscatter map of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Backscatter_[USGS07]_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), ... |
Info |
Backscatter [USGS08]--Offshore of Gaviota Map Area, California
This part of DS 781 presents 2-m-resolution data collected by the U.S. Geological Survey in 2008 for the acoustic-backscatter map of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Backscatter_[USGS08]_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), ... |
Info |
Barrier island geomorphology and seabeach amaranth metrics at 50-m alongshore transects, and 5-m cross-shore points for 2008 — Assateague Island, MD and VA.
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as piping plover ... |
Info |
Baseline_BackBarrier.shp - Baseline Along the Back-Barrier (North-Facing) Coast of Dauphin Island, Alabama, Generated to Calculate Shoreline Change Rates.
Analysis of shoreline change for Dauphin Island, Alabama was conducted using the U.S. Geological Survey (USGS) Digital Shoreline Analysis System (DSAS) v.4.3 for ArcMap (Thieler and others, 2009) and vector shorelines derived from air photos and lidar elevation surveys. DSAS-generated transects were cast at 100-meter intervals along a user defined shore-parallel baseline. The intersections of transects with the mean high water (MHW) shoreline positions are identified by intercept points. The rate of ... |
Info |
Baseline coastal oblique aerial photographs collected at Breton Island and the Chandeleur Islands, Louisiana, January 22, 2011
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On January 22, 2011, the USGS conducted an oblique aerial photographic survey at Breton Island and the Chandeleur Islands, LA, aboard a Cessna 210 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in the beach and ... |
Info |
Baseline coastal oblique aerial photographs collected at the Chandeleur Islands, Louisiana, and Dauphin Island, Alabama, July 24, 2010
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On July 24, 2010, the USGS conducted an oblique aerial photographic survey at the Chandeleur Islands, Louisiana, and Dauphin Island, Alabama, aboard a Beechcraft BE90 King Air aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ... |
Info |
Baseline coastal oblique aerial photographs collected from Breton Island to the Chandeleur Islands, Louisiana, September 3, 2010
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 3, 2010, the USGS conducted an oblique aerial photographic survey from Breton Island to the Chandeleur Islands, Louisiana, aboard a Cessna 210 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in the ... |
Info |
Baseline coastal oblique aerial photographs collected from Dauphin Island, Alabama, to Breton Island, Louisiana, July 26–27, 2007
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On July 26-27, 2007, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ... |
Info |
Baseline coastal oblique aerial photographs collected from Dauphin Island, Alabama, to Breton Island, Louisiana, September 26–27, 2006
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 26-27, 2006, the USGS conducted an oblique aerial photographic survey from Dauphin Island, Alabama, to Breton Island, Louisiana, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ... |
Info |
Baseline coastal oblique aerial photographs collected from Dog Island, Florida, to Breton Island, Louisiana, June 24–25, 2008
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 24–25, 2008, the USGS conducted an oblique aerial photographic survey from Dog Island, Florida, to Breton Island, Louisiana, aboard a U.S. Coast Guard HH60 Helicopter at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental ... |
Info |
Baseline coastal oblique aerial photographs collected from False Cape State Park, Virginia, to Myrtle Beach, South Carolina, May 6, 2008
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On May 6, 2008, the USGS conducted an oblique aerial photographic survey from False Cape State Park, Virginia, to Myrtle Beach, South Carolina, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission (08CH01) was conducted to collect data ... |
Info |
Baseline coastal oblique aerial photographs collected from Fenwick Island State Park, Delaware, to Corolla, North Carolina, March 27, 1998
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On March 27, 1998, the USGS conducted an oblique aerial photographic survey from Fenwick Island State Park, Delaware, to Corolla, North Carolina, aboard a U.S. Coast Guard HH60 Helicopter at an altitude of 500 feet (ft) and approximately 1,000 ft offshore. This mission was conducted to collect data for assessing ... |
Info |
Baseline Coastal oblique aerial photographs collected from Horseshoe Beach, Florida, to East Cape, Florida, May 19-20, 2010
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On May 19-20, 2010, the USGS conducted an oblique aerial photographic survey from Horseshoe Beach, Florida, to East Cape, Florida, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes ... |
Info |
Baseline coastal oblique aerial photographs collected from Navarre Beach, Florida, to Breton Island, Louisiana, September 7, 2016
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 7, 2016, the USGS conducted an oblique aerial photographic survey from Navarre Beach, Florida, to Breton Island, Louisiana, aboard a Maule MT57 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in the ... |
Info |
Baseline coastal oblique aerial photographs collected from Navarre, Florida, to the Chandeleur Islands, Louisiana, and from Grand Point, Alabama, to St. Joseph Point, Mississippi, June 6, 2006
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 6, 2006, the USGS conducted an oblique aerial photographic survey from Navarre, Florida, to the Chandeleur Islands, Louisiana, and from Grand Point, Alabama, to St. Joseph Point, Mississippi, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore ... |
Info |
Baseline coastal oblique aerial photographs collected from Ponte Vedra, Florida, to the South Carolina/North Carolina border, August 24, 2011
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On August 24, 2011, the USGS conducted an oblique aerial photographic survey from Ponte Vedra, Florida, to the South Carolina/North Carolina border, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing ... |
Info |
Baseline coastal oblique aerial photographs collected from Tampa Bay to the Marquesas Keys, Florida, June 22–23, 2010
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 22–23, 2010, the USGS conducted an oblique aerial photographic survey from Tampa Bay to the Marquesas Keys, Florida, aboard a Piper Navajo Chieftain aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes in ... |
Info |
Baseline coastal oblique aerial photographs collected from the Harney River, Everglades National Park, Florida to Anclote Key, Florida, November 14, 2006
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On November 14, 2006, the USGS conducted an oblique aerial photographic survey from the Harney River, Everglades National Park, Florida to Anclote Key, Florida, aboard a U.S. Coast Guard HH60 Helicopter aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect ... |
Info |
Baseline coastal oblique aerial photographs collected U.S. Army Corps of Engineers Field Research Facility, Duck, North Carolina, June 9, 2017
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On June 09, 2017, the USGS conducted an oblique aerial photographic survey of the U.S. Army Corps of Engineers Field Research Facility (USACE FRF), located in Duck, North Carolina, aboard a Cessna 182 aircraft at an altitude of approximately 1000 feet (ft). This mission was conducted to collect data for USACE FRF ... |
Info |
Baseline_OpenOcean.shp - Baseline Along the Open-Ocean (South-Facing) Coast of Dauphin Island, Alabama, Generated to Calculate Shoreline Change Rates.
Analysis of shoreline change for Dauphin Island, Alabama was conducted using the U.S. Geological Survey (USGS) Digital Shoreline Analysis System (DSAS) v.4.3 for ArcMap (Thieler and others, 2009) and vector shorelines derived from air photos and lidar elevation surveys. DSAS-generated transects were cast at 100-meter intervals along a user defined shore-parallel baseline. The intersections of transects with the mean high water (MHW) shoreline positions are identified by intercept points. The rate of ... |
Info |
Bathymetric change map of the nearshore around Ship, Horn, and Petit Bois islands, Mississippi: 1916-1920 to 2008-2009
To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. Data sets include 1916 through 1920 soundings collected by the United States Coast and ... |
Info |
Bathymetric change map of the nearshore around Ship, Horn, and Petit Bois islands, Mississippi: 1916-1920 to 2016
To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. Datasets include 1916 through 1920 soundings collected by the United States Coast and ... |
Info |
Bathymetric change map of the nearshore around Ship, Horn, and Petit Bois islands, Mississippi: 2008-2009 to 2016
To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. Data sets include 1916 through 1920 soundings collected by the United States Coast and ... |
Info |
Bathymetric data collected by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts between Duxbury and Hull (DH_bathy5m, Esri binary grid, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Bathymetric data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006-2007 (BATHY_GRD.ASC, ESRI ASCII GRID)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Bathymetric data collected by the U.S. Geological Survey off the southern shore of Martha's Vineyard, MA, 2007 (ESRI BINARY GRID, BATHY_2M)
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Bathymetric data collected in the Belfast Bay, Maine pockmark field using a SWATHplus-M interferometric sonar in 2006 and 2008, by the U.S. Geological Survey (32-bit floating point raster, UTM 19 WGS 84, MLLW)
The U.S. Geological Survey, Woods Hole Coastal and Marine Science Center in cooperation with the University of Maine mapped approximately 50 square kilometers of the seafloor within Belfast Bay, Maine. Three geophysical surveys conducted in 2006, 2008 and 2009 collected swath bathymetric (2006 and 2008) and chirp seismic reflection profile data (2006 and 2009). The project characterized the spatial, morphological and subsurface variability of the Belfast Bay, Maine pockmark field. Pockmarks are large ... |
Info |
Bathymetric Data collected with Personal Watercraft within Bellport Bay, New York, (2014) in XYZ ASCII text file format
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ... |
Info |
Bathymetric data for Whiskeytown Lake, December 2018
These metadata describe bathymetric data collected during a December 2018 SWATHPlus survey of Whiskeytown Lake, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) during fieldwork activity number 2018-686-FA. The bathymetric data are provided as a GeoTIFF image. |
Info |
Bathymetric data for Whiskeytown Lake, May 2019
These metadata describe bathymetric data collected during a May 2019 SWATHPlus survey of Whiskeytown Lake, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) during fieldwork activity number 2018-686-FA. The bathymetric data are provided as a GeoTIFF image. |
Info |
Bathymetric data for Whiskeytown Lake, September 2020
These metadata describe bathymetric data collected during a September 2021 SWATHPlus survey of Whiskeytown Lake, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) during fieldwork activity number 2018-686-FA. The bathymetric data are provided as a GeoTIFF image. |
Info |
Bathymetric data, stored as elevation above IGLD85, collected by the U.S. Geological Survey within the St. Clair River offshore of Marysville, Michigan, 2008 (ESRI GRID, MVILLE_05M)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Bathymetric data, stored as elevations above IGLD85, collected by the U.S. Geological Survey within the St. Clair River offshore of Port Lambton, Ontario, 2008 (ESRI GRID, PORTL_05M)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Bathymetric data, stored as elevations relative to IGLD85, collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI GRID, BATHY_05M)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Bathymetric grid (1000 m) of the continental margin offshore of Washington, Oregon, and California based on data available in the late 1980s.
Cowbatg.tif is a 1000-m resolution bathymetric grid of the continental margin offshore of Washington, California, and Oregon. The grid was generated from bathymetric contours (cowbathy.shp, also in this data set) mapped by Chase and others (1992a, b) and by Grim and others (1992) from various sources of bottom topography of the continental margin off the states of Washington, Oregon, and California. |
Info |
Bathymetric Grid for a Wave Exposure Model of Grand Bay, Mississippi
Coastal marshes are highly dynamic and ecologically important ecosystems that are subject to pervasive and often harmful disturbances, including shoreline erosion. Shoreline erosion can result in an overall loss of coastal marsh, particularly in estuaries with moderate- or high-wave energy. Not only can waves be important physical drivers of shoreline change they can also influence shore-proximal vertical accretion through sediment delivery. For these reasons, estimates of wave energy can provide a ... |
Info |
Bathymetric Terrain Model of the Puerto Rico Trench and Northeastern Caribbean Region Compiled by the U.S. Geological Survey From Multibeam Bathymetric Data Collected Between 2002 and 2013 (PRBATHOFR150, Esri Binary Grid, UTM19, WGS 84).
Bathymetric terrain models (BTMs) of seafloor morphology are an important component of marine geological investigations. Advances in technologies of acquiring and processing bathymetric data have facilitated the creation of high-resolution bathymetric surfaces that approach the resolution of those available for onshore investigations. These bathymetric terrain models provide a detailed representation of the Earth's subaqueous surface and when combined with other geophysical and geologic datasets, allow for ... |
Info |
Bathymetric Terrain Model of the U.S. Atlantic Margin (100-meter resolution) compiled by the U.S. Geological Survey (32-bit GeoTIFF, MERCATOR Projection, WGS 84)
Bathymetric terrain models of seafloor morphology are an important component of marine geological investigations. Advances in acquisition and processing technologies of bathymetric data have facilitated the creation of high-resolution bathymetric surfaces that approach the resolution of similar surfaces available for onshore investigations. These bathymetric terrain models provide a detailed representation of the Earth's subaqueous surface and, when combined with other geophysical and geological datasets, ... |
Info |
Bathymetric trackline navigation collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, 08016_SWATHPLUS_TRK.SHP)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Bathymetry [2m]--Offshore of Monterey, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Monterey map area, California. Bathymetry data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Bathymetry_2m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., ... |
Info |
Bathymetry [5m]--Offshore of Monterey, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Monterey map area, California. Bathymetry data are provided as separate grids depending on resolution. This metadata file refers to the data included in "Bathymetry_5m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., ... |
Info |
BathymetryA [2m]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ... |
Info |
BathymetryA Hillshade [2m]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ... |
Info |
BathymetryA Hillshade [USGS]--Offshore Aptos, California
This part of DS 781 presents data for the shaded-relief map of Offshore of Aptos map area, California. Shaded-relief data are provided as two separate grids depending on mapping agency and processing method. This metadata file refers to the data included in "BathymetryAHS_USGS_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ... |
Info |
Bathymetry and acoustic backscatter of Crater Lake, Oregon from Field Activity: S-1-00-OR
ArcInfo GRID format data generated from the 2000 multibeam sonar survey of Crater Lake, Oregon. The data include high-resolution bathymetry and calibrated acoustic backscatter. Data are also available as ASCII xyz format (see data download page of https://doi.org/10.3133/ds72) |
Info |
Bathymetry and seafloor acoustic backscatter of mobile subaqueous sand dunes in the lower Columbia River, Washington and Oregon, 2021
Bathymetry and seafloor acoustic backscatter data were collected at four sites (SKM, SLG, LDB, WLW) using a SWATHPlus interferometric sonar (234 kHz) pole mounted to the R/V Parke Snavely during a June 2021 survey of the lower Columbia River, Washington and Oregon. Each site was surveyed repeatedly between June 5 and June 9, 2021 to quantify bathymetric changes resulting from migration of subaqueous sand dunes. The bathymetry and seafloor acoustic backscatter data from each site are provided as GeoTIFF ... |
Info |
Bathymetry and topography data offshore of Burien, Washington
This part of USGS Data Series 935 (Cochrane, 2014) presents bathymetry and topography data for the Offshore of Burien, California, map area, a part of the Southern Salish Sea Habitat Map Series. The data for this map area are a combination of topography extracted from a pre-existing Digital Elevation Model (DEM) merged with bathymetry data that were collected by the National Oceanic and Atmospheric Administration (NOAA) using multibeam sonar systems. The merged data are available for download in a single ... |
Info |
Bathymetry and topography data offshore of Seattle, Washington
This part of USGS Data Series 935 (Cochrane, 2014) presents bathymetry and topography data for the Offshore of Seattle, California, map area, a part of the Southern Salish Sea Habitat Map Series. The data for this map area are a combination of topography extracted from a pre-existing Digital Elevation Model (DEM) merged with bathymetry data that were collected by the National Oceanic and Atmospheric Administration (NOAA) using multibeam sonar systems. The merged data are available for download in a single ... |
Info |
Bathymetry and topography data offshore of Tacoma, Washington
This part of USGS Data Series 935 (Cochrane, 2014) presents bathymetry and topography data for the Offshore of Tacoma, California, map area, a part of the Southern Salish Sea Habitat Map Series. The data for this map area are a combination of topography extracted from a pre-existing Digital Elevation Model (DEM) merged with bathymetry data that were collected by the National Oceanic and Atmospheric Administration (NOAA) using multibeam sonar systems. The merged data are available for download in a single ... |
Info |
BathymetryA [USGS]--Offshore Aptos, California
This part of DS 781 presents data for the bathymetry map of Offshore of Aptos map area, California. Bathymetry data are provided as two separate grids depending on mapping agency and processing method. This metadata file refers to the data included in "BathymetryA_USGS_OffshoreAptos.zip" which are accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S ... |
Info |
BathymetryB [5m]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ... |
Info |
BathymetryB [CSUMB]--Offshore Aptos, California
This part of DS 781 presents data for the bathymetry map of Offshore of Aptos map area, California. Bathymetry data are provided as two separate grids depending on mapping agency and processing method. This metadata file refers to the data included in "BathymetryB_CSUMB_OffshoreAptos.zip" which are accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S ... |
Info |
BathymetryB Hillshade [5m]--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. Bathymetry data are provided as separate grids depending on the mapping resolution. Data collected at shallower depths by the U.S. Geological Survey (USGS) and California State University, Monterey Bay (CSUMB) have a spatial resolution of 2 m per pixel, whereas data collected at deeper depths by the Monterey Bay Aquarium Research Institute (MBARI) have a spatial resolution of 5-m ... |
Info |
BathymetryB Hillshade [CSUMB]--Offshore Aptos, California
This part of DS 781 presents data for the shaded-relief map of Offshore of Aptos map area, California. Shaded-relief data are provided as two separate grids depending on mapping agency and processing method. This metadata file refers to the data included in "BathymetryBHS_CSUMB_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., ... |
Info |
Bathymetry data collected in 2007 from the San Miguel Passage in the Channel Islands, California
This portion of the data release presents bathymetry data from the San Miguel Passage, in the Channel Islands, California. Bathymetry data were collected in the San Miguel Passage, Channel Islands, California in August 2007 by the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC). Collection was accomplished using a 234.5 kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonar mounted on the NOAA, Channel Islands National Marine Sanctuary R/V Shearwater as part of the ... |
Info |
Bathymetry data collected in 2008 offshore Tijuana River Estuary, California during USGS Field Activity S-5-08-SC
These metadata describe bathymetry data collected during a 2008 SWATHPlus-M survey offshore Tijuana River Estuary, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number S-5-08-SC. The bathymetry data are provided as GeoTIFF images in UTM, zone 11, NAD83 coordinates, vertically referenced to both NAVD88 and WGS84. A standard deviation grid is also provided. |
Info |
Bathymetry data collected in 2016 offshore the Elwha River mouth, Washington, during USGS Field Activity 2016-605-FA
These metadata describe bathymetry data collected during a 2016 SWATHPlus-M survey offshore the Elwha River mouth, Strait of Juan de Fuca, Washington. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-605-FA. The bathymetry data are provided as a GeoTIFF image in UTM, zone 10, NAD83 coordinates, vertically referenced to NAVD88. |
Info |
Bathymetry data for Jenkinson Lake, California collected during USGS field activity 2022-604-FA
Here January 2022 1-m resolution bathymetry data of Jenkinson Lake, California are provided for the entire lake and 0.5-m resolution bathymetry data are provided for the shallower upper basin. Bathymetry data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA ... |
Info |
Bathymetry data for Jenkinson Lake, California collected during USGS field activity 2022-649-FA
Here August 2022 1-m resolution bathymetry data of Jenkinson Lake, California are provided for the entire lake and 0.5-m resolution bathymetry data are provided for the shallower upper basin. Bathymetry data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July ... |
Info |
Bathymetry data for Jenkinson Lake, California collected during USGS field activity 2023-634-FA
Here July 2023 1-m resolution bathymetry data of Jenkinson Lake, California are provided for the entire lake and 0.5-m resolution bathymetry data are provided for the shallower upper basin. Bathymetry data were collected during three separate SWATHPlus surveys of Jenkinson Lake. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity numbers 2022-604-FA (January 2022), 2022-649-FA (August 2022), and 2023-634-FA (July ... |
Info |
Bathymetry data for Ozette Lake, Washington collected during USGS field activity 2019-622-FA
Bathymetry data were collected during a July 2019 SWATHPlus survey of Ozette Lake, Washington. Data were collected and processed by the the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2019-622-FA. The 2-m bathymetry data are provided as a GeoTIFF image. |
Info |
Bathymetry data for Santa Cruz Harbor, California collected during USGS field activity 2022-609-FA
1-m resolution bathymetry data were collected during a January 2022 SWATHPlus survey in and near the Santa Cruz harbor, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2022-609-FA. The 1-m bathymetry data are provided as a GeoTIFF file. |
Info |
Bathymetry data from USGS Field Activity S-8-08-SC, northern Santa Barbara Channel, southern California
Bathymetry data were collected by the U.S. Geological Survey in July 2008 in the northern Santa Barbara Channel in southern California. Data were collected aboard the R/V Parke Snavely, during USGS Field Activity S-9-08-SC, using a bathymetric sidescan system. |
Info |
Bathymetry--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the bathymetry map of Drakes Bay and Vicinity map area, California. The raster data file for the bathymetry map is included in "Bathymetry_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
Bathymetry from 2013 interferometric swath bathymetry systems survey of Columbia River Mouth, Oregon and Washington
This part of the USGS data release presents bathymetry data for the Columbia River Mouth, Oregon and Washington. The bathymetry data of the Columbia River Mouth, Oregon and Washington were collected by the U.S. Geological Survey (USGS). Mapping was completed in 2013, using a 234-kHz SEA SWATHPlus interferometric system. These data are not intended for navigational purposes. |
Info |
Bathymetry from multibeam echosounder data collected offshore of Arcata, California
This 2-m-resolution bathymetry data for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image. |
Info |
Bathymetry from multibeam echosounder data collected offshore of Cape Mendocino, California
This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Cape Mendocino, California, map area. Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image. |
Info |
Bathymetry from multibeam echosounder data collected offshore of Eureka, California
This 2-m-resolution bathymetry data for the Offshore of Eureka, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image. |
Info |
Bathymetry from multibeam echosounder data collected offshore of Morro Bay, California
This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Morro Bay, California, map area. Bathymetry data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The bathymetry ... |
Info |
Bathymetry from multibeam echosounder data collected offshore of Point Buchon, California
This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Point Buchon, California, map area. Bathymetry data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The ... |
Info |
Bathymetry from multibeam echosounder data collected offshore of Point Estero, California
This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of Point Estero, California, map area. Bathymetry data were collected by Fugro Pelagos in 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were post-processed by the California State University Monterey Bay Seafloor Mapping Lab and the University of California Santa Cruz Center for Integrated Spatial Research. The ... |
Info |
Bathymetry from multibeam echosounder data collected offshore of the Eel River, California
This part of USGS Data Series 781 (Golden, 2019) presents 2-m-resolution bathymetry data for the Offshore of the Eel River, California, map area. Bathymetry data were collected by Fugro Pelagos in 2007 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounder systems. The data were processed by the California State University Monterey Bay Seafloor Mapping Lab. The bathymetry data are available as a georeferenced TIFF image. |
Info |
Bathymetry Hillsahde--Offshore of Tomales Point, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Tomales Point map area, California. Raster data file is included in "BathymetryHS_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., ... |
Info |
Bathymetry Hillshade [2m]--Offshore of Monterey, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Monterey map area, California. Bathymetry data are provided as separate grids depending on resolution. This metadata file refers to the data included in "BathymetryHS_2m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., ... |
Info |
Bathymetry Hillshade [5m]--Offshore of Monterey, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Monterey map area, California. Bathymetry data are provided as separate grids depending on resolution. This metadata file refers to the data included in "BathymetryHS_5m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., ... |
Info |
Bathymetry Hillshade--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the shaded-relief bathymetry map of Drakes Bay and Vicinity, California (raster data file is included in "BathymetryHS_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., Krigsman, ... |
Info |
Bathymetry Hillshade--Hueneme Canyon and Vicinity, California
This part of DS 781 present the shaded-relief bathymetry map of the Hueneme Canyon and Vicinity map area, California. The raster data file for the shaded-relief map is included in "BathymetryHS_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A ... |
Info |
Bathymetry Hillshade--Offshore Bolinas, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Bolinas, California. The raster data file is included in "BathymetryHS_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., ... |
Info |
Bathymetry Hillshade--Offshore Half Moon Bay, California
This part of DS 781 presents data for the hillshaded bathymetry map of the Offshore Half Moon Bay map area, California. The raster data file is included in "BathymetryHS_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., Watt, J ... |
Info |
Bathymetry Hillshade--Offshore of Bodega Head, California
This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Bodega Head map area, California. Raster data file is included in "BathymetryHS_OffshoreBodegaHead.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. The bathymetry and shaded-relief maps of the Offshore of Bodega Head map area, California, were generated from bathymetry data collected by California State University, Monterey Bay (CSUMB), and by ... |
Info |
Bathymetry Hillshade--Offshore of Carpinteria, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Carpinteria map area, California. The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreCarpinteria.zip." Both are accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., ... |
Info |
Bathymetry Hillshade--Offshore of Coal Oil Point, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "Bathymetry_OffshoreCoalOilPoint.zip." The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G ... |
Info |
Bathymetry Hillshade--Offshore of Fort Ross, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Fort Ross map area, California. Raster data file is included in "Bathymetry_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, ... |
Info |
Bathymetry hillshade--Offshore of Gaviota Map Area, California
This part of DS 781 presents data for bathymetry for several seafloor maps of the Offshore of Gaviota Map Area, California. The vector data file is included in "BathymetryHS_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of ... |
Info |
Bathymetry hillshade--Offshore of Point Conception Map Area, California
This part of DS 781 presents data for bathymetry for several seafloor maps of the Offshore of Point Conception Map Area, California. The vector data file is included in "Bathymetry_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series� ... |
Info |
Bathymetry Hillshade Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Point Reyes map area, California. Raster data file is included in "BathymetryHS_PointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/PointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, ... |
Info |
Bathymetry Hillshade--Offshore of Refugio Beach Area, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Refugio Beach map area, California. The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B ... |
Info |
Bathymetry Hillshade--Offshore of Salt Point Map Area, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Salt Point map area, California. The raster data file is included in "BathymetryHS_OffshoreSaltPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B ... |
Info |
Bathymetry Hillshade--Offshore of San Francisco, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of San Francisco, California, map area. The raster data file is included in "BathymetryHS_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W ... |
Info |
Bathymetry Hillshade--Offshore of Santa Barbara, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Santa Barbara map area, California. The raster data file for the hillshaded bathymetry map is included in "BathymetryHS_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., ... |
Info |
Bathymetry Hillshade--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the shaded-relief bathymetry map of Offshore Scott Creek, California. The raster data file is included in "BathymetryHS_OffshoreScottCreek.zip", which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., ... |
Info |
Bathymetry Hillshade--Offshore of Ventura, California
This part of DS 781 presents data for the shaded-relief bathymetry map of the Offshore of Ventura map area, California. The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., ... |
Info |
Bathymetry Hillshade--Offshore Pacifica, California
This part of DS 781 presents data for the hillshaded bathymetry map of Offshore Pacifica, California. The raster data file is included in "BathymetryHS_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross, S.L., ... |
Info |
Bathymetry Hillshade--Offshore Pigeon Point, California
This part of DS 781 presents data for the shaded-relief bathymetry map of Offshore Pigeon Point, California. The raster data file is included in "BathymetryHS_OffshorePigeonPoint.zip", which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, A.C., Sliter, R.W ... |
Info |
Bathymetry Hillshade--Offshore San Gregorio, California
This part of SIM 3306 presents data for the shaded-relief bathymetry map of the Offshore of San Gregorio map area, California. The raster data file is included in "Bathymetry_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., ... |
Info |
Bathymetry Hillshade--Offshore Santa Cruz, California
This part of DS 781 presents data for the shaded-relief bathymetry map of Offshore Santa Cruz, California. The raster data file is included in "BathymetryHS_OffshoreSantaCruz.zip", which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K.L., ... |
Info |
Bathymetry Hillshade-Oregon OCS Floating Wind Farm Site
This Data Release contains data from the USGS survey of the Oregon OCS Floating Wind Farm Site in 2014. The shaded-relief raster was generated from bathymetry data collected by USGS during the period from August 20 to September 1, 2014. using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy Management. |
Info |
Bathymetry--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the bathymetry map of the Hueneme Canyon and Vicinity map area, California. The raster data file for the bathymetry map is included in "Bathymetry_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan ... |
Info |
Bathymetry--Offshore Bolinas, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Bolinas, California. The raster data file is included in "Bathymetry_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., Kvitek, R.G., ... |
Info |
Bathymetry--Offshore Half Moon Bay, California
This part of DS 781 presents data for the bathymetry map of the Offshore Half Moon Bay, California. The raster data file is included in "Bathymetry_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., Watt, J.T., Endris, C.A., ... |
Info |
Bathymetry--Offshore of Bodega Head, California
This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Bodega Head map area, California. Raster data file is included in "Bathymetry_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, ... |
Info |
Bathymetry--Offshore of Carpinteria, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Carpinteria map area, California. The raster data file for the bathymetry map is included in "Bathymetry_OffshoreCarpinteria.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G ... |
Info |
Bathymetry--Offshore of Coal Oil Point, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "Bathymetry_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., Krigsman, ... |
Info |
Bathymetry--Offshore of Fort Ross, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Fort Ross map area, California. Raster data file is included in "Bathymetry_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, J.T., Krigsman ... |
Info |
Bathymetry--Offshore of Gaviota Map Area, California
This part of DS 781 presents data for bathymetry for several seafloor maps of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Bathymetry_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of Gaviota, ... |
Info |
Bathymetry--Offshore of Point Conception Map Area, California
This part of DS 781 presents data for bathymetry for several seafloor maps of the Offshore of Point Conception Map Area, California. The GeoTiff is included in "Bathymetry_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore ... |
Info |
Bathymetry Offshore of Point Reyes Map Map Area, California
This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Point Reyes map area, California. Raster data file is included in "Bathymetry_PointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/PointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
Bathymetry--Offshore of Refugio Beach Area, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Refugio Beach map area, California. The raster data file for the bathymetry map is included in "Bathymetry_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., ... |
Info |
Bathymetry--Offshore of Salt Point Map Area, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Salt Point map area, California. The raster data file is included in "Bathymetry_OffshoreSaltPoint.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, J.T., ... |
Info |
Bathymetry--Offshore of San Francisco, California
This part of DS 781 presents data for the bathymetry map of the Offshore of San Francisco, California, map area. The raster data file is included in "Bathymetry_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W., Kvitek, R.G., ... |
Info |
Bathymetry--Offshore of Santa Barbara, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Santa Barbara map area, California. The raster data file is included in "Bathymetry_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C ... |
Info |
Bathymetry--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the bathymetry map of Offshore Scott Creek, California. The raster data file is included in "Bathymetry_OffshoreScottCreek.zip", which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., Finlayson, D.P., ... |
Info |
Bathymetry--Offshore of Tomales Point, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Tomales Point map area, California. Raster data file is included in "Bathymetry_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter ... |
Info |
Bathymetry--Offshore of Ventura, California
This part of DS 781 presents data for the bathymetry map of the Offshore of Ventura map area, California. The raster data file is included in "Bathymetry_OffshoreVentura.zip, which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., ... |
Info |
Bathymetry--Offshore Pacifica, California
This part of DS 781 presents data for the bathymetry map of Offshore Pacifica, California. The raster data file is included in "Bathymetry_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross, S.L., Golden, N.E., Watt ... |
Info |
Bathymetry--Offshore Pigeon Point, California
This part of DS 781 presents data for the bathymetry map of Offshore Pigeon Point, California. The raster data file is included in "Bathymetry_OffshorePigeonPoint.zip", which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., Finlayson, D.P ... |
Info |
Bathymetry--Offshore San Gregorio, California
This part of SIM 3306 presents data for the bathymetry map of the Offshore of San Gregorio map area, California. The raster data file is included in "Bathymetry_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., Erdey, M.D., ... |
Info |
Bathymetry--Offshore Santa Cruz, California
This part of DS 781 presents data for the bathymetry map of Offshore Santa Cruz, California. The raster data file is included in "Bathymetry_OffshoreSantaCruz.zip", which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K.L., and Krigsman, L.M. ... |
Info |
Bathymetry of the Atlantic Beach artificial reef (2-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)
The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship ... |
Info |
Bathymetry of the Historic Area Remediation Site in 1996 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
Bathymetry of the Historic Area Remediation Site in 1998 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
Bathymetry of the Historic Area Remediation Site in 2000 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
Bathymetry of the Hudson Canyon region (100-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and ... |
Info |
Bathymetry of the Hudson Shelf Valley (12-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)
The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, ... |
Info |
Bathymetry of the Sandy Hook artificial reef (2-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)
The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the ... |
Info |
Bathymetry of Whales Tail Marsh tidal creeks, South San Francisco Bay, California, 2023
Bathymetric data collected in Whales Tail Marsh tidal creeks, South San Francisco Bay, California, in 2023 with a shallow draft vessel equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The bathymetric data are provided in a comma-separated text file. |
Info |
Bathymetry-Oregon OCS Floating Wind Farm Site
This Data Release contains data from the U.S. Geological Survey (USGS) survey of the Oregon outer continental shelf (OCS) Floating Wind Farm Site in 2014. The bathymetry raster was generated from bathymetry data collected by USGS during the period from August 20 to September 1, 2014, using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy ... |
Info |
Bathymetry tracklines collected in the Belfast Bay, Maine pockmark field using a SWATHplus-M interferometric sonar in 2006 and 2008, by the U.S. Geological Survey (Esri polyline shapefile, WGS 84)
The U.S. Geological Survey, Woods Hole Coastal and Marine Science Center in cooperation with the University of Maine mapped approximately 50 square kilometers of the seafloor within Belfast Bay, Maine. Three geophysical surveys conducted in 2006, 2008 and 2009 collected swath bathymetric (2006 and 2008) and chirp seismic reflection profile data (2006 and 2009). The project characterized the spatial, morphological and subsurface variability of the Belfast Bay, Maine pockmark field. Pockmarks are large ... |
Info |
Bathymetry within the inner shelf of Long Bay, South Carolina collected by the USGS, 1999-2003 (BATHY, Grid)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (April 21, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (April 21, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (April 8, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (August 21, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (August 26, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (August 31, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (December 1, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (December 18, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (December 8, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected From Madeira Beach, Florida (February 17, 2017)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (February 4, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (January 15, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (January 21, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (January 24, 2018)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (January 25, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (July 10, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (July 6, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (July 6, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (July 9, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (June 10, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (June 16, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (March 3, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (March 7, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (May 23, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (May 25, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (May 9, 2017)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (November 10, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (November 14, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (November 16, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (November 2, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (November 30, 2016)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (November 6, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (November, 9 2017)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (October 15, 2018)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (October 2, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (October 5, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (September 14, 2017)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (September 15, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (September 18, 2019)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (September 21, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (September 24, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (September 8, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (September 9, 2016)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (April 1, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (August 7, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (December 7, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (February 22, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (February 3, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (January 27, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (July 21, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (July 28, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (June 7, 2022)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (May 19, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 17, 2018)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 7, 2020)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 8, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 11, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 19, 2019)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 8, 2023)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 9, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate ... |
Info |
Beach profile data collected in 2010 and 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska
Beach elevation profiles were measured along 29 shore-normal transects on and around Arey and Barter Islands, Alaska in August 2010 and July 2011. Profile data are available in a single comma-delimited file and a zip file including multiple .jpg images that show a visual representation of the individual profiles. |
Info |
Beach Topography—Fire Island, New York, Pre-Hurricane Sandy, January 2012: Ground Based Lidar (1-Meter Digital Elevation Model)
The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, North Carolina collaborated to gather alongshore ground-based lidar beach topography at Fire Island, New York. This high-resolution, elevation dataset was collected on January 30, 2012, and was funded by SPCMSC. The USGS data release containing the aforementioned dataset includes the resulting, processed elevation point data (XYZ) and ... |
Info |
Beach Topography—Fire Island, New York, Pre-Hurricane Sandy, January 2012: Ground Based Lidar (ASCII XYZ Point Data)
The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, North Carolina collaborated to gather alongshore ground-based lidar beach topography at Fire Island, New York. This high-resolution, elevation dataset was collected on January 30, 2012, and was funded by SPCMSC. The USGS data release containing the aforementioned dataset includes the resulting, processed elevation point data (XYZ) and an ... |
Info |
Benthic Foraminiferal Data from Surface Samples and Sedimentary Cores in the Grand Bay Estuary, Mississippi and Alabama
Microfossil (benthic foraminifera) samples were obtained from surficial grab (denoted with “G”) and push core (denoted with “M”) sediments collected in Grand Bay estuary, Mississippi and Alabama, to aid in the paleoenvironmental understanding of Grand Bay estuary. The data presented here were collected as part of the U.S. Geological Survey’s Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, and Barrier Island Evolution Research (BIER) project. Sampling was ... |
Info |
Biomarker analysis of cold seeps along the United States Atlantic Margin
Results of lipid biomarker concentration and compound specific isotopes analyzed from authigenic carbonates and surrounding sediment collected from Baltimore and Norfolk seep fields along the United States Atlantic Margin are presented in csv format. Samples were collected by the U.S. Geological Survey and Duke University between 2012 and 2015 using remotely operated vehicles (ROVs). Geochemical analysis was performed using gas chromatography (GC) and GC-combustion isotope ratio mass spectrometry (GC-C-IRMS ... |
Info |
Biotopes of the Oregon outer continental shelf (OCS) proposed wind farm site
This biotope raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The biotopes mapped in this area have been numbered to indicate combinations of seafloor hardness, ruggedness and depth associated with biotopes derived by analysis of video data as described in the accompanying Open-File Report (Cochrane and others, 2017). The map was created using video and multibeam echosounder bathymetry and backscatter data collected in 2014 and processed in 2015 ... |
Info |
BocaChica_2022_MBES: High-resolution Geophysical and Imagery Data Collected in November 2022 Offshore of Boca Chica Key, FL
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) nearshore Boca Chica Key, the Florida Keys, from November 8-13, 2022. This dataset, BocaChica_2022_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid, and the dataset BocaChica_2022_MBES_Backscatter.zip ... |
Info |
Boomer seismic navigation from USGS cruise 2002-015-FA from Pamlico Sound, North Carolina (bbb2002015_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer Seismic navigation trackline data collected by the U.S. Geological Survey offshore of the Grand Strand, South Carolina (BOOMER_TRK, Polyline)
In 1999, the USGS, in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this geologic framework and ... |
Info |
Boomer seismic-reflection and navigation data collected in Ozette Lake, Washington, in 2019.
Boomer seismic-reflection data and associated navigation files were collected in Ozette Lake, Washington, in 2019 for use in regional earthquake hazard assessments relating the Cascadia Subduction Zone. |
Info |
Boomer Seismic Reflection Profiles and Shotpoint Navigation Collected on USGS Field Activities 01ASR01, 01ASR02, 02ASR01, and 02ASR02,Miami, Florida, November and December, 2001, and January and February, 2002.
This appendix consists of two-dimensional marine seismic reflection profile data from Miami, Florida, canals. These data were acquired in November and December of 2001 and in January and February of 2002 using a 4.9 m (16 ft) jonboat. The data are available in a variety of formats, including ASCII,HTML, and GIF images. Reference maps and GIF images of the profiles may be viewed with your WWW browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/b/b101fl/html/b-1-01-fl ... |
Info |
Boomer Seismic Shot points navigation collected by the U.S. Geological Survey offshore of the Grand Strand, South Carolina (BOOMER_SHT, Point)
In 1999, the USGS, in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this geologic framework and ... |
Info |
Boomer Seismic Survey Tracklines - Lake Mead 2001
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Boomer seismic trackline data from USGS cruise 1999-045-FA along the inner continental shelf of northern North Carolina (isb1999045_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer seismic trackline data from USGS cruise 2001-005-FA along the inner continental shelf of northern North Carolina (isb2001005_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer seismic trackline data from USGS cruise 2001-013-FA from Albemarle Sound, North Carolina (bbb2001013_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer seismic trackline data from USGS cruise 2002-012-FA along the inner continental shelf of northern North Carolina (isb2002012_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer seismic trackline data from USGS cruise 2002-013-FA along the inner continental shelf of northern North Carolina (isb2002013_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer seismic tracklines from USGS cruise 2003-005-FA from Pamlico Sound, North Carolina (bbb2003005_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer seismic tracklines from USGS cruise 2003-042-FA from Pamlico Sound, North Carolina (bbb2003042_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer seismic tracklines from USGS cruise 2004-005-FA from Pamlico Sound, North Carolina (bbb2004005_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer seismic tracklines from USGS cruise 2004-006-FA from Pamlico Sound, North Carolina (bbb2004006_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shot-point navigation collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, 08016_Boomer_SHT.SHP)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Boomer Shotpoint Navigation every 100 shots in Geographic Coordinates - Lake Mead 2001
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Boomer shotpoint navigation from USGS cruise 1999-045-FA along the inner continental shelf of northern North Carolina (isb1999045_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shotpoint navigation from USGS cruise 2001-005-FA along the inner continental shelf of northern North Carolina (isb2001005_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shotpoint navigation from USGS cruise 2001-013-FA from Albemarle Sound, North Carolina (bbb2001013_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shotpoint navigation from USGS cruise 2002-012-FA along the inner continental shelf of northern North Carolina (isb2002012_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shotpoint navigation from USGS cruise 2002-013-FA along the inner continental shelf of northern North Carolina (isb2002013_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shotpoint navigation from USGS cruise 2002-015-FA from Pamlico Sound, North Carolina (bbb2002015_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shotpoint navigation from USGS cruise 2003-005-FA from Pamlico Sound, North Carolina (bbb2003005_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shotpoint navigation from USGS cruise 2003-042-FA from Pamlico Sound, North Carolina (bbb2003042_shot200.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shotpoint navigation from USGS cruise 2004-005-FA from Pamlico Sound, North Carolina (bbb2004005_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer shotpoint navigation from USGS cruise 2004-006-FA from Pamlico Sound, North Carolina (bbb2004006_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Boomer trackline navigation collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, 08016_Boomer_TRK.SHP)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Boston Harbor and approaches samples (WILLETT72 shapefile
Boston Harbor (and its approaches) is a glacially carved, tidally dominated estuary in western Massachusetts Bay. Characterized by low river discharge and significant human impact, the harbor is typical of many bays and estuaries along the New England coast. The sands and gravels that floor Massachusetts Bay and the Harbor approaches are relict glacial sediments. However, fine-grained sediments are accumulating in areas of lower energy. |
Info |
Bottom sample analysis and locations in the vicinity of the Woods Hole Oceanographic Institution, Martha's Vineyard Coastal Observatory (ESRI POINT SHAPEFILE, SAMPLES)
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Bottom Sediments -- Cape Ann to Casco Bay (FOLGER75 shapefile)
The reconnaissance maps upon which this data set is based show the areal distribution of the major bottom sediment types covering the sea floor off eastern New England between Cape Ann and Casco Bay. The maps were intended as a guide to the future mapping of gravel, sand, silt, and clay, and because these sediments reflect the hydraulic conditions, they are also helpful for deducing the important sediment transport mechanisms. |
Info |
Bottom Sediments of Georges Bank (WIGLEY61 shapefile)
These data were collected as part of a survey of the bottom sediments of Georges Bank. The purpose of the survey was to provide basic data for use in studying the relationships between substrate composition and the occurrence of benthic animals, especially those which are common foods of fishes. Particle size composition was the principal sediment character that was studied. |
Info |
Boulder ridges greater than or equal to 1 m high on the sea floor of the Stellwagen Bank National Marine region (ridges1.shp)
This data set contains the locations of boulder ridges greater than or equal to 1 meter in height in the Stellwagen Bank National Marine Sanctuary Region off Boston, Massachusetts, an area of approximately 1100 nautical square miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environmental habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. The boulder ridges ... |
Info |
Boulder ridges less than 1 m high on the sea floor of the Stellwagen Bank National Marine Sanctuary region (ridges0.shp)
This data set contains the locations of boulder ridges that are less than 1 meter in height in the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 nautical square miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. The boulder ridges ... |
Info |
BS_250M_LCC_NAD27.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, Clarke1866)
From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period focused on the Bering Sea region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. The ... |
Info |
BS_Q01.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q02.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q03.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q04.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q05.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q06B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q06.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q07.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q08.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q09.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q10.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q11.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q12.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q13B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q13.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q14B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q14.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q15.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q16.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q17.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q18.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q19.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q20.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q21.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q22B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (30 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q22.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q23.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q24.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q25.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BS_Q26.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 30) (LCC, 50 m, Clarke1866)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics ... |
Info |
BSYC1M.TIF - Big Sycamore Reserve sidescan sonar backscatter image in the Nearshore Benthic Habitat Mapping Project S. California map series. (UTM 11N, NAD83)
The sidescan sonar image of the nearshore seafloor (0 to 100 m water depths) of the Big Sycamore reserve area was mosaicked from data collected in 1998. A Klein 2000 sidescan system was used for geophysical surveying. A Triton Elics Isis brand side-scan data recording system was used on the cruise. The 1998 survey was navigated with a Leica Differential Global Positioning System (DGPS) which provided a ship position with accuracy of 1-5 m in DGPS mode. At times during the cruise differential signal was ... |
Info |
Bulk organic matter and carbonate content of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the ... |
Info |
Bulk organics and carbonate content of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
c179nc.m77t and c179nc.h77t: MGD77T data and header file for single-beam bathymetry data for field activity C-1-79-NC in Northern California from 05/01/1979 to 05/02/1979
Single-beam bathymetry data along with miniranger navigation data was collected as part of the U.S. Geological Survey cruise C-1-79-NC. The cruise was conducted in Northern California from May 1 to May 2 1979. The chief scientist was John Dingler from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise is unknown. The geophysical source is also unknown. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program ... |
Info |
c180nc.m77t - MGD77 data file for Geophysical data from field activity C-1-80-NC in Monterey Bay, Northern California from 05/21/1980 to 05/22/1980
Single-beam bathymetry data along with transit satellite navigation data was collected as part of field activity C-1-80-NC in Monterey Bay, Northern California from 05/21/1980 to 05/22/1980, http://walrus.wr.usgs.gov/infobank/c/c180nc/html/c-1-80-nc.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov ... |
Info |
CACO2002_EAARLA_BE_z19_n88g12B_metadata: EAARL Coastal Topography--Cape Cod National Seashore, Massachusetts, 2002: Bare Earth
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Cape Cod National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation ... |
Info |
CACO2002_EAARLA_BE_z19_n88g12B_mosaic_metadata: EAARL Coastal Topography--Cape Cod National Seashore, Massachusetts, 2002: Bare Earth
A bare-earth topography Digital Elevation Model (DEM) mosaic for the Cape Cod National Seashore was produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Cape Cod National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system ... |
Info |
CACO2002_EAARLA_FS_z19_n88g12B_metadata: EAARL Coastal Topography--Cape Cod National Seashore, Massachusetts, 2002: First Surface
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Cape Cod National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation ... |
Info |
CACO2002_EAARLA_FS_z19_n88g12B_mosaic_metadata: EAARL Coastal Topography--Cape Cod National Seashore, Massachusetts, 2002: First Surface
A first-surface topography Digital Elevation Model (DEM) mosaic for the Cape Cod National Seashore was produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Cape Cod National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging ... |
Info |
Cape Canaveral, Florida, backscatter data collected in 2016 by Coastal Carolina University: Processed GeoTIFF Image
A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data. |
Info |
Cape Canaveral, Florida, multibeam bathymetry collected in 2016 by Coastal Carolina University: Processed elevation point data (XYZ)
A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data. |
Info |
Cape Canaveral, Florida, multibeam bathymetry collected in 2016 by Coastal Carolina University: Processed GeoTIFF Image
A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data. |
Info |
Cape Canaveral, Florida, seismic chirp collected in 2016 by Coastal Carolina University
A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data. |
Info |
Cape Canaveral, Florida side scan sonar data collected in 2016 by Coastal Carolina University: Processed GeoTIFF Image
A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data. |
Info |
Cape Canaveral tracklines of geophysical data collected in 2016 by Coastal Carolina University
A geophysical survey was conducted offshore Cape Canaveral, Florida by Coastal Carolina University offshore of Cape Canaveral, Florida using high-resolution chirp sub-bottom, multibeam bathymetry and side scan sonar (SSS) systems on June 13, 14, 16, and 17 of 2016. This USGS data release includes the resulting processed elevation point data (xyz), an interpolated digital elevation model (DEM), with processed backscatter, side scan sonar, and seismic chirp data. |
Info |
Carbon isotopes data for rock samples from Von Damm vent field, Mid-Cayman Rise
This portion of the data release presents stable carbon isotopes of rock samples collected from Von Damm vent field, Mid-Cayman Rise, in the Caribbean Sea. These data were collected in 2020 (USGS Field Activity 2020-602-FA). |
Info |
CatIsland_2010_Bathy_NAVD88_grid.tif
In September and October of 2010, the U.S. Geological Survey (USGS), in cooperation with the Army Corps of Engineers (USACE), conducted geophysical surveys around Cat Island, Miss. to collect bathymetry, acoustical backscatter, and seismic reflection data (seismic-reflection data have been published separately, Forde and others, 2012). The geophysical data along with sediment vibracore data (yet to be published) will be integrated to analyze and produce a report describing the geomorphology and geologic ... |
Info |
CatIsland_2010_Bathy_Swath_tracklines
In September and October of 2010, the U.S. Geological Survey (USGS), in cooperation with the Army Corps of Engineers (USACE), conducted geophysical surveys around Cat Island, Miss. to collect bathymetry, acoustical backscatter, and seismic reflection data (seismic-reflection data have been published separately, Forde and others, 2012). The geophysical data along with sediment vibracore data (yet to be published) will be integrated to analyze and produce a report describing the geomorphology and geologic ... |
Info |
CatIsland 2010 single-beam bathymetry tracklines
In September and October of 2010, the U.S. Geological Survey (USGS), in cooperation with the Army Corps of Engineers (USACE), conducted geophysical surveys around Cat Island, Miss. to collect bathymetry, acoustical backscatter, and seismic reflection data (seismic-reflection data have been published separately, Forde and others, 2012). The geophysical data along with sediment vibracore data (yet to be published) will be integrated to analyze and produce a report describing the geomorphology and geologic ... |
Info |
Cat Island Miss. bathymetry collected by the USGS in 2010
In September and October of 2010, the U.S. Geological Survey (USGS), in cooperation with the Army Corps of Engineers (USACE), conducted geophysical surveys around Cat Island, Miss. to collect bathymetry, acoustical backscatter, and seismic reflection data (seismic-reflection data have been published separately, Forde and others, 2012). The geophysical data along with sediment vibracore data (yet to be published) will be integrated to analyze and produce a report describing the geomorphology and geologic ... |
Info |
Cat Island Terrestrial Core Optically Stimulated Luminescence (OSL) Data from field activity 10BIM03
Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center (SPCMSC), in collaboration with the U.S. Army Corps of Engineers (USACE), conducted geophysical and sedimentological surveys around Cat Island, the westernmost island in the Mississippi-Alabama barrier island chain. The objectives of the study were to understand the geologic evolution of Cat Island relative to other barrier islands in the northern Gulf of Mexico and to identify relationships between the ... |
Info |
CCALBATC - bathymetric contours for the central California region between Point Arena and Point Sur.
CCALBATC consists of bathymetric contours at 10-m and 50-m intervals for the area offshore of central California between Point Arena to the north and Point Sur to the south. The lines were digitized from 1:250,000-scale NOAA charts. This is one of a collection of digital files of a geographic information system of spatially referenced data related to the USGS Coastal and Marine Geology Program Monterey Bay National Marine Sanctuary Project (see this and other older Monterey Bay USGS works archived at https: ... |
Info |
CDP navigation at 500 trace intervals for multichannel boomer seismic-reflection data collected by the U.S. Geological Survey in Vineyard Sound and Buzzards Bay, MA, 2010 (Esri point shapefile, Geographic WGS 84, 2010-047-FA_Boomer_cdp500.shp)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
CDP navigation at 500 trace intervals for multichannel boomer seismic-reflection data collected by the U.S. Geological Survey in Vineyard Sound, MA, 2011 (Esri point shapefile, Geographic, WGS 84, 2010-100-FA_Boomer_cdp500.shp)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Census counts of benthic foraminifera, environmental parameters (temperature, salinity, and oxygen concentration), and radiocarbon measurements from cores obtained under and near a whale-fall off western Vancouver Island, British Columbia, Canada
This data release provides census counts of benthic foraminifera (in percent for the total fauna and as raw counts for just the living specimens) as well as environmental parameters (temperature, salinity, and oxygen concentration) at the sampling sites, and radiocarbon measurements from selected push core samples obtained under and near a whale-fall off western Vancouver Island, British Columbia, Canada. |
Info |
Characteristic Settling Time and Interface Height Dependence on Pore Fluid Chemistry for Sediment Collected From Area B, During India's National Gas Hydrate Program Expedition NGHP-02
One goal of the Indian National Gas Hydrate Program's NGHP-02 expedition was to examine the geomechanical response of marine sediment to the extraction of methane from gas hydrate found offshore eastern India in the Bay of Bengal. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages in a lattice of water molecules. Methane gas hydrate is a potential energy resource, but whether extracting methane from gas hydrate in the marine subsurface is ... |
Info |
Characterizing freshwater and nutrient fluxes to West Falmouth Harbor, Massachusetts
These data present oceanographic and water-quality observations made at 4 locations in West Falmouth Harbor and 3 in Buzzards Bay, Massachusetts. While both Buzzards Bay and West Falmouth Harbor are estuarine embayments, the input of freshwater on the eastern margin of Buzzards Bay is largely due to groundwater. In West Falmouth Harbor, the groundwater that seeps into the harbor is characterized by relatively high levels of nitrate, originating from the Falmouth Wastewater Treatment Plant. This high nitrate ... |
Info |
Chenier_Plain_2017_SBB_200m_DEM_metadata: Nearshore Single-Beam Bathymetry XYZ Data Collected in 2017 from the Chenier Plain, Louisiana
As a part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the Chenier Plain, Louisiana from Marsh Island to Sabine Pass. The goal of the BICM program is to provide long-term data on Louisiana's coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in ... |
Info |
Chenier_Plain_2017_SBB_ITRF00_Trackline_metadata: Nearshore Single-Beam Bathymetry XYZ Data Collected in 2017 from the Chenier Plain, Louisiana
As a part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the Chenier Plain, Louisiana from Marsh Island to Sabine Pass. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described ... |
Info |
Chenier_Plain_2017_SBB_XYZ_metadata: Nearshore Single-Beam Bathymetry XYZ Data Collected in 2017 from the Chenier Plain, Louisiana
As a part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the Chenier Plain, Louisiana from Marsh Island to Sabine Pass. The goal of the BICM program is to provide long-term data on Louisiana's coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in ... |
Info |
Chirp and minisparker seismic-reflection data of field activity F-02-07-NC collected offshore San Mateo County, California, from 2007-03-22 to 2007-04-06
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in March and April 2007, offshore San Mateo County, California. Data were collected aboard the R/V Fulmar during field activity F-02-07-NC. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were ... |
Info |
Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006, offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and ... |
Info |
Chirp navigation tracklines collected by Virginia Institute of Marine Science in 2002 along the nearshore region of the northern Outer Banks, NC (nsc2002_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp navigation tracklines collected by Virginia Institute of Marine Science in 2005 along the nearshore region of the northern Outer Banks, NC (nsc2005_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp navigation tracklines from USGS cruise 1999-045-FA along the inner continental shelf of northern North Carolina (isc1999045_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp navigation tracklines from USGS cruise 2001-005-FA along the inner continental shelf of northern North Carolina (isc2001005_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp navigation tracklines from USGS cruise 2001-013-FA from Albemarle Sound, North Carolina (bbc2001013_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp navigation tracklines from USGS cruise 2002-012-FA along the inner continental shelf of northern North Carolina (isc2002012_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp navigation tracklines from USGS cruise 2002-013-FA along the inner continental shelf of northern North Carolina (isc2002013_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp navigation tracklines from USGS cruise 2002-015-FA from Pamlico Sound, North Carolina (bbc2002015_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp navigation tracklines from USGS cruise 2003-003-FA along the inner continental shelf of northern North Carolina (isc2003003_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp navigation tracklines from USGS cruise 2004-003-FA along the inner continental shelf of northern North Carolina (isc2004003_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp Seismic navigation tracklines data collected by the U.S. Geological Survey offshore of the Grand Strand, South Carolina (CHIRP_TRK, Polyline)
In 1999, the USGS, in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this geologic framework and ... |
Info |
Chirp seismic profile images collected in 2016 by the U.S. Geological Survey off Town Neck Beach in Sandwich, Massachusetts, during field activity 2016-017-FA (PNG images)
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ... |
Info |
Chirp seismic-reflection and navigation data collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
Chirp seismic-reflection data and associated navigation files were collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. These data were collected from a 25-foot Boston Whaler (R/V Moose Dancer),18-foot cataraft (R/V Enterprise), and the R/V Alaskan Gyre in the summers of 2020 and 2021 for use in regional hazard assessments relating to Alaska’s seismic hazards. |
Info |
CHIRP seismic-reflection and navigation data collected offshore central California, during field activity 2019-651-FA (ver 2.0, August 2023)
CHIRP seismic-reflection data and associated navigation files were collected offshore central California in the vicinity of Morro Bay. These data were collected aboard the M/V Bold Horizon in October 2019 for use in regional hazard assessments relating to the Hosgri Fault. |
Info |
Chirp seismic-reflection data from field activity L-1-06-SF collected offshore Bolinas to San Francisco, California on 2006-09-30
High-resolution Chirp seismic-reflection data were collected by the U.S. Geological Survey in September 2006 offshore San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom profiler and recorded with a Triton SB-Logger. |
Info |
Chirp seismic reflection data from the Edgetech 512i collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS field activity 2018-001-FA (shotpoints point shapefile, survey trackline shapefile, PNG profile images, and SEG-Y trace data).
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg ... |
Info |
Chirp seismic-reflection data from USGS field activity G-01-13-GA collected in Port Valdez, Alaska, in September 2013
Chirp data were collected by the U.S. Geological Survey in September of 2013 in Port Valdez, Alaska. Data were collected aboard the USGS R/V Alaskan Gyre during field activity G-01-13-GA, using an EdgeTech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location. |
Info |
Chirp seismic-reflection data of field activity F-02-07-NC collected offshore San Mateo County, California, from 2007-03-22 to 2007-04-06
High-resolution single-channel Chirp seismic-reflection data were collected by the U.S. Geological Survey in March and April 2007 from Pacifica to Half Moon Bay, offshore San Mateo County, California. Data were collected aboard the R/V Fulmar, during field activity F-02-07-NC. Chirp data were collected using an EdgeTech 512 chirp subbottom system and recorded with a Triton SB-Logger. |
Info |
Chirp seismic-reflection data of USGS field activity 2014-645-FA collected in the outer Santa Barbara Channel, California, between 2014-11-12 to 2014-11-25 (ver. 2.0, March 2020)
This data release contains 43 chirp sub-bottom profiles that were collected in November of 2014 from the Catalina and Santa Cruz Basins offshore southern California by the U.S. Geological Survey Pacific and Coastal Marine Science Center. Data were collected aboard the University of California’s R/V Robert Gordon Sproul on USGS cruise 2014-645-FA. Chirp profiles were collected to assess earthquake and submarine landslide hazards offshore southern California. |
Info |
Chirp seismic-reflection data of USGS field activity 2016-616-FA collected in the Catalina Basin offshore southern California in February 2016
This data release contains 41 chirp sub-bottom profiles that were collected in February of 2016 from the Catalina Basin offshore southern California by the U.S. Geological Survey Pacific and Coastal Marine Science Center in cooperation with the University of Washington. Data were collected aboard the University of Washington’s R/V Thomas G. Thompson on USGS cruise 2016-616-FA. Chirp profiles were collected to image the Catalina and San Clemente fault systems as well as the San Gabriel Canyon system. |
Info |
Chirp seismic reflection data- shotpoints, tracklines, profile images, and SEG-Y traces for EdgeTech 3400 chirp data collected during USGS field activity 2022-001-FA (point and polyline shapefiles, CSV text, PNG Images, and SEGY data, GCS WGS 84)
In June 2022, the U.S. Geological Survey, in collaboration with the Massachusetts Office of Coastal Zone Management, collected high-resolution geophysical data, in Nantucket Sound to understand the regional geology in the vicinity of Horseshoe Shoal. This effort is part of a long-term collaboration between the USGS and the Commonwealth of Massachusetts to map the State’s waters, support research on the Quaternary evolution of coastal Massachusetts, resolve the influence of sea-level change and sediment ... |
Info |
Chirp seismic-reflection profile data in JPEG image format Collected in the Indian River Bay, Delaware, on April 13, 2010, on U.S. Geological Survey Field Activity 2010-006-FA
A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around ... |
Info |
Chirp seismic reflection - shotpoints, tracklines, profile images, and SEG-Y traces for EdgeTech SB-424 chirp data collected during USGS field activity 2021-004-FA (point and polyline shapefiles, CSV text, PNG Images, and SEGY data, GCS WGS 84)
The U.S. Geological Survey (USGS) Woods Hole Coastal and Marine Science Center (WHCMSC) completed a bathymetric and shallow seismic-reflection survey during the period of June 9, 2021 to June 24, 2021 in water depths from 2 m to 30 m for a portion of the outer Cape Cod nearshore environment between Marconi and Nauset Beaches. The products from this survey will help to support white shark research on their shallow-water behavior in the dynamic nearshore environment at Cape Cod National Seashore (CACO). CACO ... |
Info |
Chirp seismic reflection - shotpoints, tracklines, profile images, and SEG-Y traces for EdgeTech SB-512i chirp data collected during USGS field activity 2017-002-FA.
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and ... |
Info |
Chirp seismic reflection - shotpoints, tracklines, profile images, and SEG-Y traces for EdgeTech SB-512i chirp data collected during USGS field activity 2019-002-FA (point and polyline shapefiles, CSV text, PNG Images, and SEGY data, GCS WGS 84)
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterize the surface and shallow subsurface geologic framework. Geophysical data collected include swath bathymetry, ... |
Info |
Chirp Seismic Shotpoint Navigation every 100 shots in Geographic Coordinates - Lake Mead Survey 1999
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States ... |
Info |
Chirp Seismic Shotpoint Navigation every 100 shots in Geographic Coordinates - Lake Mead Survey 2000
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States ... |
Info |
Chirp Seismic Shotpoint Navigation every 100 shots in Geographic Coordinates - Lake Mead Survey 2001
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Chirp seismic shotpoint navigation every 100 shots in geographic coordinates - Lake Mohave survey 2002
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers form the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and ... |
Info |
Chirp Seismic Shot points navigation collected by the U.S. Geological Survey offshore of the Grand Strand, South Carolina (CHIRP_SHT, Point)
In 1999, the USGS, in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this geologic framework and ... |
Info |
Chirp Seismic Survey Tracklines - Lake Mead 1999
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States ... |
Info |
Chirp Seismic Survey Tracklines - Lake Mead 2000
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States ... |
Info |
Chirp Seismic Survey Tracklines - Lake Mead 2001
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Chirp Seismic Survey Tracklines - Lake Mohave 2002
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and ... |
Info |
Chirp shotpoint navigation collected by Virginia Institute of Marine Science along the nearshore region of the northern Outer Banks, NC (nsc2002_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation collected by Virginia Institute of Marine Science along the nearshore region of the northern Outer Banks, NC (nsc2005_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 1999-045-FA along the inner continental shelf of northern North Carolina (isc1999045_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 2001-005-FA along the inner continental shelf of northern North Carolina (isc2001005_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 2001-013-FA from Pamlico Sound, North Carolina (bbc2001013_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 2002-012-FA along the inner continental shelf of northern North Carolina (isc2002012_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 2002-013-FA along the inner continental shelf of northern North Carolina (isc2002013_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 2002-015-FA from Pamlico Sound, North Carolina (bbc2002015_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 2003-003-FA along the inner continental shelf of northern North Carolina (isc2003003_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation (from USGS cruise 2003-005-FA from Pamlico Sound, North Carolina (bbc2003005_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 2003-042-FA from Pamlico Sound, North Carolina (bbc2003042_shot.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 2004-003-FA along the inner continental shelf of northern North Carolina (isc2004003_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp shotpoint navigation from USGS cruise 2004-005-FA from Pamlico Sound, North Carolina (bbc2004005_shots.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp sub-bottom data acquired along the Cascadia margin during USGS field activity 2019-024-FA
Chirp sub-bottom data were collected by the U.S. Geological Survey in collaboration with the University of Washington (UW) in the summer of 2019 along the Cascadia submarine forearc offshore Oregon and Washington. |
Info |
Chirp sub-bottom data acquired offshore San Francisco and Pacifica during USGS field activity S-16-10-NC
Chirp sub-bottom data were collected by the U.S. Geological Survey in August 2010, offshore San Mateo County, California. Data were collected aboard the R/V Snavely during field activity S-16-10-NC. Chirp data were collected using an Edgetech 512 chirp sub-bottom profiler. |
Info |
Chirp sub-bottom data collected during USGS field activity 2018-658-FA between Cape Blanco and Cape Mendocino in October of 2018
This data release contains processed chirp sub-bottom data that were collected aboard Humboldt State University’s R/V Coral Sea in October of 2018 on U.S. Geological Survey cruise 2018-658-FA on the shelf and slope between Cape Blanco, Oregon, and Cape Mendocino, California. MCS data were collected to characterize quaternary deformation and sediment dynamics along the southern Cascadia margin. Chirp sub-bottom data were collected coincident with sparker MCS data. |
Info |
Chirp sub-bottom data collected during USGS field activity 2021-614-FA along the Palos Verdes Fault Zone
Chirp sub-bottom data were collected by the U.S. Geological Survey in May of 2021 along the Palos Verdes Fault Zone in San Pedro Bay and San Pedro Channel. MCS data were acquired coincident with chirp sub-bottom data. |
Info |
Chirp sub-bottom data collected in 2019 in Whiskeytown Lake, California during USGS field activity 2018-686-FA
These metadata describe high-resolution chirp sub-bottom data collected in May 2019 in Whiskeytown Lake, California. Data were collected and processed by the the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2018-686-FA. The chirp sub-bottom data are provided in SEG-Y format. |
Info |
Chirp sub-bottom data collected in Lake Crescent, Washington during USGS field activity 2019-622-FA
Chirp sub-bottom data were collected by the U.S. Geological Survey in August of 2019 in Lake Crescent, Washington. |
Info |
Chirp sub-bottom data collected in Ozette Lake, Washington, in 2019
Chirp seismic reflection data and associated navigation files were collected in Ozette Lake, Washington, in 2019 for use in regional earthquake hazard assessments relating the Cascadia Subduction Zone. Dataset includes both raw and processed chirp data. |
Info |
Chirp sub-bottom data collected in the Yakobi Sea Valley during USGS Field Activity 2017-621-FA
Chirp sub-bottom data were collected by the U.S. Geological Survey in July and August 2017 to expand data coverage along the Queen Charlotte Fault system in the Yakobi Sea Valley of southeast Alaska. |
Info |
Chirp sub-bottom data collected offshore Northern California during USGS field activity 2019-643-FA
Chirp sub-bottom data were collected by the U.S. Geological Survey in 2019 offshore Humboldt County of northern California to expand data coverage along the southern Cascadia Margin. |
Info |
Chirp sub-bottom data of USGS field activity 2017-612-FA collected in Puget Sound and Lake Washington, Washington in February of 2017
High-resolution chirp sub-bottom data were collected by the U.S. Geological Survey and the University of Washington in February of 2017 west of Seattle in Puget Sound and in Lake Washington, Washington. Data were collected aboard the University of Washington’s R/V Clifford A. Barnes during USGS field activity 2017-612-FA using an Edgetech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location. |
Info |
Chirp sub-bottom data of USGS field activity 2018-645-FA collected in the Santa Barbara Channel in July of 2018
High-resolution chirp sub-bottom data were collected by the U.S. Geological Survey in July of 2018 between Point Conception and Coal Oil Point in the Santa Barbara Channel, California. Data were collected aboard the USGS R/V Parke Snavely during field activity 2018-645-FA, using an EdgeTech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location. |
Info |
Chirp sub-bottom data of USGS field activity K0211PS collected in Puget Sound, Washington in April of 2011
High-resolution chirp sub-bottom data were collected by the U.S. Geological Survey in April 2011 south of Bainbridge Island and west of Seattle in Puget Sound, Washington. Data were collected aboard the R/V Karluk during field activity K0211PS using an Edgetech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location. |
Info |
Chirp sub-bottom profiler 500-shot point interval navigation collected by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (Geographic, WGS 84, Esri Point Shapefile)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island. For more information about the WHCMSC Field Activity, see https:/ ... |
Info |
Chirp sub-bottom profiler tracklines collected by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (Geographic, WGS 84, Esri Polyline Shapefile)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island. For more information about the WHCMSC Field Activity, see https: ... |
Info |
Chirp trackline navigation collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, 08016_Chirp_TRK.SHP)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Chirp trackline navigation data from USGS cruise 2003-005-FA from Pamlico Sound, North Carolina (bbc2003005_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp trackline navigation data from USGS cruise 2003-042-FA from Pamlico Sound, North Carolina (bbc2003042_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Chirp trackline navigation from USGS cruise 2004-005-FA from Pamlico Sound, North Carolina (bbc2004005_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
CMECS seafloor induration derived from multibeam echosounder data collected offshore of south-central California in support of the Bureau of Ocean Energy Management Cal DIG I, offshore alternative energy project
Seafloor induration (surface hardness) was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Morro Bay, California, from 2016 to 2020. MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS)/Bureau of Ocean Energy Management (BOEM) California Deepwater Investigations and Groundtruthing I (Cal DIG I) project, under a collaboration with the National Oceanic and Atmospheric Administration (NOAA). Substrate observations from ... |
Info |
Coastal and Marine Ecological Classifcation Standard (CMECS) geoforms of the Oregon outer continental shelf (OCS) proposed wind farm site
This polygon shapefile is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The polygons have attribute values for Coastal and Marine Ecological Classification Standard (CMECS) geoforms, substrate, and modifiers. CMECS is the U.S. government standard for marine habitat characterization and was developed by representatives from a consortium of federal agencies. The standard provides an ecologically relevant structure for biologic, geologic, chemical, and physical ... |
Info |
Coastal bathymetry data collected between 2008 and 2009 offshore of the Mississippi and Alabama barrier islands: Processed elevation point data
During the summers of 2008 and 2009 the United States Geological Survey (USGS) conducted bathymetric surveys from West Ship Island, Mississippi, to Dauphin Island, Alabama, as part of the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. The survey area extended from the shoreline out to approximately two kilometers and included the adjacent passes. These findings were originally published in Dewitt and others (2012). This USGS data release includes updated elevation point ... |
Info |
Coastal Bathymetry Data Collected in 2016 from the Chandeleur Islands, Louisiana–Interferometric Bathymetry Soundings (XYZ)
The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected single beam and swath bathymetry data from the northern Chandeleur Islands, Louisiana, in June of 2016. This USGS data release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). This USGS data release provides 208-line kilometers (km) of processed interferometric bathymetry (IFB) data collected under Field Activity Number (FAN) 2016-335-FA. This FAN ... |
Info |
Coastal Bathymetry Data Collected in 2016 from the Chandeleur Islands, Louisiana–Interpolated Digital Elevation Model
The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected single beam and swath bathymetry data from the northern Chandeleur Islands, Louisiana, in June of 2016. This USGS data release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). This USGS data release provides 437-line kilometers (km) of processed single beam bathymetry (SBB) and interferometric bathymetry (IFB) data collected under Field Activity ... |
Info |
Coastal Bathymetry Data Collected in 2016 from the Chandeleur Islands, Louisiana–Single Beam Bathymetry Soundings (XYZ)
The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected single beam and swath bathymetry data from the northern Chandeleur Islands, Louisiana, in June of 2016. This USGS data release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). This USGS data release provides 229-line kilometers (km) of processed single beam bathymetry (SBB) data collected under Field Activity Number (FAN) 2016-335-FA. This FAN ... |
Info |
Coastal Bathymetry Data Collected in 2016 nearshore from West Ship Island to Horn Island, Gulf Islands National Seashore, Mississippi, U.S. Geological Survey (USGS).
The United States Geological Survey Saint Petersburg Coastal and Marine Science Center (USGS SPCMSC), in cooperation with the United States Army Corps of Engineers (USACE) conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi (GUIS). Camille Cut separates Ship Island into East Ship Island and West Ship Island. The objective of this study was to establish base-level elevation conditions around West Ship Island, East Ship Island, ... |
Info |
Coastal Bathymetry Data Collected in June 2018 from Fire Island, New York: Wilderness Breach and Shoreface
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, June 2?17, 2018. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach and the adjacent shoreface environment. During this study, bathymetry data were collected aboard two personal watercraft (PWC) outfitted with single-beam echosounders, as well ... |
Info |
Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Event Hazards
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the ... |
Info |
Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Fabric Dataset
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the ... |
Info |
Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Hazard Impact Type
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the ... |
Info |
Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Maximum Change Likelihood
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the ... |
Info |
Coastal Change Likelihood in the U.S. Northeast Region: Maine to Virginia - Perpetual Hazards
Coastal resources are increasingly impacted by erosion, extreme weather events, sea-level rise, tidal flooding, and other potential hazards related to climate change. These hazards have varying impacts on coastal landscapes due to the numerous geologic, oceanographic, ecological, and socioeconomic factors that exist at a given location. Here, an assessment framework is introduced that synthesizes existing datasets describing the variability of the landscape and hazards that may act on it to evaluate the ... |
Info |
Coastal Features Extracted from Landsat Satellite Imagery, Delaware Bay, New Jersey to Shinnecock Bay, New York, 2008-2022
This data release serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery from Delaware Bay, New Jersey (NJ) to Shinnecock Bay, New York (NY). A total of 119 images acquired between 2008 and 2022 were analyzed to produce 143 thematic land-cover raster datasets. Water, bare earth (sand), and vegetated land-cover classes were mapped using successive thresholding and masking of the modified normalized difference water index (mNDWI), the normalized difference bare ... |
Info |
Coastal Features Extracted from Landsat Satellite Imagery, Northern Chandeleur Islands, Louisiana, 1984-2019
The data release (Bernier, 2021) associated with this metadata record serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery at the northern Chandeleur Islands, Louisiana. To minimize the effects of tidal water-level variations, 75 cloud-free, low-water images acquired between 1984 and 2019 were analyzed. Water, bare earth (sand), vegetated, and intertidal land-cover classes were mapped from Hewes Point to Palos Island using successive thresholding and masking ... |
Info |
Coastal Groundwater Chemical Data from the North and South Shores of Long Island, New York
Groundwater data were collected in the spring and fall of 2008 from three sites representing different geological settings and biogeochemical conditions within the surficial glacial aquifer of Long Island, NY. Investigations were designed to examine the extent to which average vadose zone thickness in contributing watersheds controlled biogeochemical conditions and processes, including dissolved oxygen concentration (DO), oxidation-reduction potential (Eh), dissolved organic carbon concentration (DOC), and ... |
Info |
Coastal Interferometric Swath Bathymetry Data Collected in 2015 from the Chandeleur Islands, Louisiana: 2015_Chand_IFB_5m_NAD83_NAVD88_GEOID09_DEM
The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected swath bathymetry data offshore of the Northern Chandeleur Islands, Louisiana in September 2015. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). For further information regarding data collection and/or processing methods, refer to previously published USGS Data Series 847 and 848 (https://doi.org/10.3133/ds8487 and https:/ ... |
Info |
Coastal Interferometric Swath Bathymetry Data Collected in 2015 from the Chandeleur Islands, Louisiana: 2015_Chand_IFB_5m_NAD83_NAVD88_GEOID09_XYZ
The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected swath bathymetry data offshore of the Northern Chandeleur Islands, Louisiana in September 2015. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). For further information regarding data collection and/or processing methods, refer to previously published USGS Data Series 847 and 848 (https://doi.org/10.3133/ds8487 and https:/ ... |
Info |
Coastal Interferometric Swath Bathymetry Data Collected in 2015 from the Chandeleur Islands, Louisiana: 2015_Chand_IFB_5m_WGS84_XYZ
The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), collected swath bathymetry data offshore of the Northern Chandeleur Islands, Louisiana in September 2015. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). For further information regarding data collection and/or processing methods, refer to previously published USGS Data Series 847 and 848 (https://doi.org/10.3133/ds8487 and https:/ ... |
Info |
Coastal Land-Cover Data Derived from Landsat Satellite Imagery, Delaware Bay, New Jersey to Shinnecock Bay, New York, 2008-2022
This data release serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery from Delaware Bay, New Jersey (NJ) to Shinnecock Bay, New York (NY). A total of 119 images acquired between 2008 and 2022 were analyzed to produce 143 thematic land-cover raster datasets. Water, bare earth (sand), and vegetated land-cover classes were mapped using successive thresholding and masking of the modified normalized difference water index (mNDWI), the normalized difference bare ... |
Info |
Coastal Land-Cover Data Derived from Landsat Satellite Imagery, Northern Chandeleur Islands, Louisiana, 1984-2019
The data release (Bernier, 2021) associated with this metadata record serves as an archive of coastal land-cover and feature datasets derived from Landsat satellite imagery at the northern Chandeleur Islands, Louisiana. To minimize the effects of tidal water-level variations, 75 cloud-free, low-water images acquired between 1984 and 2019 were analyzed. Water, bare earth (sand), vegetated, and intertidal land-cover classes were mapped from Hewes Point to Palos Island using successive thresholding and masking ... |
Info |
Coastal Marine Geology Program Video and Photograph Portal
Access to the U.S. Geological Survey (USGS) Coastal and Marine Geology Program’s (CMGP) vast collection of unique and valuable seafloor and coastal imagery is made available in the CMGP Video and Photograph Portal. The portal provides a single location for data discovery and viewing. The CMGP and our research partners invest immense resources collecting, processing, and archiving seafloor and oblique coastal video and photographs. Until the publication of the CMGP Video and Photograph Portal in 2015, only ... |
Info |
Coastal Multibeam Bathymetry and Backscatter Data Collected in June 2021 from Rockaway Peninsula, New York
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), June 18-25, 2021. This dataset, Rockaway_2021_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid and the dataset Rockaway_2021_MBES ... |
Info |
Coastal Multibeam Bathymetry and Backscatter Data Collected in May 2021 From Seven Mile Island, New Jersey
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore extent of Seven Mile Island, New Jersey, from May 19-23, 2021. The download file, 7Mile_2021_MBES_xyz.zip, includes processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. The download file, 7Mile_2021_MBES ... |
Info |
Coastal Multibeam Bathymetry and Backscatter Data Collected in May 2023 from Rockaway Peninsula, New York
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), from May 6-16, 2023. This dataset, Rockaway_2023_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid and the dataset Rockaway_2023_MBES ... |
Info |
Coastal Multibeam Bathymetry and Backscatter Data Collected in May 2023 From Seven Mile Island, New Jersey
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore extent of Seven Mile Island, New Jersey (NJ), from May 18-27, 2023. The download file, 7Mile_2023_MBES_xyz.zip, includes processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. The download file, 7Mile_2023_MBES ... |
Info |
Coastal Multibeam Bathymetry and Backscatter Data Collected in October 2019 from Rockaway Peninsula, New York: Leg 1
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), from October 4-6, 2019. This dataset, Rockaway_2019_MBES_Leg1_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid from the first leg of the ... |
Info |
Coastal Multibeam Bathymetry and Backscatter Data Collected in October 2019 from Rockaway Peninsula, New York: Leg 2
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, seaward side of Rockaway Peninsula, New York (NY), from October 24-29, 2019. This dataset, Rockaway_2019_MBES_Leg2_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid from the second leg of ... |
Info |
Coastal Multibeam Bathymetry Data Collected in 2018 Offshore of Seven Mile Island, New Jersey
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) offshore of Seven Mile Island, New Jersey, September 6-8, 2018 and September 21-23, 2018. This dataset, presented as Seven_Mile_Island_2018_MBES_WGS84_UTM18N_xyz.zip and Seven_Mile_Island_2018_MBES_NAD83_NAVD88_GEOID12B_xyz.zip, includes the processed elevation point data ... |
Info |
Coastal Multibeam Bathymetry Data Collected in 2019 off of Santa Rosa Island, Florida
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) offshore of Santa Rosa Island, Florida (FL), June 15-29, 2019. This dataset, Santa_Rosa_Island_2019_MBES_UTM16N_xyz.zip, includes the processed elevation point data (XYZ) as derived from a 1-meter (m) bathymetric grid. |
Info |
Coastal Multibeam Bathymetry Data Collected in August 2017 from the Chandeleur Islands, Louisiana
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) offshore of the Chandeleur Islands, Louisiana, August 9-12, 2017. This dataset, Chandeleur_Islands_2017_MBB_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. |
Info |
Coastal Multibeam Bathymetry Data Collected in August 2018 from the Chandeleur Islands, Louisiana
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) offshore of the Chandeleur Islands, Louisiana, August 16-21, 2018. This dataset, Chandeleur_ Islands_2018_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. |
Info |
Coastal Multibeam Bathymetry Data Collected in August 2019 from Cedar Island, Virginia
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), covering the nearshore, seaward of Cedar Island, Virginia, from August 14-21, 2019. This dataset, Cedar_ Island_2019_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. Additionally, the dataset Cedar_Island ... |
Info |
Coastal Multibeam Bathymetry Data Collected in August 2022 From Breton Island, Louisiana
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) covering the nearshore, Gulf side of Breton Island, Louisiana (LA), from August 2-5, 2022. This dataset, Breton_2022_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. |
Info |
Coastal Single-beam Bathymetry Data Collected in 2022 From Breton Island, Louisiana
As part of the restoration monitoring component of the Deepwater Horizon early restoration project, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted single-beam and multibeam bathymetry surveys around Breton Island, Louisiana (LA), from August 3-5, 2022, for Field Activity Number (FAN) 2022-328-FA. The purpose of data collection was to develop a baseline digital elevation model of the seafloor around Breton Island for comparison with both ... |
Info |
Coastal Single-beam Bathymetry Data Collected in 2022 off Seven Mile Island, New Jersey
To determine continued change to the shoreface morphology and evolution at Seven Mile Island, New Jersey, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) in St. Petersburg, Florida, conducted a single-beam bathymetric survey of Seven Mile Island, New Jersey, from April 29 - May 2, 2022. During this study, single-beam bathymetry data were collected using a personal watercraft (PWC) and a floating-towed-seismic sled. Both the PWC and the seismic sled ... |
Info |
Coastal Single-beam Bathymetry Data Collected in August 2018 from the Chandeleur Islands, Louisiana
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS - SPCMSC) in St. Petersburg, Florida, conducted a single-beam bathymetric survey of the northern Chandeleur Islands, August 17-21, 2018. During this study, bathymetry data were collected aboard the research vessel (R/V) Jabba Jaw, a 21-foot (ft) twin hulled vessel outfitted with a single-beam echosounder. |
Info |
Coastal Single-beam Bathymetry Data Collected in August 2019 from Cedar Island, Virginia
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS - SPCMSC) in St. Petersburg, Florida, conducted a single-beam bathymetric survey of Cedar Island, Virginia, August 9-15, 2019. During this study, bathymetry data were collected aboard a towed seismic sled outfitted with a single-beam echosounder. |
Info |
Coastal Single-beam Bathymetry Data Collected in September and October 2019 from Rockaway Peninsula, New York
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS - SPCMSC) in St. Petersburg, Florida, conducted a single-beam bathymetric survey of Rockaway Peninsula, New York September 27 - October 6, 2019. During this study, bathymetry data were collected aboard two personal watercraft (PWC) outfitted with single-beam echosounders, as well as a towed seismic sled with similar instrumentation. |
Info |
Coast Train--Labeled imagery for training and evaluation of data-driven models for image segmentation
Coast Train is a library of images of coastal environments, annotations, and corresponding thematic label masks (or ‘label images’) collated for the purposes of training and evaluating machine learning (ML), deep learning, and other models for image segmentation. It includes image sets from both geospatial satellite, aerial, and UAV imagery and orthomosaics, as well as non-geospatial oblique and nadir imagery. Images include a diverse range of coastal environments from the U.S. Pacific, Gulf of Mexico, ... |
Info |
CoconutIsland_2023_MBES: High-resolution Geophysical and Imagery Data Collected in May 2023 Near Fort Hase, Marine Corps Base Hawaii
An Ellipsoidally Referenced Survey (ERS) using a Norbit Winghead multibeam echosounder, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) nearshore Coconut Island, on the island of Oahu, May 7, 2023. This dataset, CoconutIsland_2023_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 0.25 meter (m) bathymetric grid and the dataset CoconutIsland_2023_MBES_Backscatter.zip includes the acoustic backscatter intensity ... |
Info |
Cold-water coral metagenomes (Lophelia pertusa) from the Gulf of Mexico and Atlantic Ocean: raw data
In 2009, three unique colonies of the cold-water coral Lophelia pertusa were sampled in the western Atlantic Ocean to examine their microbial metagenomes. Nine additional samples were collected from three sites (Viosca Knoll 826, Viosca Knoll 906, and West Florida Slope) around the Gulf of Mexico in 2009 and 2010. Previous studies have examined the bacterial associates of this coral, but to date, no cold-water coral metagenomes have been published. This analysis characterized and identified microbial ... |
Info |
Cold-water coral microbiomes (Astrangia poculata) from Narragansett Bay: sequence data
The files provided in this data release are the DNA sequence files referenced in Goldsmith and others (2019), which represent a 16S ribosomal ribonucleic acid (rRNA) gene amplicon survey of Astrangia poculata microbiomes completed using Sanger dideoxy sequencing. The coral samples were collected from Narragansett Bay at Fort Wetherill State Park, Jamestown, Rhode Island in 2015 and 2016 (Sharp and others, 2017). Sequences were obtained by first extracting DNA from a fragment of each A. poculata sample ... |
Info |
Cold-water coral microbiomes (Lophelia pertusa) from Gulf of Mexico and Atlantic Ocean: raw data
The files in this data release are the raw deoxyribonucleic acid (DNA) sequence files referenced in the submitted journal article by Christina A. Kellogg, Dawn B. Goldsmith and Michael A. Gray entitled "Biogeographic comparison of Lophelia-associated bacterial communities in the western Atlantic reveals conserved core microbiome". They represent a 16S ribosomal ribonucleic acid (rRNA) gene amplicon survey of the coral’s microbiomes completed using Roche 454 pyrosequencing with Titanium series reagents. ... |
Info |
Cold-water coral microbiomes (Primnoa spp.) from Gulf of Alaska, Baltimore Canyon, and Norfolk Canyon: raw data
The files in this data release are the raw DNA sequence files referenced in the journal article by Goldsmith and others (2018) entitled "Comparison of microbiomes of cold-water corals Primnoa pacifica and Primnoa resedaeformis, with possible link between microbiome composition and host genotype". They represent a 16S ribosomal ribonucleic acid (rRNA) gene amplicon survey of the corals’ microbiomes (Primnoa spp.) completed using Roche 454 pyrosequencing with Titanium series reagents. The 16S rRNA gene ... |
Info |
Collection, analysis, and age-dating of sediment cores from a salt marsh platform and ponds, Rowley, Massachusetts, 2014-15
Sediment cores were collected from three sites within the Plum Island Ecosystems Long-Term Ecological Research (PIE-LTER) domain in Massachusetts to obtain estimates of long-term marsh decomposition and evaluate shifts in the composition and reactivity of sediment organic carbon in disturbed marsh environments. Paired sediment cores were collected from three sites on the marsh platform and from three ponds; these cores were about 100 and 50 centimeters in length, respectively. The marsh sites had similar ... |
Info |
Collection, analysis, and age-dating of sediment cores from Herring River wetlands and other nearby wetlands in Wellfleet, Massachusetts, 2015–17
The Herring River estuary in Wellfleet, Cape Cod, Massachusetts, has been tidally restricted for more than a century by a dike constructed near the mouth of the river. Upstream from the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and brackish wetlands dominated by Phragmites australis. This estuary is now managed by the National Park Service, which plans to ... |
Info |
Collection, analysis, and age-dating of sediment cores from mangrove and salt marsh ecosystems in Tampa Bay, Florida, 2015
Coastal wetlands in Tampa Bay, Florida, are important ecosystems that deliver a variety of ecosystem services. Key to ecosystem functioning is wetland response to sea-level rise through accumulation of mineral and organic sediment. The organic sediment within coastal wetlands is composed of carbon sequestered over the time scale of the wetland’s existence. This study was conducted to provide information on soil accretion and carbon storage rates across a variety of coastal ecosystems that was utilized in ... |
Info |
Collection, analysis, and age-dating of sediment cores from mangrove wetlands in San Juan Bay Estuary, Puerto Rico, 2016
The San Juan Bay Estuary, Puerto Rico, contains mangrove forests that store significant amounts of organic carbon in soils and biomass. There is a strong urbanization gradient across the estuary, from the highly urbanized and clogged Caño Martin Peña in the western part of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part with limited urbanization. We collected sediment cores to determine carbon burial rates and vertical ... |
Info |
Collection, analysis, and age-dating of sediment cores from natural and restored salt marshes on Cape Cod, Massachusetts, 2015-16
Nineteen sediment cores were collected from five salt marshes on the northern shore of Cape Cod where previously restricted tidal exchange was restored to part of the marshes. Cores were collected in duplicate from two locations within each marsh complex: one upstream and one downstream from the former tidal restriction (typically caused by an undersized culvert or a berm). The unaltered, natural downstream sites provide a comparison against the historically restricted upstream sites. The sampled cores ... |
Info |
Collection, Analysis, and Age-Dating of Sediment Cores from Salt Marshes on the South Shore of Cape Cod, Massachusetts, From 2013 Through 2014
The accretion history of fringing microtidal salt marshes located on the south shore of Cape Cod, Massachusetts, was reconstructed from sediment cores collected in low and high marsh vegetation zones. The location of these marshes within protected embayments and the absence of large rivers on Cape Cod result in minimal sediment supply and a dominance of organic matter contribution to sediment peat. Age models based on 210-lead and 137-cesium were constructed to evaluate how vertical accretion and carbon ... |
Info |
Collection, Analysis, and Age-Dating of Sediment Cores from Salt Marshes, Rhode Island, 2016
The accretion history of fringing salt marshes in Narragansett Bay, Rhode Island, was reconstructed from sediment cores. Age models, based on excess lead-210 and cesium-137 radionuclide analysis, were constructed to evaluate how vertical accretion and carbon burial rates have changed during the past century. The Constant Rate of Supply (CRS) age model was used to date six cores collected from three salt marshes. Both vertical accretion rates and carbon burial increased from 1900 to 2016, the year the data ... |
Info |
Collection locations of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
Collections inventory for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Samples Repository (ver. 2.0, September 2023)
Since 2002, the Woods Hole Coastal and Marine Science Center’s Samples Repository supports research by providing secure storage for geological, biological, and geochemical samples; maintaining organization and an active inventory of these sample collections; and providing access to these collections for study and reuse. This collections inventory has been compiled, organized, and released as a searchable database to provide researchers and the general public with means to discover and request scientific ... |
Info |
Color-Encoded Image of 3-m Gridded Hill-Shaded Bathymetry From Long Island Sound off Branford, Connecticut (H11043_GEO_3MBATHY.TIF, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color-Encoded Image of 3-m Gridded Hill-Shaded Bathymetry From Long Island Sound off Branford Connecticut (H11043_UTM18_3MBATHY.TIF, UTM)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color-Encoded Image of 5-m Gridded Hill-Shaded Bathymetry From Long Island Sound off Bridgeport, Connecticut (H11045_GEO_5MBATHY.TIF, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color-Encoded Image of 5-m Gridded Hill-Shaded Bathymetry From Long Island Sound off Bridgeport, Connecticut (H11045_UTM18_5MBATHY.TIF, UTM)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color-Encoded Image of 5-m Gridded Hill-Shaded Bathymetry From Long Island Sound off Milford, Connecticut (H11044_GEO_5MBATHY.TIF, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color-Encoded Image of 5-m Gridded Hill-Shaded Bathymetry From Long Island Sound off Milford Connecticut (H11044_UTM18_5MBATHY.TIF, UTM)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color GeoTIFF Image of the 10-m Interpolated Bathymetric Grid of the Northern Part of National Oceanic and Atmospheric Administration (NOAA) Survey H11044 off Milford, Connecticut (H11044N_MB10M_UTM18.TIF, UTM Zone 18, WGS84)
During 2001 the NOAA Ship RUDE completed charting survey H11044 that covered a roughly 293 km2 area of the sea floor in north-central Long Island Sound, off Milford Connecticut. Although 100 percent coverage was achieved with sidescan sonar for charting purposes, only reconnaissance (spaced line) bathymetry was acquired with shallow-water multibeam and single-beam systems. Therefore, further processing was conducted at the USGS's Woods Hole Science Center to provide bathymetric datasets with more continuous ... |
Info |
Color GeoTIFF Image of the Bathymetry of National Oceanic and Atmospheric Administration (NOAA) Survey H11322 in Western Rhode Island Sound (H11322_UTM.TIF, UTM 19)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of western Rhode Island Sound using sidescan-sonar imagery and bathymetry data collected aboard the NOAA Ship RUDE, as well as historic seismic records. The mosaic, ... |
Info |
Color GeoTIFF of the Bathymetry of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_GEO.TIF. Geographic)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of central Rhode Island Sound using sidescan-sonar imagery, bathymetry data, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
Color Hill-Shaded GeoTIFF Image Showing the 2-m bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11250 in Eastern Long Island Sound (H11250_GEO_2MMBES.TIF, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color Hill-Shaded GeoTIFF Image Showing the 2-m bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11252 in Eastern Long Island Sound (H11252_2MUTM18_MB.TIF, UTM Zone 18)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color Hill-Shaded GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11361 in Eastern Long Island Sound (H11361_2MUTM18_MB.TIF, UTM Zone 18)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color Hill-Shaded GeoTIFF Image Showing the Composite 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11252 and H11361 in Eastern Long Island Sound (SMR_COMP_2MUTM.TIF, UTM, Zone 18)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Color-hillshade relief GeoTIFF image of the Potomac River/Chesapeake Bay Area (CLRHSHD_POTO_GEO.TIF, Geographic, NAD83)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Color-hillshade relief GeoTIFF image of the Potomac River/Chesapeake Bay Area (CLRHSHD_POTO.TIF, UTM, Zone 18, NAD83)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Color-shaded relief GeoTIFF image of interferometric sonar data collected by the USGS within Red Brook Harbor, MA, 2009 (RB_BathyShadedRelief_1m, 1-meter cell size)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and ... |
Info |
Color-shaded relief GeoTIFF image of interferometric sonar data collected by the USGS within Red Brook Harbor, MA, 2009 (RB_BathyShadedRelief_5m, 5-meter cell size)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 0.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (H11077_MB0.5M_GEO.TIF, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 0.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (H11077_MB0.5M_UTM19.TIF, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 1.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (H11077_MB1.5M_GEO.TIF, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 1.5-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in Woods Hole, MA (H11077_MB1.5M_UTM19.TIF, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 1-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11076 in Quicks Hole, Elizabeth Islands, MA (H11076_GEO_1MMBES.TIF, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 1-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12007 in the Vicinity of Cross Rip Channel, Nantucket Sound (H12007_1MMB_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 1-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12007 in the Vicinity of Cross Rip Channel, Nantucket Sound (H12007_1MMB_UTM19.TIF, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 25-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the vicinity of Edgartown Harbor, MA (H11346_MB25M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 25-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the vicinity of Edgartown Harbor, MA (H11346_MB25M_UTM19.TIF, UTM Zone 19, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_2MMB_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_2MMB_UTM18.TIF, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11445 North of Plum Island, New York (H11445_MB2M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11445 North of Plum Island, New York (H11445_MB2M_UTM.TIF, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11446 North of Orient Point, New York (H11446_MB2M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11446 North of Orient Point, New York (H11446_MB2M_UTM.TIF, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11922 in Rhode Island Sound (H11922_2MMB_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During July-August 2008 NOAA completed hydrographic ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11922 in Rhode Island Sound (H11922_2MMB_UTM19.TIF, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During July-August 2008 NOAA completed hydrographic ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11995 in Rhode Island Sound (H11995_MB2M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11995 in Rhode Island Sound (H11995_MB2M_UTM.TIF, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11996 in Rhode Island Sound (H11996_MB2M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11996 in Rhode Island Sound (H11996_MB2M_UTM.TIF, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_2MMB_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_2MMB_UTM18.TIF, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11999 North of Duck Pond Point, New York (H11999_MB2M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11999 North of Duck Pond Point, New York (H11999_MB2M_UTM.TIF, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12012 Offshore in Northeastern Long Island Sound (UTM Zone 18, NAD83, H12012_2MMB_UTM18.TIF)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), has produced detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Northeastern Long Island Sound (H12013_2M_UTM18.TIF, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_MB2M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_MB2M_UTM.TIF, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12296 in Block Island Sound (H12296_MB2M_GEO.TIF, Geographic, WGS 84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12296 in Block Island Sound (H12296_MB2M_UTM.TIF, UTM Zone 19, NAD 83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12298 in Block Island Sound (UTM Zone 19, NAD 83, H12298_MB2M_UTM.TIF)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along western Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12299 in Block Island Sound (UTM Zone 19, NAD 83, H12299_MB2M_UTM.TIF)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs and ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the 3-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11079 in Great Round Shoal Channel, Offshore Massachusetts (H11079_3MUTM19_MB.TIF, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12324 in Narragansett Bay (UTM Zone 19, NAD 83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along southern Narragansett Bay, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During September 2014, bottom photographs and surficial ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 2-m and Interpolated 10-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Northeastern Long Island Sound (H12013_INT2M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 2-m and Interpolated 10-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Northeastern Long Island Sound (H12013_INT2M_UTM18.TIF, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 offshore in eastern Long Island Sound and westernmost Block Island Sound (ELISCOMB_4MBAT_GEO.TIF, Geographic, WGS84)
The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 Offshore in Eastern Long Island Sound and Westernmost Block Island Sound (ELISCOMB_4MBAT_UTM18.TIF, UTM Zone 18, NAD83)
The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441 and H11224 Offshore of New London, CT (NLONDON_MBLIDAR_GEO.TIF, Geographic, WGS84)
Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442 and H11225 Offshore of Niantic, CT (NIANTIC_MBLIDAR_GEO.TIF, Geographic, WGS84)
Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442, H11441, H11224, and H11225 Offshore of New London and Niantic, CT (NLNB_MBLIDAR_GEO.TIF, Geographic, WGS84)
Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11922, H11995, H11996, H12009, H12010, H12011, H12015, H12023, H12033, H12137, H12139, H12296, H12298, and H12299 Offshore in Rhode Island and Block Island Sounds (RICOMB_4MMB_GEO.TIF, Geographic, WGS 84)
Detailed bathymetric maps of the sea floor in Block Island and Rhode Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models (DTMs) from individual surveys provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11922, H11995, H11996, H12009, H12010, H12011, H12015, H12023, H12033, H12137, H12139, H12296, H12298, and H12299 Offshore in Rhode Island and Block Island Sounds (RICOMB_4MMB_UTM19.TIF, UTM Zone 19, NAD 83)
Detailed bathymetric maps of the sea floor in Block Island and Rhode Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models (DTMs) from individual surveys provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H12009, H12010, H12011, H12015, H12033, H12137, and H12139 Offshore in Block Island Sound (BISOUND_4MMB_GEO.TIF, Geographic, WGS84)
The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ... |
Info |
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H12009, H12010, H12011, H12015, H12033, H12137, and H12139 Offshore in Block Island Sound (BISOUND_4MMB_UTM19.TIF, UTM Zone 19, NAD83)
The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ... |
Info |
Color Shaded-Relief Image Showing the 2-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11255 in Long Island Sound (H11255_GEO_2MBATHY.TIF, Geographic)
Digital terrain models (DTMs) produced from multibeam bathymetric data provide valuable base maps for marine geological interpretations. These maps help define the geological variability of the seafloor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, and the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, ... |
Info |
Color Shaded-relief TIFF Image of High-resolution Bathymetry, North Carolina, Pamlico Sound Area
The Neuse River Estuary in North Carolina is a broad, V-shaped water body located on the southwestern end of Pamlico Sound. This estuary suffers from severe eutrophication for which several water quality models have recently been developed to aid in the management of nutrient loading to the estuary. In an effort to help constrain model estimates of the fraction of nutrients delivered by direct ground-water discharge, continuous resistivity profile (CRP) measurements were made during the spring of 2004 and ... |
Info |
Columbia River ESTR00030 Reformatted Raw Navigation Text Files
A two-week field operation was conducted in the John Day Reservoir on the Columbia River to image the floor of the pool, to measure the distribution and thickness of post-impoundment sediment, and to verify these geophysical data with video photography and bottom sediment samples. The field program was a cooperative effort between the USGS Coastal and Marine Geology Team of the Geologic Division and the USGS Columbia River Research Laboratory of the Biological Resources Division. The data collection was ... |
Info |
Columbia River ESTR00030 Seismic Shotpoint Navigation every 100 shots
A two-week field operation was conducted in the John Day Reservoir on the Columbia River to image the floor of the pool, to measure the distribution and thickness of post-impoundment sediment, and to verify these geophysical data with video photography and bottom sediment samples. The field program was a cooperative effort between the USGS Coastal and Marine Geology Team of the Geologic Division and the USGS Columbia River Research Laboratory of the Biological Resources Division. The data collection was ... |
Info |
Columbia River ESTR00030 Survey Tracklines collected in 2000
A two-week field operation was conducted in the John Day Reservoir on the Columbia River to image the floor of the pool, to measure the distribution and thickness of post-impoundment sediment, and to verify these geophysical data with video photography and bottom sediment samples. The field program was a cooperative effort between the USGS Coastal and Marine Geology Team of the Geologic Division and the USGS Columbia River Research Laboratory of the Biological Resources Division. The data collection was ... |
Info |
Combined 2-m and Interpolated 10-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Northeastern Long Island Sound (H12013_INTGEO, Geographic, WGS-84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
Combined 2-m and Interpolated 10-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Northeastern Long Island Sound (H12013_INTUTM, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
Combined PDF of Acquisition Logs Maintained on Cruise 06018 (CRUISE06018_ACQUISITIONLOGS.PDF)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Combined PDF of Acquisition Logs Maintained on Cruise 06018 (CRUISE06018_ACQUISITIONLOGS.PDF)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Combined PDF of acquisition logs maintained on U.S. Geological Survey Field Activity 2009-021-FA in Greenwich Bay, Rhode Island, May 14-15, 2009
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Comparison of methane concentration and stable carbon isotope data for natural samples analyzed by discrete sample introduction module - cavity ring down spectroscopy (DSIM-CRDS) and traditional methods
A discrete sample introduction module (DSIM) was developed and interfaced to a cavity ring-down spectrometer to enable measurements of methane and CO2 concentrations and 13C values with a commercially available cavity ring-down spectrometer (CRDS). The DSIM-CRDS system permits the analysis of limited volume (5 - 100-ml) samples ranging six orders-of-magnitude from 100% analyte to the lower limit of instrument detection (2 ppm). We demonstrate system performance for methane by comparing concentrations and ... |
Info |
Composite 2-m ASCII Bathymetric grid from National Oceanic and Atmospheric Administration (NOAA) Surveys H11252 and h11361 of the Sea Floor in Eastern Long Island Sound (SMR_COMP_2MUTM_XYZ.TXT, UTM Zone18)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Composite 2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Surveys H11252 and H11361 from Eastern Long Island Sound (COMP2M_UTM, UTM Zone 18)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Composite Grayscale Image of the Sidescan Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11076 of the Sea Floor in Quicks Hole, MA (H11076_GEO_1MSSS.TIF, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Composite interferometric backscatter mosaic collected by the U.S. Geological Survey in Muskeget Channel, MA, October 2010 (UTM Zone 19N, WGS 84, GeoTIFF, 1-m resolution, muskeget_swath_1m.tif)
These data were collected in a collaboration between the Woods Hole Oceanographic Institution and the U.S. Geological Survey (USGS). The primary objective of this program was to collect baseline bathymetry for Muskeget Channel, Massachusetts, and identify areas of morphologic change within and around the channel. Repeat surveys in select areas were collected one month apart to monitor change. These data were collected to support an assessment of the effect on sediment transport that a tidal instream energy ... |
Info |
Composite interferometric backscatter mosaic collected by the U.S. Geological Survey in Woods Hole, MA in Middle Ground, MA, 201 (UTM Zone 19N, WGS 84, GeoTIFF, 1-m resolution, Swath_1m.tif)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Composite multibeam bathymetry surface of the central Cascadia Margin offshore Oregon
Data from various sources, including 2018 and 2019 multibeam bathymetry data collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) were combined to create a composite 30-m resolution multibeam bathymetry surface of central Cascadia Margin offshore Oregon. The data are available as a geoTIFF file. |
Info |
Composite multibeam bathymetry surface of the southern Cascadia Margin offshore Oregon and northern California
Data from various sources, including 2018 and 2019 multibeam bathymetry data collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) were combined to create a composite 30-m resolution multibeam bathymetry surface of southern Cascadia Margin offshore Oregon and northern California. The data are available as a geoTIFF file. |
Info |
Composite sidescan-sonar mosaic collected by the National Oceanic and Atmospheric Administration offshore of Massachusetts in the approaches to Boston Harbor near Hull (DH_NOAA_backscatter1m, UTM Zone 19N, GeoTIFF)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in Woods Hole, MA in Vineyard Sound and Buzzards Bay, MA, 201 (UTM Zone 19N, WGS 84 GeoTIFF, 1-m resolution, Sidescan_2011-013_1m.tif)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in Woods Hole, MA north of Nashawena Island, western Elizabeth Islands, MA, 2010 (2010-003-FA_SSmosaic_Nashawena.tif, UTM Zone 19N GeoTIFF)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in Woods Hole, MA offshore of the Elizabeth Islands, MA, 2010 (2010-003-FA_SSmosaic_BuzzardsBay.tif, UTM Zone 19N GeoTIFF)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in Woods Hole, MA on the Vineyard Sound side of the western Elizabeth Islands, MA, 2010 (2010-003-FA_SSmosaic_MVsound.tif, UTM Zone 19N GeoTIFF)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey in Woods Hole, MA surrounding Penikese Island of the western Elizabeth Islands, MA, 2010 (2010-003-FA_SSmosaic_Penikese.tif, UTM Zone 19N GeoTIFF)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_USGS_backscatter1m, UTM Zone 19N, GeoTIFF)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (MOSAIC_06015, UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (MOSAIC_07007, UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Composite Sidescan-Sonar Mosaic collected by the U.S. Geological Survey offshore of the Grand Strand, SC (1999 to 2003) (MOSAIC, GeoTIFF)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Composite sidescan-sonar mosaic collected in Buzzards Bay by the U.S. Geological Survey offshore of Massachusetts in 2009, 2010, and 2011 (BB_backscatter1m.tif GeoTIFF image, UTM Zone 19N WGS84)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
Composite sidescan sonar mosaic in UTM zone 18 projection of NOAA survey H11043 off Branford, Connecticut (H11043_UTM18_WGS84.TIF)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Composite sidescan sonar mosaic of National Oceanic and Atmospheric Administration (NOAA) survey H11044 in West-Central Long Island Sound off Milford, Connecticut (H11044_GEO_WGS84.TIF, geographic)
The U.S. Geological Survey, in cooperation with the National Oceanographic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward ... |
Info |
Composite Sidescan Sonar Mosaic of National Oceanic and Atmospheric Administration (NOAA) Survey H11320 in Rhode Island Sound (H11320_1M_SSS_UTM19.TIF, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, including : (1 ... |
Info |
Composite Sidescan-Sonar Mosaic, Pulley Ridge: UTM, Zone 17 Projection (COMPOSITE_UTM.TIF)
Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in the southeastern Gulf of Mexico about 250 km west of Cape Sable, Florida. This barrier island chain formed during the initial stage of the Holocene marine transgression. These islands were then submerged and left abandoned near the outer edge of the Florida Platform. The southern portion of Pulley Ridge hosts zooxanthellate scleractinian corals, ... |
Info |
Composite swath bathymetry gridded data collected by the U.S. Geological Survey surrounding the eastern Elizabeth Islands and northern Martha's Vineyard, MA, 2011 (Esri grid, UTM Zone19 N, WGS 84, 5-m resolution, allswathi_5m)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Compound specific isotope analysis of amino acids from Escanaba Trough sediments, off the coast of Northern California, USA, from May-June 2022.
Stable carbon isotope ratios (d13C), stable nitrogen isotope ratios (d15N), and molar percentage data of amino acids were determined on one to five cm subsamples of sediment push cores collected from the Escanaba Trough during May to June 2022. |
Info |
Computed tomography (CT) scans of cored collected in Ozette Lake, Washington, between 2019 and 2021
Sediment cores were collected in Ozette Lake, Washington, from 2019 to 2021. Cores were scanned using Computed Tomography (CT). These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
Computed tomography (CT) scans of push cores from Loki's Castle and Favne vent fields, Mohns Ridge
This portion of the data release presents computed tomography (CT) images from push cores collected from Loki's Castle and Favne vent fields, on the Mohns Ridge, in the Norwegian Sea. These data were collected in 2018 and 2019 (USGS Field Activity 2018-691-DD and 2019-624-FA). A Geotek Rotating X-Ray CT (RXCT) system was used to acquire x-ray images and perform CT reconstructions of unsplit core segments. The full three-dimensional data set consists of individual axial slices which are reconstructed images ... |
Info |
Computed Tomography (CT) scans of sediment cores collected from Montague Island, AK
This dataset includes computed tomography (CT) scans of sediment cores collected from coastal environments on Montague Island, Alaska. The cores were collected with hand driven peat augers to assess environmental changes related to tectonic uplift caused by historic and prehistoric earthquakes. |
Info |
Computed Tomography (CT) scans of vibracores from Searsville Lake, Jasper Ridge Biological Preserve, Stanford, California
This portion of the data release presents computed tomography (CT) images from vibracores collected from Searsville Lake, Jasper Ridge Biological Preserve, Stanford, California in October 2018 (USGS Field Activity 2018-682-FA). A Geotek Rotating X-Ray CT (RXCT) system was used to acquire x-ray images and perform CT reconstructions of unsplit core segments. The full three-dimensional data set consists of individual axial slices which are reconstructed images in TIFF format. These axial slices are oriented ... |
Info |
Continental Margin Mapping Program (CONMAP) sediments grainsize distribution for the United States East Coast Continental Margin (CONMAPSG)
Sediments off the eastern United States vary markedly in texture - the size, shape, and arrangement of their grains. However, for descriptive purposes, it is typically most useful to classify these sediments according to their grain-size distributions. Starting in 1962, the U.S. Geological Survey (USGS) and the Woods Hole Oceanographic Institution (WHOI) began a joint program to study the marine geology of the continental margin off the Atlantic coast of the United States. As part of this program and ... |
Info |
Continuous Resistivity Profiling, Electrical Resistivity Tomography and Hydrologic Data Collected in 2017 from Indian River Lagoon, Florida
Extending 200 kilometers (km) along the Atlantic Coast of Central Florida, Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States. The lagoon is characterized by shallow, brackish waters and a width that varies between 0.5 and 9.0 km; there is significant human development along both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center used continuous resistivity profiling (CRP, a towed ... |
Info |
Continuous terrain model for water circulation studies, Barnegat Bay, New Jersey (10 meter resolution, 32-bit GeoTIFF, UTM 18, WGS 84)
Water quality in the Barnegat Bay estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Bay watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events. The scale of ... |
Info |
Contour--Offshore of Gaviota Map Area, California
This part of DS 781 presents data for bathymetric contours for several seafloor maps of the Offshore of Gaviota Map Area, California. The vector data file is included in "Contours_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore ... |
Info |
Contour--Offshore of Point Conception Map Area, California
This part of DS 781 presents data for bathymetric contours for several seafloor maps of the Offshore of Point Conception Map Area, California. The vector data file is included in "Contours_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map ... |
Info |
Contours--Drakes Bay and Vicinity, California
This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Contours_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, ... |
Info |
Contours--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the bathymetric contours of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Contours_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter, R.W ... |
Info |
Contours--Offshore of Half Moon Bay, California
This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Half Moon map area, California. The vector data file is included in "Contours_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross ... |
Info |
Contours--Offshore of Pacifica, California
This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Pacifica map area, California. The vector data file is included in "Contours_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E. ... |
Info |
Contours--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Scott Creek map area, California. The vector data file is included in "Contours_OffshoreScottCreek.zip", which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., ... |
Info |
Contours--Offshore Santa Cruz, California
This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Santa Cruz map area, California. The vector data file is included in "Contours_OffshoreSantaCruz.zip", which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., ... |
Info |
Coordinates of sediment cores collected in Ozette Lake Washington, from 2019 to 2021.
Sediment cores and sub-bottom profiles were collected in Ozette Lake, Washington, from 2019 to 2021. These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
Coral cores collected in Dry Tortugas National Park, Florida, U.S.A.: Photographs and X-rays
Cores from living coral colonies were collected from Dry Tortugas National Park, Florida, to obtain skeletal records of past coral growth and allow geochemical reconstruction of environmental variables during the corals’ centuries-long lifespans. The samples were collected as part of the U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies project (http://coastal.er.usgs.gov/crest/) that provides science to assist resource managers tasked with the stewardship of coral reef resources. Three colonies ... |
Info |
Coral geochemistry time series from Kahekili, west Maui
Geochemical analysis (including stable boron, boron:calcium ratio, and carbon and oxygen isotopes) were measured from coral cores collected in July 2013 from the shallow reef at Kahekili in Kaanapali, west Maui, Hawaii from scleractinian Porites lobata. |
Info |
Coral growth parameters, Kahekili, west Maui
Surface runoff and submarine groundwater discharge in particular are known vectors to the coastal ocean of elevated nutrients and contaminants leading to eutrophication, algal overgrowth, and coral disease. Freshwater discharging directly from submarine groundwater vents off of Kahekili Beach Park, Kaanapali, in West Maui contains elevated nutrient concentrations and lower pH values. Coral cores were collected in July 2013 from the shallow reef at Kahekili in Kaanapali, West Maui, Hawaii from ... |
Info |
Coral microbiome preservation and extraction method comparison of samples collected in March and August 2018-raw data
The files in this this U.S. Geological Survey (USGS) data release (Kellogg and others, 2021) are the raw 16S ribosomal ribonucleic acid (rRNA) gene amplicon deoxyribonucleic acid (DNA) sequence files from 90 samples of tropical and cold-water corals, as well as sequence files from a mock community and extraction blanks for the kits used for DNA extraction. The mock community was sequenced in order to assess any biases in the sequencing technology, while extraction blanks were sequenced in order to identify ... |
Info |
Core descriptions and sedimentologic data from vibracores and sand augers collected in 2021 and 2022 from Fire Island, New York
In 2021 and 2022, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and the USGS New York Water Science Center (NYWSC), on behalf of SPCMSC, conducted sediment sampling and ground penetrating radar (GPR) surveys at Point O' Woods and Ho-Hum Beach (NYWSC, 2021) and Watch Hill, Long Cove, and Smith Point (SPCMSC, 2022), Fire Island, New York. These data complement previous SPCMSC GPR and sediment sampling surveys conducted at Fire Island in 2016 ... |
Info |
Core descriptions and sedimentologic data from vibracores collected in 2021 from Central Florida Gulf Coast Barrier Islands
In 2021, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted ground penetrating radar (GPR) and sediment sampling surveys on barrier islands located along the central Florida Gulf Coast (CFGC), Pinellas County, Florida (FL). This study investigated the past evolution of the CFGC from field sites at Anclote Keys, Caladesi and Honeymoon Islands, and Fort DeSoto to quantify changes that occurred along these barrier systems prior to the 20th ... |
Info |
Core locations, segment depths, and estimated compaction from vibracores collected in Searsville Lake, Jasper Ridge Biological Preserve, Stanford, California
This portion of the data release presents measurements and data from two vibracores (JRBP2018-VC01A and JRBP2018-VC01B) collected from Searsville Lake, a reservoir in the Jasper Ridge Biological Preserve, Stanford, California, on October 29, 2018 (USGS Field Activity 2018-682-FA). Vibracoring introduced significant amounts of sediment compaction. The core depths in other datasets of this data release are not corrected for compaction. Translated depths are provided in this portion of the data release that ... |
Info |
Core logger data from vibracores collected offshore Oceanside to San Diego, southern California, during field activity 2018-638-FA from 2018-05-22 to 2018-05-26
This section of the data release contains core logger tabular data of 41 vibracores that were collected aboard the R/V Bold Horizon in 2018 on U.S. Geological Survey Field Activity 2018-638-FA offshore Oceanside to San Diego, southern California. The cores were analyzed for sound velocity (P-wave) and gamma ray density. The logging was performed at 1-cm intervals from the top of each core section. In addition to the core logger data, the location of the cores are available as either a comma-delimited file ... |
Info |
Core logger data from vibracores collected offshore San Francisco, California, during field activity 2019-649-FA from 2019-10-11 to 2019-10-18
This section of the data release contains core logger tabular data of 34 vibracores that were collected aboard the R/V Bold Horizon in 2019 on U.S. Geological Survey Field Activity 2019-649-FA offshore San Francisco, California. The cores were analyzed for gamma ray density and magnetic susceptibility. The logging was performed at 1-cm intervals from the top of each core section. In addition to the core logger data, the locations of the cores are available as either a comma-delimited file or a shapefile. |
Info |
CoSMoS 3.2 Northern California projected flood depth and duration: Humboldt County
These data contain maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. |
Info |
CoSMoS 3.2 Northern California projected flood hazards: Humboldt County
These data contain geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. |
Info |
CoSMoS 3.2 Northern California projected ocean current hazards: Humboldt County
These data contain maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. |
Info |
CoSMoS 3.2 Northern California projected water level: Humboldt County
These data contain model-derived maximum water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. |
Info |
CoSMoS 3.2 Northern California projected wave hazards: Humboldt County
These data contain maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. |
Info |
CoSMoS 3.2 Northern California sub-regional tier 2 FLOW-WAVE model input files
This data set consists of physics-based Delft3D-FLOW and WAVE hydrodynamic model input files used for Coastal Storm Modeling System (CoSMoS) sub-regional tier 2 simulations. Sub-regional tier 2 simulations cover portions of the Northern California open-coast region, from Point Arena to the California/Oregon state border, and they provide boundary conditions to higher-resolution simulations. Simulations are run for several storm events (covering a range of no storm, 1-year, 20-year, and 100-year coastal ... |
Info |
CoSMoS 3.2 Northern California sub-regional tier 3 2D XBeach model input files
This data set consists of 2D XBeach model input files used for Coastal Storm Modeling System (CoSMoS) sub-regional tier 3 simulations. Sub-regional tier 3 simulations cover portions of the Northern California open-coast region for Humboldt County and they provide final modeled hazard outputs going into projected hazard products. Simulations are run for several storm events (covering a range of no storm, 1-year, 20-year, and 100-year coastal storm conditions) and sea-level rise (SLR) scenarios. |
Info |
CoSMoS 3.2 Northern California Tier 1 FLOW-WAVE model input files
This data set consists of physics-based Delft3D-FLOW and WAVE hydrodynamic model input files used for Coastal Storm Modeling System (CoSMoS) Tier 1 simulations. Tier 1 simulations cover the Northern California open-coast region, from the Golden Gate Bridge to the California/Oregon state border, and they provide boundary conditions to higher-resolution simulations. Simulations are run for several storm events (covering a range of no storm, 1-year, 20-year, and 100-year coastal storm conditions) and sea-level ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 100-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 1-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 20-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: average conditions in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS Whatcom County model input files
This data set consists of physics-based XBeach and SFINCS hydrodynamic model input files used for Coastal Storm Modeling System (CoSMoS) Tier 3 simulations. This data release is for Whatcom County in Washington State and presents the final tier 3 models used to produce output data that is then post-processed into final CoSMoS products. Example model input and configuration files are included for a single domain and SLR scenario, with the full modelling framework iterating on this process to simulate ... |
Info |
Coupled ADCIRC+SWAN simulations of Lake Superior with surface ice cover in February 2020
The analyses of the Great Lakes Environmental Research Laboratory's (GLERL) historical ice cover data during 1973–2021 indicate that warmer winters with reduced surface ice cover have become more frequent in the last two decades (1995–2021) compared to the previous decades (1973–1995) in the Great Lakes. In the past two decades, for example, years with lower-than-normal ice cover have become more frequent in Lake Superior, which has a history of freezing almost completely. These observations suggest a ... |
Info |
COW_250M_TM_NAD27.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar composite mosaic (TM, 250 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched the GLORIA (Geological LOng ... |
Info |
COW_Q01.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (1 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q02.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (2 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q03.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (3 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q04.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (4 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q05.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (5 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q06.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (6 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q07.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (7 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q08.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (8 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q09.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (9 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q10.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (10 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q11.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (11 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q12.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (12 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q13.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (13 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q14.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (14 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q15.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (15 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q16.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (16 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q17.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (17 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q18.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (18 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q19.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (19 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q20.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (20 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q21.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (21 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q22.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (22 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q23.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (23 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q24.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (24 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q25.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (25 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q26.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (26 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q27.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (27 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q28.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (28 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q29.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (29 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q30.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (30 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q31.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (31 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q32.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (32 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q33.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (33 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q34.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (34 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q35.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (35 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
COW_Q36.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (36 of 36) (TM, 50 m, NAD27)
In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng ... |
Info |
CRLS97007 sidescan-sonar track lines on the inner continental shelf off the northern Oregon and southern Washington coast from U.S. Geological Survey field activity 1997-007-FA
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan-sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
CRLS98014 sidescan-sonar track lines on the inner continental shelf off the northern Oregon and southern Washington coast from U.S. Geological Survey field activity 1998-014-FA
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan-sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Crocker Reef, Florida, 2016-2017 Seafloor Elevation Stability Models, Maps, and Tables
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2016 and 2017 at Crocker Reef near Islamorada, Florida (FL), within a 33.62 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Yates and others (2019) derived from an elevation-change analysis between two elevation datasets acquired in 2016 and 2017 using ... |
Info |
Crocker Reef, Florida, 2017-2018 Seafloor Elevation Stability Models, Maps, and Tables
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2017 and 2018 at Crocker Reef near Islamorada, Florida (FL), within a 6.11 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Yates and others (2019) derived from an elevation-change analysis between two elevation datasets acquired in 2017 and 2018 using ... |
Info |
CTD (conductivity-temperature-depth) data collected by the U.S. Geological Survey on Stellwagen Bank during six surveys aboard the R/V Auk, May 2016 to April 2019
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
CTD (conductivity-temperature-depth) data collected by the U.S. Geological Survey on Stellwagen Bank during three surveys aboard the R/V Auk, September 2020 to August 2021
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2013-044-FA, aboard the R/V Auk, November 5, 15, and 21, 2013
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-015-FA, aboard the R/V Auk, May 22-23 and 29-30, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-055-FA, aboard the R/V Auk, September 23 and 24, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-066-FA, aboard the R/V Auk, November 10, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-070-FA, aboard the R/V Auk, December 12, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2015-017-FA, aboard the R/V Auk, May 18-19, 29, and June 3, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2015-074-FA, aboard the R/V Auk, December 1, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2016-004-FA, aboard the R/V Auk, January 28, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2016-038-FA, aboard the R/V Auk, Sept. 16 and 19, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-030-FA, aboard the R/V Auk, May 18-23, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-043-FA, aboard the R/V Auk, Aug. 22 and 23, 2017
This field activity is part of an effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000-scale) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The data collected in this study will aid research on the ecology of fish and invertebrate species that inhabit the region. On August 22 and 23, 2017, the U.S. Geological ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-044-FA, aboard the R/V Auk, September 12-14, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank during U.S. Geological Survey field activity 2019-008-FA, aboard the R/V Auk, July 30, 31, and August 1, 2019
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank on U.S. Geological Survey field activity 2015-062-FA, aboard the R/V Auk, Oct. 21 and 22 and Nov. 3 and 4 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD (conductivity-temperature-depth) data collected on Stellwagen Bank on U.S. Geological Survey field activity 2017-009-FA, aboard the R/V Auk, Jan. 30, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
CTD profile measurements collected along the Cascadia margin for the FK190612 expedition in June 2019
CTD (Conductivity Temperature Depth) data were collected along the Cascadia margin for the FK190612 expedition in June 2019 |
Info |
CTD profile measurements collected off California and Oregon during NOAA cruise RL-19-05 (USGS field activity 2019-672-FA) from October to November 2019
CTD (Conductivity Temperature Depth) data were collected offshore of California and Oregon from October to November 2019 during NOAA cruise RL-19-05 (USGS field activity 2019-672-FA). This data release supersedes version 1.0, published in August 2020 at https://doi.org/10.5066/P9ZS1JX8. Versioning details are documented in the accompanying VersionHistory_P9JKYWQU.txt file. |
Info |
CTD profile measurements collected off California and Oregon during NOAA cruise SH-18-12 (USGS field activity 2018-663-FA) from October to November 2018
CTD (Conductivity Temperature Depth) data were collected offshore of California and Oregon from October to November 2018 during NOAA cruise SH-18-12 on the R/V Bell M. Shimada (USGS field activity 2018-663-FA). This data release supersedes version 2.0, published in September 2021 at https://doi.org/10.5066/P99DIQZ5. Versioning details are documented in the accompanying VersionHistory_P99MJ096.txt file. |
Info |
CURRENT AND SEDIMENT TRANSPORT STUDIES ON GEORGES BANK
A collection of time-series oceanographic data was obtained from locations on Georges Bank and adjacent continental shelf between 1975 and 1984. Measurements available include current, temperature, pressure, light transmission (beam attenuation). The time series is not continuous at any specific location. |
Info |
Curvature--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the curvature map of the Hueneme Canyon and vicinity map area, California. The raster data file is included in "Curvature_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter, R.W., ... |
Info |
CYM_250M_MER_NAD27.TIF - Cayman Trough GLORIA sidescan-sonar composite mosaic (MER, 250 m, Clarke 1866)
From October 22 to November 22, 1985 the U.S. Geological Survey (USGS) conducted a single to survey to ensonify the Cayman Trough. The survey took place over the coastal region of the spreading ridge and along one line to the eastern extremity of the Trough. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous ... |
Info |
CYM_Q01.TIF - Cayman Trough GLORIA sidescan-sonar data mosaic (1 of 2) (Mercator, 50m, Clarke 1866)
From October 22 to November 22, 1985 the U.S. Geological Survey (USGS) conducted a single to survey to ensonify the Cayman Trough region. The survey took place over the coastal region of the spreading ridge and along one line to the eastern extremity of the Trough. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce ... |
Info |
CYM_Q02.TIF - Cayman Trough GLORIA sidescan-sonar data mosaic (2 of 2) (Mercator, 50m, Clarke 1866)
From October 22 to November 22, 1985 the U.S. Geological Survey (USGS) conducted a single to survey to ensonify the Cayman Trough region. The survey took place over the coastal region of the spreading ridge and along one line to the eastern extremity of the Trough. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce ... |
Info |
d179eg.m77t and d179eg.h77t: MGD77T data and header files for single-beam bathymetry data for field activity D-1-79-EG in the Eastern Gulf of Alaska from 05/24/1979 to 06/01/1979
Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise D-1-79-EG. The cruise was conducted in the Eastern Gulf of Alaska from May 24 to June 1, 1979. The chief scientists were Bruce Molnia from the USGS Coastal and Marine Geology office in Menlo Park, CA and Mark Wheeler. The purpose of this cruise was to collect sediment samples and cores for a microfossil study. The geophysical source was a 3.5 kilohertz (kHz) bathymetry system. These data ... |
Info |
Data acquisition logs in PDF format maintained on U.S. Geological Survey Field Activities 2008-007-FA and 2008-037-FA in Great South Bay, Long Island, New York in May and September, 2008
An investigation of submarine aquifers adjacent to the Fire Island National Seashore and Long Island, New York, was conducted to assess the importance of submarine groundwater discharge (SGD) as a potential nonpoint source of nitrogen delivery to Great South Bay. More than 200 kilometers (km) of continuous resistivity profiling (CRP) data were collected to image the fresh-saline groundwater interface in sediments beneath the bay. In addition, groundwater sampling was performed at sites (1) along the ... |
Info |
Data and calculations to support the study of the sea-air flux of methane and carbon dioxide on the West Spitsbergen margin in June 2014
A critical question for assessing global greenhouse gas budgets is how much of the methane that escapes from seafloor cold seep sites to the overlying water column eventually crosses the sea-air interface and reaches the atmosphere. The issue is particularly important in Arctic Ocean waters since rapid warming there increases the likelihood that gas hydrate--an ice-like form of methane and water stable at particular pressure and temperature conditions within marine sediments--will break down and release its ... |
Info |
Database for the U.S. Geological Survey Woods Hole Science Center's marine sediment samples, including locations, sample data and collection information (SED_ARCHIVE)
The U.S. Geological Survey (USGS), Woods Hole Science Center (WHSC) has been an active member of the Woods Hole research community for over 40 years. In that time there have been many sediment collection projects conducted by USGS scientists and technicians for the research and study of seabed environments and processes. These samples are collected at sea or near shore and then brought back to the WHSC for study. While at the Center, samples are stored in ambient temperature, cold or freezing conditions, ... |
Info |
Data compilation of soil respiration, moisture, and temperature measurements from global warming experiments from 1994-2014
This dataset is the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3800 observations representing 27 temperature manipulation studies, spanning nine biomes and nearly two decades of warming experiments. Data for this study were obtained from a combination of unpublished data and published literature values. We find that although warming increases soil respiration rates, there is limited evidence for a shifting respiration response with experimental ... |
Info |
Data for evaluating the Sr/Ca temperature proxy with in-situ temperature in the western Atlantic coral Siderastrea siderea
Massive corals are used as environmental recorders throughout the tropics and subtropics to study environmental variability during time periods preceding ocean-observing instrumentation. However, careful testing of paleoproxies is necessary to validate the environmental-proxy record throughout a range of conditions experienced by the recording organisms. As part of the USGS Coral Reef Ecosystems Studies project (http://coastal.er.usgs.gov/crest/), we tested the hypothesis that the coral Siderastrea siderea ... |
Info |
Data from Oceanographer, Lydonia, and Gilbert Canyons acquired in 1965 (SCHWARTZ65 shapefile)
Submarine canyons occur at the edge of the continental shelf and cut across the slope and rise along the U.S. east coast. Three of these canyons (Oceanographer, Lydonia, and Gilbert) are situated south of Georges Bank. Gravity cores and grab samples were collected as part of a study of the active processes and sediment distributions within these features. The results of the textural analyses are contained in this data layer. |
Info |
Data Layer Containing the Features Interpreted to be on the Sea Floor within the National Oceanic and Atmospheric Administration (NOAA) H11255 Survey Area in Southeastern Long Island Sound (H11255INTERP.SHP, Geographic)
Digital terrain models (DTMs) produced from multibeam bathymetric data provide valuable base maps for marine geological interpretations. These maps help define the geological variability of the seafloor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, and the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, ... |
Info |
Dataset of diatom controls on the compressibility and permeability of fine-grained sediment collected offshore of South Korea during the Second Ulleung Basin Gas Hydrate Expedition, UBGH2
One of the primary goals of South Korea’s second Ulleung Basin Gas Hydrate Expedition (UBGH2) was to examine the geotechnical properties of the marine sediment associated with methane gas hydrate occurrences found off the shore of eastern Korea in the Ulleung Basin, East Sea. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages formed by a lattice of water molecules. During UBGH2, concentrated gas hydrate was found in two sedimentary ... |
Info |
Dataset of diatom controls on the sedimentation behavior of fine-grained sediment collected offshore of South Korea during the Second Ulleung Basin Gas Hydrate Expedition, UBGH2
One of the primary goals of South Korea’s second Ulleung Basin Gas Hydrate Expedition (UBGH2) was to examine the geotechnical properties of the marine sediment associated with methane gas hydrate occurrences found offshore of eastern Korea in the Ulleung Basin, East Sea. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages formed by a lattice of water molecules. During UBGH2, concentrated gas hydrate was found in two sedimentary environments ... |
Info |
Data tables for the Long Island Sound and New York Bight database
Detailed chemical, station (source and documentation, sample locations), and texture data are provided for sediments in Long Island Sound and New York Bight. The sediment data are provided as spreadsheet (Microsoft Excel) and tab-delimited files on the web site. These data are in the form of sections within the web site, which provides extensive supporting data, interpretive diagrams, and discussion. The data were obtained from a variety of sources: published reports, theses, unpublished data from agencies ... |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 2 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 3 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 4 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 5 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 6 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 7 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Initial DEMs with and without restoration alternatives R2-R7
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Hindcast Model Inputs and Results: Final DEM
The model output of bathymetry and topography values resulting from a deterministic simulation at Dauphin Island, Alabama, as described in USGS Open-File Report 2019–1139 (https://doi.org/10.3133/ofr20191139), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020). |
Info |
Dauphin Island Decadal Hindcast Model Inputs and Results: Initial DEM
The model input for the bathymetry and topography values resulting from a deterministic simulation at Dauphin Island, Alabama, as described in U.S. Geological Survey (USGS) Open-File Report 2019-1139 (https://doi.org/10.3133/ofr20191139), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020). |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Intermediate-Low Sea Level Rise (SLR) Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Low Sea Level Rise (SLR) Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Present-Day Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Static Intermediate-Low Sea Level Rise Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Static Low Sea Level Rise Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Katrina Intermediate-Low Sea Level Rise Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Katrina Low Sea Level Rise Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Katrina Present-Day Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Assateague Island, MD & VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Assawoman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Hatteras, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Lookout, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cedar Island, VA, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cedar Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Coast Guard Beach, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cobb Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Edwin B. Forsythe NWR, NJ, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Edwin B. Forsythe NWR, NJ, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Edwin B. Forsythe NWR, NJ, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fire Island, NY, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fire Island, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fire Island, NY, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fisherman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Metompkin Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Monomoy Island, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Myrtle Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Parker River, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Parramore Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Rhode Island National Wildlife Refuge, RI, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Rockaway Peninsula, NY, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Rockaway Peninsula, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Rockaway Peninsula, NY, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Ship Shoal Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Smith Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Wreck Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
Deep-Towed Chirp Profiles of the Blake Ridge Collapse Structure Collected on USGS cruises 92023 and 95023 Aboard the R/V Cape Hatteras in 1992 and 1995
This CD-ROM contains copies of the navigation and deep-towed chirp subbottom data collected aboard the R/V Cape Hatteras,on cruises 92023 and 95023 in 1992 and 1995 respectively. This CD-ROM is (Compact Disc-Read Only Memory UDF (Universal Disc Format) CD-ROM Standard (ISO 9660 equivalent). The HTML documentation is written utilizing some HTML 4.0 enhancements. The disk should be viewable by all WWW browsers but may not properly format on some older WWW browsers. Also, some links to USGS collaborators and ... |
Info |
Defined Map Units of the seafloor of Boston Harbor and Approaches (BOTTOMTYPE, UTM 19, WGS84)
This data is a qualitatively-derived interpretative polygon shapefile defining the bottom types of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km square of sidescan sonar and bathymetric data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed and gridded by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS). |
Info |
Delineated Coastal Cliff Toes Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff toes that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ... |
Info |
Delineated Coastal Cliff Tops Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff tops that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ... |
Info |
Delineated Coastal Cliff Transects Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff transects that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) ... |
Info |
Dependence of sedimentation behavior on pore-fluid chemistry for sediment collected offshore South Korea during the Second Ulleung Basin Gas Hydrate Expedition, UBGH2
One goal of Korea’s Second Ulleung Basin Gas Hydrate Expedition, UBGH2, is to examine geotechnical properties of the marine sediment associated with methane gas hydrate occurrences found offshore eastern Korea in the Ulleung Basin, East Sea. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages formed by a lattice of water molecules. Offshore Korea, gas hydrate is found in thin, coarse-grained sediment layers that are interbedded with fine ... |
Info |
Dependence of sedimentation rate and behavior on pore fluid chemistry for pure, endmember fines
The safety, effectiveness and longevity of many construction and geotechnical engineering projects rely on correctly accounting for the evolution of soil properties over time. Critical sediment properties, such as compressibility, can change in response to pore-fluid chemistry changes, particularly if the sediment contains appreciable concentrations of fine-grained materials. Pore-fluid changes act at the micro scale, altering interactions between sediment particles, or between sediment particles and the ... |
Info |
Dependence of sediment compressibility and recompressibility on pore fluid chemistry for pure, endmember fines
The safety, effectiveness and longevity of many construction and geotechnical engineering projects rely on correctly accounting for the evolution of soil properties over time. Critical sediment properties, such as compressibility, can change in response to pore-fluid chemistry changes, particularly if the sediment contains appreciable concentrations of fine-grained materials. Pore-fluid changes act at the micro scale, altering interactions between sediment particles, or between sediment particles and the ... |
Info |
Depth-colored hillshade image of bathymetry data collected by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts between Duxbury and Hull with data gaps (DH_bathyhlshd_wgaps, Depth-colored Hillshade GeoTIFF, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Depth to base of last glacial maximum point data in California State Waters between Refugio and Hueneme Canyon, California (sbsedbsmpt).
As part of the USGS's California State Waters Mapping Project, depth to base of last glacial maximum within the 3-nautical mile limit between Gaviota and Hueneme Canyon was extracted from seismic-reflection data collected in 2007 (USGS activity (Z-3-07-SC) and 2008 (S-7-08-SC). Depths range from 7 to 568 m with a mean of 67 m and a standard deviation of 65 m. |
Info |
Depth to Quaternary regional unconformities offshore of the Delmarva Peninsula, including Maryland and Virginia state waters
Geologic structure and isopach maps were constructed by interpreting over 19,890 trackline kilometers of co-located multichannel boomer, sparker and chirp seismic reflection profiles from the continental shelf of the Delmarva Peninsula, including Maryland and Virginia state waters. In this region, Brothers and others (2020) interpret 12 seismic units and 11 regional unconformities. They interpret the infilled channels as Late Tertiary and Quaternary courses of the Susquehanna, Potomac, Rappahannock, York ... |
Info |
Depth to Transition--Bolinas to Pescadero, California
This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in "DepthToTransition_BolinastoPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from seismic ... |
Info |
Depth to Transition--Pigeon Point to Monterey, California
This part of DS 781 presents data for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "DepthToTransition_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic ... |
Info |
Depth to Transition--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the depth-to-transition map of the Point Conception to Hueneme Canyon, California, region. The raster data file is included in "DepthToTransition_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ... |
Info |
Depth to Transition—Point Sur to Point Arguello, California
This part of DS 781 presents data for the depth-to-transition map of the Point Sur to Point Arguello, California, region. The raster data file is included in the “DepthToTransition_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected ... |
Info |
Depth to Transition--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the depth-to-transition map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "DepthToTransition_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between ... |
Info |
Depth to Transition--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the depth-to-transition map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "DepthToTransition_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between ... |
Info |
Depth to Transition--Salt Point to Drakes Bay, California
This part of DS 781 presents data for the depth-to-transition map of the Salt Point to Drakes Bay, California, region. The raster data file is included in "DepthToTransition_SaltPointToDrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/SaltPointToDrakesBay/data_catalog_SaltPointToDrakesBay.html. As part of the USGS's California State Waters Mapping Project, a 20-m grid of depth to the transgressive surface of the last glacial maximum was generated for the areas within the 3-nautical mile ... |
Info |
Depth to transition--Santa Barbara Channel, California
This part of DS 781 presents data for the depth-to-transition (the depth to the bedrock at the Last Glacial Maximum) map of the Santa Barbara Channel, California, region. The raster data file is included in "DepthToTransition_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Project, a 50-m-resolution grid of depth to the transgressive surface of the Last Glacial ... |
Info |
Descriptive core logs, high-resolution images and derived data for Holocene reef cores collected from 1976 to 2017 along the Florida Keys reef tract
The USGS core archive (Reich and others, 2009; https://olga.er.usgs.gov/coreviewer/) houses an extensive collection of coral-reef cores that USGS researchers have collected from throughout the Florida Keys reef tract (FKRT). USGS scientists have compiled all available data on the 71 core records that recovered Holocene reef framework, including radiometric ages (radiocarbon and U-series), data on reef development (timing of reef initiation and senescence, reef accretion, and reef thickness) and geospatial ... |
Info |
Detailed grain-size data of estuarine, barrier island, and shoreface environments around Dauphin Island, Alabama, USA
In 2015, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted sediment sampling surveys on and around the barrier islands of Dauphin Island and Little Dauphin Island, Mobile County, Alabama (AL) under USGS Field Activity Number (FAN) 2015-322-FA (sub-FAN 15BIM09). The study investigated surficial sediment surrounding Dauphin Island and surrounding environments to inform sediment transport model scenarios of coastal change. This data release ... |
Info |
Digital data for depth to basement in the deep-sea basins of the Pacific continental margin (cowbsm) based on data collected in 1984.
Digital vector data for the contours of depth to basement for the deep-sea basins of the Pacific continental margin offshore of Washington, Oregon, and California. The data were interpreted from GLORIA (Paskevich and others, 2011) sidescan data and related seismic-reflection data. The data were published as USGS maps in paper format (Gardner and others, 1992, 1993a, 1993b). |
Info |
Digital data for sediment thickness in the deep-sea basins of the Pacific continental margin based on 1984 surveys
Contours of sediment thickness for the deep-sea basins of the Pacific continental margin offshore of Washington, Oregon, and California were were interpreted from GLORIA (Paskevich and others, 2011) sidescan imagery and related seismic-reflection data and were published as maps in paper format (Gardner and others, 1992, 1993a, 1993b). |
Info |
Digital elevation model (DEM) of the Cache Slough Complex, Sacramento-San Joaquin Delta, California
This metadata describes a digital elevation model (DEM) created from bathymetric and topographic data collected between 2004 and 2019 in the Cache Slough Complex (CSC), northern Sacramento-San Joaquin Delta, California. We merged the newly collected bathymetric and topographic data presented in this data release (DOI:10.5066/P9AQSRVH) with 2019 surveys by the California Department of Water Resources (DWR), 2017 USGS Sacramento Delta Lidar, and 2004 bathymetry data from the Army Corp of Engineers. Small gaps ... |
Info |
Digital elevation model (DEM) of the Sacramento River Deep Water Ship Channel (DWSC), Sacramento-San Joaquin Delta, California
This metadata describes a digital elevation model (DEM) created from bathymetric and topographic data collected between 2017 and 2019 in the Sacramento River Deep Water Ship Channel (DWSC), northern Sacramento-San Joaquin Delta, California. We merged the newly collected bathymetric and topographic data presented in this data release (DOI:10.5066/P9AQSRVH) with 2019 surveys by the California Department of Water Resources (DWR) and 2017 USGS Sacramento Delta Lidar, to produce a seamless digital elevation ... |
Info |
Digital Elevation Model from Single-Beam Bathymetry XYZ Data Collected in 2015 from Raccoon Point to Point Au Fer, Louisiana
As part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the south-central coast of Louisiana, from Raccoon Point to Point Au Fer Island, in July 2015. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration ... |
Info |
Digital Elevation Model from Single Beam Bathymetry XYZ Data Collected in June 2015 from the Chandeleur Islands, Louisiana
As part of the Louisiana Coastal Protection and Restoration Authority (CPRA) Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey around the Chandeleur Islands, Louisiana in June 2015. The goal of the program is to provide long-term data on Louisiana’s barrier islands and use this data to plan, design, evaluate, and maintain current and future barrier island ... |
Info |
Digital Elevation Model of Oxbow Reservoir, Placer County, California, October 2022
This portion of the data release presents a digital elevation model (DEM) of portions of Oxbow Reservoir in Placer County, California. The DEM was created using topographic survey data collected on 26 October 2022, when the reservoir was partially de-watered to allow repairs to the dam infrastructure following the Mosquito Fire. Although the gates of the dam were open during this time, significant portions of the reservoir site remained inaccessible to surveyors due to the continued flow of the Middle Fork ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface before Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected between September 08 and September 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions post-Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface after Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-02-08 to 2020-02-09
Digital elevation models (DEMs) were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, from 2020-05-08 to 2020-05-09
Digital elevation models (DEMs) were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers document inter-annual changes in shoreline position and coastal morphology in response to storm events using aerial ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-10-11, one month Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Digital elevation models (DEMs) of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
Digital elevation models (DEMs) were created from aerial imagery collected November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These DEMs were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The DEMs help researchers estimate the land surface one-month post-Hurricane Dorian and were created to document inter-annual changes in ... |
Info |
Digital elevation models of the coast of Alaska from Icy Cape to Cape Prince of Wales, 2016
This part of the data release presents digital elevation models (DEMs) spanning the ocean shoreline of Alaska from Icy Cape to Cape Prince of Wales. Aerial images were collected, and data were processed, by Fairbanks Fodar (https://www.fairbanksfodar.com) in Fairbanks, Alaska, for the U.S. Geological Survey. The aerial images, from which the DEMs were created, were collected in 2016 between August 29 and September 4 and extend from the shoreline to 400-4000 meters inland. The aerial images were collected ... |
Info |
Digital image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic and resampled to 1-meter resolution. |
Info |
Digital image mosaic of the nearshore coastal waters of Diamond Head on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Diamond Head area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Haleolono Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Haleolono Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamalo on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamalo area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kamiloloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kamiloloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kaunakakai on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kaunakakai area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Kawela on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Kawela area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of La'au Point on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the La'au Point area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Maunalua Bay on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Maunalua Bay area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Pala'au on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Pala'au area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Portlock area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Puko'o on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Puko'o area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of the Napili-Honokowai area on the northwest coast of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Napili-Honokowai area on the northwest coast of Maui. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). The image mosaic has been geometrically corrected using lidar data. Also available is a lower-resolution 'browse' image, and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Umipa'a on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Umipa'a area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Waiakane on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1 meter-per-pixel resolution of the Waiakane area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Also available is a lower-resolution 'browse' graphic of the image mosaic and associated metadata. |
Info |
Digital image mosaic of the nearshore coastal waters of Wai'alae on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Wai'alae area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kailua-Kona on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic with 1.0 meter-per-pixel resolution of the Kailua-Kona area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial ... |
Info |
Digital image mosaics of the nearshore coastal waters of Kalaeloa on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel resolution of the Kalaeloa area on the south coast of Moloka'i. This image mosaic was generated using digitized 1:10K natural color photographs collected in January 2000 by Air Survey Hawai'i, Inc. for the U.S. Geological Survey. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Kawaihae on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Kawaihae area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Digital image mosaics of the nearshore coastal waters of Kukio on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Kukio area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains image mosaics generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). These four image mosaics have 1.0 meter-per-pixel resolution, and intermittently cover approximately 53 km (33 mi) of shallow, coastal waters along the west, Kona coast, of the island of Hawai'i, including (from north to south) the Kawaihae, Waikoloa, Kukio, and Kailua-Kona areas. ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Maui generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) of the Napili-Honokowai area along the northwest coast of Maui. The area is downloadable as a zip file (napili_honokowai_1m.zip) and includes a high-resolution (1.0 meter per pixel) digital image mosaic, as well as a lower-resolution 'browse' image and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the south coast of Moloka'i. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Pala'au, Umipa'a, Kaunakakai, Kamiloloa, Kawela, Kamalo, and Kalaeloa, were generated from 1:10K aerial photography, and are presented in one zip file (molokai_1ft.zip) that also contains lower-resolution 'browse' graphics of each image-mosaic area, as well as associated metadata. Digital mosaics at 1-meter resolution, including the ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ... |
Info |
Digital image mosaics of the nearshore coastal waters of selected areas on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains digital image mosaics along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography and are presented in one zip file (oahu_1ft.zip) that also contains lower-resolution 'browse' graphics of each image mosaic area, as well as associated metadata. All of the digital image areas (from Waikiki to Portlock) were ... |
Info |
Digital image mosaics of the nearshore coastal waters of Waikiki on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic with 1.0 foot-per-pixel (0.3048 meter-per-pixel) resolution of the Waikiki area on the southeast coast of O'ahu. This image mosaic was generated using digitized 1:10K natural color photographs collected by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service. Also available is a lower-resolution 'browse' graphic of the image mosaic area and associated metadata. |
Info |
Digital image mosaics of the nearshore coastal waters of Waikoloa on the Island of Hawai'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains an image mosaic of the Waikoloa area on the west 'Kona' coast of the island of Hawai'i. This image mosaic was generated using digitized 1:24K natural color photographs collected in June 2000 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). Two versions of the image mosaic are available--one with and one without a lidar bathymetry shaded-relief image digitally combined with the aerial photography mosaic results. The shaded ... |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters of southcentral Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southcentral Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief ... |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters southeast Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southeast Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ... |
Info |
Digital shaded-relief image mosaic of the nearshore coastal waters southwest Moloka'i generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a shaded-relief image mosaic of the nearshore coastal waters along southwest Moloka'i. This image mosaic was generated using digitized 1:35K natural color photographs collected in September 1993 by the National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) and scanned in at 1-meter resolution. Several of the 1-meter-resolution images have been merged together and combined with lidar bathymetry data to create a large shaded-relief image. ... |
Info |
Digital Shoreline Analysis System (DSAS) version 5.0 transects with bluff rate change calculations for the north coast of Barter Island Alaska, 1950 to 2020
This dataset consists of rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each bluff line establishing measurement points, which are then used to ... |
Info |
Digital Shoreline Analysis System (DSAS) version 5.0 transects with shoreline rate change calculations at Barter Island Alaska, 1947 to 2020
This dataset consists of rate-of-change statistics for the shorelines at Barter Island, Alaska for the time period 1947 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to ... |
Info |
Digital Sidescan-Sonar Mosaic collected within the Gulf of the Farallones, National Marine Sanctuary (FARALLONES.TIF, UTM 10, WGS84)
In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques ... |
Info |
Digital surface model (DSM) and digital elevation model (DEM) of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents a digital surface model (DSM) and digital elevation model (DEM) of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The DSM and DEM have a resolution of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The DSM represents the elevation of the highest object within the bounds of a cell, including vegetation, woody ... |
Info |
Digital surface model (DSM) for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have ... |
Info |
Digital surface model (DSM) for the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at West Whidbey Island, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been ... |
Info |
Digital surface model (DSM) for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a digital surface model (DSM) and hillshade of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The DSM has a resolution of 10 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. ... |
Info |
Digital Surface Model (DSM) from UAS survey of the debris flow at South Fork Campground, Sequoia National Park, CA
This portion of the data release presents a high-resolution Digital Surface Models (DSM) of the debris flow at South Fork Campground in Sequoia National Park. The DSM has a resolution of 10 centimeters per pixel and was derived from structure-from-motion (SfM) photogrammetry using aerial imagery acquired during an uncrewed aerial systems (UAS) survey on 30 April 2024, conducted under authorization from the National Park Service. The raw imagery was acquired with a Ricoh GR II digital camera featuring a ... |
Info |
Digital surface models (DSM) for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents digital surface models (DSM) and hillshade images of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA. The DSMs have a resolution of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and ... |
Info |
Digital Surface Models (DSM) from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents digital surface models (DSM) of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The DSMs have resolutions of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tides on 7 and 8 August 2017. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds ... |
Info |
Digital Surface Models (DSM) from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents digital surface models (DSM) of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The DSMs have resolutions of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tides on 22 and 23 July 2021. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds ... |
Info |
Digital Surface Models (DSM) from UAS surveys of the upper reservoir delta at Jenkinson Lake, El Dorado County, California
This portion of the data release presents high-resolution Digital Surface Models (DSM) of the Jenkinson Lake upper reservoir delta in El Dorado County, California. The DSMs have resolutions of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected during surveys with unoccupied aerial systems (UAS). The surveys were on 2021-10-13, 2021-11-04, 2022-10-25, and 2023-11-13, and were generally timed to coincide with low water level in the reservoir to ... |
Info |
Digital surface models (DSMs) for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents digital surface models (DSMs) and hillshade images of the intertidal zone at Post Point, Bellingham Bay, WA. The DSMs were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, ... |
Info |
Digital Surface Models (DSMs) of the Whale's Tail Marsh region, South San Francisco Bay, CA
This portion of the data release presents digital surface models (DSM) of the Whale's Tail Marsh region of South San Francisco Bay, CA. The DSMs have resolutions of 5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of repeat aerial imagery collected from fixed-wing aircraft. Unlike a digital elevation model (DEM), a DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, structures, and other objects have not been removed from the data. ... |
Info |
Digital surface models of Pea Island National Wildlife Refuge DUNEX Site, North Carolina in September and October 2021
The data in this part of the release are digital surface models (DSMs) that characterize the beach at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge, NC. DUNEX is a multi-agency, academic, and non-governmental organization collaborative community experiment designed to study nearshore coastal processes during storm events. USGS participation in DUNEX will contribute new measurements and models that will increase our understanding of storm impacts to coastal ... |
Info |
Digital vector bathymetric/topographic contours of the sea floor in the Stellwagen Bank National Marine Sanctuary region (bathy.shp)
This data set contains the sea floor topographic contours generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were ... |
Info |
Digital version of the Cape Cod and the Islands Geologic Map (CAPE_GEOLGEOG shapefile, Geographic, NAD83)
These data represent a digital form of the geologic map of Cape Cod and the islands. |
Info |
Discrete Carbonate System Parameter Measurements in Middle Tampa Bay, Florida and the Eastern Gulf of Mexico, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida and eastern Gulf of Mexico. Discrete seawater samples were collected periodically (every few weeks to months) at repeat monitoring locations. Water samples were analyzed by the USGS Carbon Analytical Laboratory in St. ... |
Info |
Discrete Carbonate System Parameter Measurements in Tampa Bay, Florida, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida. Discrete seawater samples were collected along spatial transects at one to four hour intervals over 24-hour time periods. Water samples were analyzed at the USGS Carbon Analytical Laboratory in St. Petersburg Florida. ... |
Info |
Discrete surface water data for samples collected in-transit along the West Florida Shelf in July and August, 2013
The United States Geological Survey (USGS) is studying the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises on the West Florida Shelf and northern Gulf of Mexico regions aboard the research vessel (R/V) Weatherbird II or Bellows, ships of opportunity led by Dr. Kendra Daly, of the University of South Florida (USF) in July and August, ... |
Info |
Discrete water column sample data from predefined locations (stations) of the West Florida Shelf collected in July and August, 2013
The United States Geological Survey (USGS) is studying the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises on the West Florida Shelf and northern Gulf of Mexico regions aboard the research vessel (R/V) Weatherbird II or Bellows, ships of opportunity led by Dr. Kendra Daly, of the University of South Florida (USF) in July and August, ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Cedar Island, VA, 2010–2011
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Cedar Island, VA, 2012–2013
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Cedar Island, VA, 2013–2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Edwin B. Forsythe NWR, NJ, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Edwin B. Forsythe NWR, NJ, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Edwin B. Forsythe NWR, NJ, 2013–2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Fire Island, NY, 2010–2011
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Fire Island, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Fire Island, NY, 2014–2015
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Rockaway Peninsula, NY, 2010–2011
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Rockaway Peninsula, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSHShoreline: Distance to foraging areas for piping plovers (foraging shoreline, cost mask, and least-cost path distance): Rockaway Peninsula, NY, 2013–2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Assateague Island, MD & VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Assawoman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Hatteras, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Lookout, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Coast Guard Beach, MA, 2013-2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cobb Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Fisherman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Metompkin Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Monomoy Island, MA, 2013-2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Myrtle Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Parker River, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Parramore Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Rhode Island National Wildlife Refuge, RI, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Ship Shoal Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Smith Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Wreck Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Assateague Island, MD & VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Assawoman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Cape Hatteras, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Cape Lookout, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Cedar Island, VA, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Cedar Island, VA, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Cedar Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Coast Guard Beach, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Cobb Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Edwin B. Forsythe NWR, NJ, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Edwin B. Forsythe NWR, NJ, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Edwin B. Forsythe NWR, NJ, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Fire Island, NY, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Fire Island, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Fire Island, NY, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Fisherman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Metompkin Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Monomoy Island, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Myrtle Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Parker River, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Parramore Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Rhode Island National Wildlife Refuge, RI, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Rockaway Peninsula, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Rockaway Peninsula, NY, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Ship Shoal Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Smith Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
DisOcean: Distance to the ocean: Wreck Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
Dissolved methane and CO2 concentrations and stable carbon isotopes from the coastal Arctic landscape of the Greiner Lake watershed, Nunavut, Canada in June 2022 and June-July 2023
A watershed in the coastal Canadian Arctic was sampled for dissolved carbon dioxide and methane concentration and stable carbon (carbon-13) isotopes to trace the transport, production, and consumption of carbon dioxide and methane during the spring thaw across a lake to bay transect. Two field campaigns were conducted in June 2022 and June-July 2023 out of the Canadian High Arctic Research Station (CHARS) in Cambridge Bay, Nunavut, Canada. Gas samples were collected via headspace extraction and transported ... |
Info |
Distribution of Benthic Habitats at Crocker Reef, Florida, 2014
The distribution of benthic habitats for a 1-kilometer (km) x 1-km area around Crocker Reef in the Florida Keys, USA, is based upon underwater digital images of the seafloor collected on June 24 and 25, 2014 (Zawada and others, 2016). The imagery was collected using the U.S. Geological Survey (USGS) shallow Along-Track Reef-Imaging System (sATRIS), a boat-based, pole-mounted sensor package for mapping shallow-water benthic environments. The polygons contained in the shapefile included in this data release, ... |
Info |
Distribution of sand dollars on the sea floor on the inner continental shelf off the northern Oregon and southern Washington
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan-sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Distribution of Seafloor Environments within the inner shelf of Long Bay, South Carolina (SEAFLOORENV, Polygon shapefile)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Distribution of Surficial Sediments of NOAA H11310 Sidescan Sonar Mosaic in Central Narragansett Bay (H11310SEDS.SHP)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The mosaic presented herein covers an area of the sea ... |
Info |
Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database
The U.S. Geological Survey (USGS) Oceanographic Time-Series Measurements Database contains oceanographic observations made as part of studies designed to increase understanding of sediment transport processes and associated ocean dynamics. This report describes the instrumentation and platforms used to make the measurements; the methods used to process and apply quality-control criteria and archive the data; and the data storage format. The report also includes instructions on how to access the data from ... |
Info |
Donated AUV bathymetry data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in April 2018 offshore of south-central California
This dataset consists of autonomous underwater vehicle (AUV) bathymetry data collected in April 2018 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, bathymetry data were collected across six AUV dives, all six of which collected coincident bathymetry and Chirp seismic-reflection data. A seventh bathymetric survey, 201804_LuciaChica2m, consists of MBARI data from several AUV dives that were conducted pre-2018 but were ... |
Info |
Donated AUV bathymetry data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in March 2019 offshore of south-central California
This dataset consists of autonomous underwater vehicle (AUV) bathymetry data collected in March 2019 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, bathymetry data were collected across eight AUV dives, all eight of which collected coincident bathymetry and Chirp seismic-reflection data. The collection of these data was funded entirely by MBARI, and the data have been donated to the U.S. Geological Survey (USGS). The data ... |
Info |
Donated AUV bathymetry data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in May 2019 offshore of south-central California
This dataset consists of autonomous underwater vehicle (AUV) bathymetry data collected in May 2019 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, bathymetry data were collected across four AUV dives, all four of which collected coincident bathymetry and Chirp and seismic-reflection data. The collection of these data was funded entirely by MBARI, and the data have been donated to the U.S. Geological Survey (USGS). The data ... |
Info |
Donated AUV Chirp seismic-reflection data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in April 2018 offshore of south-central California
This dataset consists of autonomous underwater vehicle (AUV) Chirp seismic-reflection data collected in April 2018 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, data were collected across eight AUV dives, six of which collected coincident bathymetry and Chirp seismic-reflection data (two dives collected Chirp seismic-reflection data only). The collection of these data was funded entirely by MBARI, and the data have been ... |
Info |
Donated AUV Chirp seismic-reflection data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in March 2019 offshore of south-central California
This dataset consists of autonomous underwater vehicle (AUV) Chirp seismic-reflection data collected in March 2019 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, data were collected across eight AUV dives, all eight of which collected coincident bathymetry and Chirp seismic-reflection data. The collection of these data was funded entirely by MBARI, and the data have been donated to the U.S. Geological Survey (USGS). The ... |
Info |
Donated AUV Chirp seismic-reflection data collected during Monterey Bay Aquarium Research Institute (MBARI) cruise in May 2019 offshore of south-central California
This dataset consists of autonomous underwater vehicle (AUV) Chirp seismic-reflection data collected in May 2019 aboard the R/V Rachel Carson, which is owned and operated by the Monterey Bay Aquarium Research Institute (MBARI). During the cruise, data were collected across four AUV dives, all four of which collected coincident bathymetry and Chirp seismic-reflection data. The collection of these data was funded entirely by MBARI, and the data have been donated to the U.S. Geological Survey (USGS). The data ... |
Info |
DRASTIC model results for Upper Floridan aquifer vulnerability to Bromacil and Ethylene Dibromide
This dataset includes DRASTIC (Aller and others, 1987) model results for Upper Floridan aquifer vulnerability to contamination. The DRASTIC value serves as an intrinsic vulnerability index for assessing the transport of contaminants from the surface. The DRASTIC model setup requires the input of raster data for depth to groundwater, aquifer recharge, aquifer media, soil media, topography, vadose zone media, and aquifer hydraulic conductivity. These variables were entered into the DRASTIC equation using the ... |
Info |
DUBATHG - ArcInfo GRID format of the 2001 multibeam echo-sounder data collected in the Duwamish River Delta, Puget Sound (Seattle), Washington from Field Activity: R-1-01-WA
ArcInfo GRID format bathymetry data generated from the 2001 multibeam sonar survey the major deltas of southern Puget Sound, WA., including Nisqually, Puyallup, and Duwamish Deltas. This is metadata for the Duwamish Delta multibeam bathymetry data. |
Info |
EAARL Coastal Topography–Eastern Louisiana Barrier Islands, 09 March 2008: First Surface
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over some of the eastern Louisiana barrier islands in cooperation with the National Park Service (NPS), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ... |
Info |
EAARL Coastal Topography–Eastern Louisiana Barrier Islands Barrier Islands, 09 March 2008: First Surface
A Digital Elevation Model (DEM) mosaic was data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over some of the eastern Louisiana barrier islands in cooperation with the National Park Service (NPS), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ... |
Info |
EAARL Coastal Topography–Northwest Florida, Post-Hurricane Katrina, 2005: Bare Earth
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over northwest Florida, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ... |
Info |
EAARL Coastal Topography–Northwest Florida, Post-Hurricane Katrina, 2005: First Surface
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over northwest Florida, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ... |
Info |
EAARL Coastal Topography–Texas, Post-Hurricane Ike, 2008: Bare Earth
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Ike (September 2008 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ... |
Info |
EAARL Coastal Topography–Texas, Post-Hurricane Ike, 2008: First Surface
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Ike (September 2008 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ... |
Info |
EAARL Coastal Topography–Texas, Post-Hurricane Rita, 2005: Bare Earth
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Rita (September 2005 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ... |
Info |
EAARL Coastal Topography–Texas, Post-Hurricane Rita, 2005: First Return
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Rita (September 2005 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ... |
Info |
EasternLA2008_EAARLA_BE_n88g03_metadata: EAARL Coastal Topography–Eastern Louisiana Barrier Islands, 09 March 2008: Bare Earth
ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over some of the eastern Louisiana barrier islands in cooperation with the National Park Service (NPS), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ... |
Info |
EasternLA2008_EAARLA_BE_n88g03_mosaic_metadata: EAARL Coastal Topography–Eastern Louisiana Barrier Islands, 09 March 2008: Bare Earth
A Digital Elevation Model (DEM) mosaic was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over some of the eastern Louisiana barrier islands in cooperation with the National Park Service (NPS), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system ... |
Info |
EC_250M_AEA_NAD27.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar composite mosaic (ACEA, 250 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q01.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (1 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q02.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (2 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q03.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (3 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q04.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (4 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q05.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (5 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q06.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (6 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q07.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (7 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q08.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (8 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q09.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (9 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q10.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (10 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q11.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (11 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q12.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (12 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q13.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (13 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q14.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (14 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q15.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (15 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q16.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (16 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q17.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (17 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q18.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (18 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q19.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (19 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q20.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (20 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q21.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (21 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q22.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (22 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
EC_Q23.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (23 of 23) (ACEA, 50 m, Clarke1866)
From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
ECSTDB2005 - U.S. Geological Survey East Coast Sediment Texture Database (2005)
This sediment database contains location, description, and texture of samples taken by numerous marine sampling programs. Most of the samples are from the Atlantic Continental Margin of the United States, but some are from as diverse locations as Lake Baikal, Russia, the Hawaiian Islands region, Puerto Rico, the Gulf of Mexico, and Lake Michigan. The database presently contains data for over 23,000 samples, which includes texture data for approximately 3800 samples taken or analyzed by the Atlantic ... |
Info |
Eelgrass distributions and bathymetry derived from an acoustic survey of the Nisqually River delta, Washington, 2012
This portion of the USGS data release presents eelgrass distribution and bathymetry data derived from acoustic surveys of the Nisqually River delta, Washington in 2012 (USGS Field Activity Number D-01-12-PS). Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The sonar system consisted of a Biosonics DT-X single-beam echosounder and 420 kHz transducer with a 6-degree beam angle. Depths from ... |
Info |
Eelgrass distributions and bathymetry derived from an acoustic survey of the Nisqually River delta, Washington, 2014
This portion of the USGS data release presents eelgrass distribution and bathymetry data derived from acoustic surveys of the Nisqually River delta, Washington in 2014 (USGS Field Activity Number D-01-14-PS). Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The sonar system consisted of a Biosonics DT-X single-beam echosounder and 420 kHz transducer with a 6-degree beam angle. Depths from ... |
Info |
Eelgrass distributions and bathymetry derived from an acoustic survey of the Nisqually River delta, Washington, 2017
This portion of the USGS data release presents eelgrass distribution and bathymetry data derived from acoustic surveys of the Nisqually River delta, Washington in 2017 (USGS Field Activity Number 2017-614-FA). Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The sonar system consisted of a Biosonics DT-X single-beam echosounder and 420 kHz transducer with a 6-degree beam angle. Depths ... |
Info |
Eelgrass distributions and bathymetry of Bellingham Bay, Washington, 2019
This data release presents eelgrass distributions and bathymetry data derived from acoustic surveys of Bellingham Bay, Washington. Survey operations were conducted between February 16 and February 21, 2019 (USGS Field Activity Number 2019-606-FA) by a team of scientists from the U.S. Geological Survey Pacific Coastal and Marine Science Center and Washington State Department of Ecology. Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Initial_Elevations_RS)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Initial_Elevations_RS_MP)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Initial_Elevations_RS_MP_PH)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Initial_Elevations_RS_PH)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Velocity_Residual_RS)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Velocity_Residual_RS_MP)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Velocity_Residual_RS_MP_PH)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Velocity_Residual_RS_PH)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Water_Level_RS)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Water_Level_RS_MP)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Water_Level_RS_MP_PH)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Effects of Late Holocene Climate and Coastal Change in Mobile Bay, Alabama: ADCIRC Model Input and Results (Water_Level_RS_PH)
Using version 52.30 of the ADvanced CIRCulation (ADCIRC) numerical model (Luettich and others, 1992), astronomic tides were simulated at Mobile Bay, Alabama (AL), under scenarios of Holocene geomorphic configurations representing the period of 3500 to 2300 years before present including a breach in the Morgan Peninsula and a land bridge at Pass aux Herons, as described in Smith and others (2020). The two-dimensional ADCIRC model can be applied to coastal and estuarine systems to solve for time-dependent ... |
Info |
Elemental chemistry, radionuclides, and charcoal in watershed soil and reef sediment at Olowalu, Maui, 2022
Fine-sediment elemental chemistry, short-lived cosmogenic radionuclides (Beryllium-7, Cesium-137, and Lead-210), charcoal counts, and total organic carbon contents were quantified to describe urban and wildfire effects and land-based sediment sources and runoff to Olowalu Reef in February 2022. |
Info |
Elevation data collected in 2009 on the beach and foreshore in the vicinity of Wainwright, Alaska
Beach and foreshore elevation data were collected in the vicinity of Wainwright, Alaska. The area from the mouth of the Kuk River to about 8 km to the northeast was measured in August 2009. The area from the mouth of the Kuk River to about 5 km to the northeast was measured in October 2009. The elevation data were collected with Real-Time Kinematic (RTK) Global Positioning System (GPS) systems mounted on all-terrain vehicles. The GPS sampling rate was 1 Hz with vehicle speeds maintained at less than 15 km ... |
Info |
Elevation Data Collected in 2010 from Sabine National Wildlife Refuge, Louisiana
Data release doi:10.5066/F7BR8QBH associated with this metadata record serves as an archive of elevation data collected in August 2010 from Sabine National Wildlife Refuge (SNWR), Louisiana (U.S. Geological Survey [USGS] Field Activity Number [FAN] 10SWL01). Point (xyz) elevations were collected from historically formed open-water bodies and the surrounding emergent marsh using a combination of stop-and-go (semi-kinematic) and kinematic differential Global Positioning System (DGPS) surveying techniques. ... |
Info |
Elevation data for four sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from July 2018 through January 2020
To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ... |
Info |
Elevation of paleochannel unconformities underlying the inner shelf of Long Bay (Grid)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Elevation of the bedrock surface within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI GRID, DSUELEV)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Elevation of the late Wisconsinan to early Holocene regressive unconformity (Ur) beneath Vineyard and western Nantucket Sounds, Massachusetts (Esri binary grid; UTM, Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ... |
Info |
Elevation of the late Wisconsinan to early Holocene regressive unconformity (Ur) offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This ... |
Info |
Elevation of the regional transgressive unconformity underlying the inner shelf of Long Bay (Grid; transgr_grd)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Elevation of the top of glacial deposits beneath Buzzards Bay, Massachusetts (Urelev, Esri binary grid; UTM, Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
Elevation of the top of Quaternary glacial drift within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI GRID, QdU)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Elevation point clouds of the coast of Alaska from Icy Cape to Cape Prince of Wales, 2016
This part of the data release presents georeferenced elevation point clouds spanning the ocean shoreline of Alaska from Icy Cape to Cape Prince of Wales. Aerial images were collected, and data were processed, by Fairbanks Fodar (https://www.fairbanksfodar.com) in Fairbanks, Alaska, for the U.S. Geological Survey. The aerial images, from which the point clouds were derived, were collected in 2016 between August 29 and September 4 and extend from the shoreline to 400-4000 meters inland. The aerial images were ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Assateague Island, MD & VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Assawoman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Cape Hatteras, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Cape Lookout, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Cedar Island, VA, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Cedar Island, VA, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Cedar Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Coast Guard Beach, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Cobb Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Edwin B. Forsythe NWR, NJ, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Edwin B. Forsythe NWR, NJ, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Edwin B. Forsythe NWR, NJ, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Fisherman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Metompkin Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Monomoy Island, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Myrtle Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Parker River, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Parramore Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Rhode Island National Wildlife Refuge, RI, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Rockaway Peninsula, NY, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Rockaway Peninsula, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Rockaway Peninsula, NY, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Ship Shoal Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Smith Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
ElevMHW: Elevation adjusted to local mean high water: Wreck Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
Enhanced 1-m Composite Grayscale GeoTIFF Image of the Sidescan-Sonar Data From NOAA Survey H11076 of the Sea Floor in Quicks Hole, MA (H11076_UTM19_1MRSSS.TIF, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on ... |
Info |
Enhanced 1-meter Composite Grayscale Image of the Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of the Sea Floor in Great Round Shoal Channel, Offshore Massachusetts (H11079_UTM19_1MRSSS.TIF, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on ... |
Info |
Enhanced Composite Sidescan Sonar Mosaic of NOAA Survey H11310 in Central Narragansett Bay, Rhode Island (H11310SS_GEO1M_INV.TIF, Geographic)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The mosaic presented herein covers an area of the sea ... |
Info |
Enhanced Grayscale GeoTIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11446 of the Sea Floor North of Orient Point, New York (H11446_SSS1M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Enhanced Grayscale GeoTIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11446 of the Sea Floor North of Orient Point, New York (H11446_SSS1M_UTM.TIF, UTM18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Enhanced Grayscale TIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_1MSSS_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Enhanced Grayscale TIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_1MSSS_UTM18.TIF, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Enhanced Grayscale TIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11445 of the Sea Floor north of Plum Island, New York (H11445_SSS1M_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Enhanced Grayscale TIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11445 of the Sea Floor North of Plum Island, New York (H11445_SSS1M_UTM.TIF, UTM18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Enhanced Grayscale TIFF Image of the 2-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11346 of the Sea Floor in the Vicinity of Edgartown Harbor, Massachusetts (H11346_2MSSS_GEO.TIF, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Enhanced Grayscale TIFF Image of the 2-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11346 of the Sea Floor in the Vicinity of Edgartown Harbor, Massachusetts (H11346_2MSSS_UTM19.TIF, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Enhanced Sidescan-Sonar Image of National Oceanic and Atmospheric Administration (NOAA) Survey H11043 off Branford, Connecticut (H11043_SSSGEO1M_WGS84.TIF, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. This research program is currently studying sea-floor sediment distribution, processes that control sediment distribution, nearshore environmental concerns, and the ... |
Info |
Enhanced Sidescan-Sonar Image of National Oceanic and Atmospheric Administration (NOAA) survey H11044 in Long Island Sound (H11044_SSSGEO1M_WGS84.TIF, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. This research program is currently studying sea-floor sediment distribution, processes that control sediment distribution, nearshore environmental concerns, and the ... |
Info |
Enhanced Sidescan-Sonar Image of National Oceanic and Atmospheric Administration (NOAA) Survey H11045, off Bridgeport, Connecticut (H11045_SSSGEO1M_WGS84.TIF, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. This research program is currently studying sea-floor sediment distribution, processes that control sediment distribution, nearshore environmental concerns, and the ... |
Info |
Enhanced sidescan-sonar TIFF images in a UTM projection on the inner continental shelf off the northern Oregon and southern Washington
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan-sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Enhanced SIS-1000 sidescan sonar mosaic of a minibasin on the Louisiana upper continental slope - UTM, zone 15, WGS84 (SIS_ENUTM.TIF)
Since 1982 the, U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the ... |
Info |
Enhanced TIFF Sidescan-Sonar Mosaic East of Virgin Basin - Lake Mead, Nevada: Geographic Coordinates
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Enhanced TIFF Sidescan-Sonar Mosaic of Boulder Basin - Lake Mead, Nevada: Geographic Coordinates
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Enhanced TIFF Sidescan-Sonar Mosaic of Las Vegas Wash - Lake Mead, Nevada: Geographic Coordinates
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Enhanced TIFF Sidescan-Sonar Mosaic of Las Vegas Wash - Lake Mead, Nevada: UTM Projection
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Enhanced TIFF Sidescan-Sonar Mosaic of Overton Arm - Lake Mead, Nevada: Geographic Coordinates
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Enhanced TIFF Sidescan-Sonar Mosaic of Virgin Basin - Lake Mead, Nevada: Geographic Coordinates
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Esri Binary 1-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12324 in Narragansett Bay (UTM Zone 19, NAD 83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along southern Narragansett Bay, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During September 2014, bottom photographs and surficial ... |
Info |
ESRI Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11995 in Rhode Island Sound (H11995_2M_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
ESRI Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11995 in Rhode Island Sound (H11995_2M_UTM, UTM Xone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
ESRI Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11999 in Long Island Sound, North of Duck Pond Point, New York (H11999_2M_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
ESRI Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11999 in Long Island Sound, North of Duck Pond Point, New York (H11999_2M_UTM, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Esri Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_2M_GEO, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Esri Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_2M_UTM, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Esri Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12296 in Block Island Sound (H12296_2M_GEO, Geographic, WGS 84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Esri Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12296 in Block Island Sound (H12296_2M_UTM, UTM Zone 19, NAD 83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Esri Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12298 in Block Island Sound (UTM Zone 19, NAD 83, H12298_2M_UTM)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along western Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs ... |
Info |
Esri Binary 2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H12299 in Block Island Sound (UTM Zone 19, NAD 83, H12299_2M_UTM)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs and ... |
Info |
ESRI Binary 75-m Grid of the Base of the Mud Depth Surface of Apalachicola Bay based on Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (BASEMUD_SURF, UTM, Zone 16, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
ESRI Binary 75-m Grid of the Base of the Mud Isopach of Apalachicola Bay based on Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (BASEMUDISO, UTM, Zone 16, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
ESRI Binary 75-m Grid of the Flooding Surface in Apalachicola Bay based on Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (FLOODSURF, UTM, Zone 16, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
ESRI Binary 75-m Grid of the Lowstand Surface in Apalachicola Bay based on Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (LOWFILCLIP, UTM, Zone 16, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
ESRI Binary 75-m Grid of the Sea floor of Apalachicola Bay Excluding Manmade features based on Swath Bathymetry and Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (APALACH_SF, UTM, Zone 16, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
Esri Binary floating point GRID containing bathymetry from interferometric sonar data collected by the USGS within Red Brook Harbor, MA, 2009 (rb_bathy_1m, 1-meter cell size)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and ... |
Info |
Esri Binary floating point GRID containing bathymetry from interferometric sonar data collected by the USGS within Red Brook Harbor, MA, 2009 (rb_bathy_5m, 5-meter cell size)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and ... |
Info |
Estuarine Back-barrier Shoreline and Beach Sandline Change Model Skill and Predicted Probabilities: Event-driven backshore shoreline change
The Barrier Island and Estuarine Wetland Physical Change Assessment was created to calibrate and test probability models of barrier island estuarine shoreline (backshore) and beach sandline change for study areas in Virginia, Maryland, and New Jersey. The models examined the influence of hydrologic and physical variables related to long-term and storm-derived overwash and back-barrier shoreline change. Input variables were constructed into a Bayesian Network (BN) using Netica, a computer program created by ... |
Info |
Estuarine Back-barrier Shoreline and Beach Sandline Change Model Skill and Predicted Probabilities: Event-driven beach sandline change
The Barrier Island and Estuarine Wetland Physical Change Assessment was created to calibrate and test probability models of barrier island estuarine shoreline (backshore) and beach sandline change for study areas in Virginia, Maryland, and New Jersey. The models examined the influence of hydrologic and physical variables related to long-term and storm-derived overwash and back-barrier shoreline change. Input variables were constructed into a Bayesian Network (BN) using Netica, a computer program created by ... |
Info |
Estuarine Back-barrier Shoreline and Beach Sandline Change Model Skill and Predicted Probabilities: Long-term sandline change
The Barrier Island and Estuarine Wetland Physical Change Assessment was created to calibrate and test probability models of barrier island estuarine shoreline (backshore) and beach sandline change for study areas in Virginia, Maryland, and New Jersey. The models examined the influence of hydrologic and physical variables related to long-term and storm-derived overwash and back-barrier shoreline change. Input variables were constructed into a Bayesian Network (BN) using Netica, a computer program created by ... |
Info |
Estuarine Back-barrier Shoreline and Sandline Change Model Skill and Predicted Probabilities: Long-term back-barrier shoreline change
The Barrier Island and Estuarine Wetland Physical Change Assessment was created to calibrate and test probability models of barrier island estuarine shoreline (backshore) and beach sandline change for study areas in Virginia, Maryland, and New Jersey. The models examined the influence of hydrologic and physical variables related to long-term and storm-derived overwash and back-barrier shoreline change. Input variables were constructed into a Bayesian Network (BN) using Netica, a computer program created by ... |
Info |
Every 100 shot points from seismic lines 15-27 for USGS cruise GYRE 99002 (L15_27SP100G.SHP)
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. A two week cruise aboard the R/V GYRE focused on mapping surficial sedimentary processes and their connection to the subsurface geology. The study area was on the upper continental slope in the northwestern Gulf of Mexico; an area of active ... |
Info |
Excel Spreadsheet of Piezometer Groundwater Data in the Nauset Marsh Area collected August, 2005
In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and ... |
Info |
Experimental coral-growth and physiological data and time-series imagery for Porites astreoides in the Florida Keys, U.S.A.
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral-growth rates and time-series photographs taken of colonies of the mustard hill coral, Porites astreoides, grown at four sites on the Florida Keys reef tract from Spring 2015 to Spring 2017. The data will be used to inform resource managers on the spatial and ... |
Info |
Experimental coral-growth data and time-series imagery for Acropora palmata and Pseudodiploria strigosa in St. Croix, U.S. Virgin Islands
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps Department of Interior and other resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral-growth rates and time-series photographs taken of colonies of the elkhorn coral, Acropora palmata, and the symmetrical brain coral, Pseudodiploria strigosa, grown at three sites at Buck Island Reef National Monument in St. ... |
Info |
Experimental coral-growth data and time-series imagery for Acropora palmata in the Florida Keys, U.S.A.
The USGS Coral Reef Ecosystems Studies project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral-growth rates and time-series photographs taken of colonies of the elkhorn coral, Acropora palmata, grown at five sites on the Florida Keys reef tract from Spring 2018 to Autumn 2019. The data will be used to inform resource managers of the capacity for restoration and growth of this ... |
Info |
Experimental coral-growth rate, reef survey, and time-series imagery data collected between 1998 and 2017 to investigate construction and erosion of Orbicella coral reefs in the Florida Keys, U.S.A.
The USGS Coral Reef Ecosystems Studies project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral-growth rates for Orbicella sp. coral colonies grown at five sites on the Florida Keys reef tract from 2013 to 2015, survey data for census-based carbonate budgeting at Hen and Chickens Reef (Islamorada, Florida) collected in 2017, and time-series photographs taken of permanent markers ... |
Info |
Experimental coral-physiology data for Acropora palmata in Florida, U.S.A.
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps Department of Interior and other resource managers tasked with the stewardship of coral reef resources. This data release contains data on coral physiology of the elkhorn coral, Acropora palmata, grown at five sites along the Florida outer reef tract including in Biscayne National Park, the Florida Keys National Marine Sanctuary, and Dry Tortugas National Park, ... |
Info |
Experimental data comparing two coral grow-out methods in nursery-raised Acropora cervicornis
Staghorn coral, Acropora cervicornis, is a threatened species and the primary focus of western Atlantic reef-restoration efforts to date. As part of the USGS Coral Reef Ecosystems Studies project (http://coastal.er.usgs.gov/crest/), scientists investigated skeletal characteristics of nursery-grown staghorn coral reared using two commonly used grow-out methods at Mote Tropical Research Laboratory’s offshore nursery. USGS staff compared linear extension, calcification rate, and skeletal density of nursery ... |
Info |
Experimental PCR Data on Soil DNA Extracts
Bacillus species and B. anthracis presence/absence data were determined in 4,770 soil samples collected across the contiguous United States, in cooperation with the U.S. Environmental Protection Agency (EPA). Polymerase Chain Reaction (PCR) data for Bacillus species and B. anthracis rpoB gene PCR amplicon detection were reported as non-detect (n), low (l), medium (m), and high (h). Results for both pag and lef genes of the pX01 plasmid were reported by the University of South Florida's Center for Biological ... |
Info |
Extent of a depositional lobe on the Mississippi Fan (LOBE.SHP)
Since 1982 the U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the growing ... |
Info |
Extent of the depositional lobe of the Mississippi Fan
This GIS layer contains an interpretive layer of the extent of the depositional lobe of the Mississippi Fan. |
Info |
Extratropical Storm Jan2016 Assessment of Potential Coastal Change Impacts: 1200 PM EST FRI JAN 22 2016
This dataset defines storm-induced coastal erosion hazards for the Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct impact of the Extratropical Storm in January 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities ... |
Info |
Extratropical Storm March 2018 Assessment of Potential Coastal Change Impacts: 0800 AM EST FRI MAR 02 2018
This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island, Massachusetts, New Hampshire and Maine coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of an Extratropical Storm in March 2018. Storm-induced water levels, due to both surge and waves, were ... |
Info |
f184sc.m77t - MGD77 data file for Geophysical data from field activity F-1-84-SC in Southern California from 04/26/1984 to 05/21/1984
Single-beam bathymetry and magnetic data along with DGPS navigation data was collected as part of field activity F-1-84-SC in Southern California from 04/26/1984 to 05/21/1984, http://walrus.wr.usgs.gov/infobank/f/f184sc/html/f-1-84-sc.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at field activity F-1-84-SC in Southern ... |
Info |
f384nc.m77t - MGD77 data file for Geophysical data for field activity F-3-84-NC in Northern California from 06/15/1984 to 07/08/1984
Single-beam bathymetry and magnetics data along with DGPS navigation data was collected as part of field activity F-3-84-NC in Northern California from 06/15/1984 to 07/08/1984, http://walrus.wr.usgs.gov/infobank/f/f384nc/html/f-3-84-nc.meta.html. The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/f/f384nc ... |
Info |
f389sc.m77t and f389sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-3-89-SC in Monterey Bay, California from 02/02/1989 to 02/15/1989
Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-3-89-SC. The cruise was conducted in Monterey Bay, California from February 2 to February 15, 1989. The chief scientists were Mike Field and Jim Gardner from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise is ground truthing of the Southern Monterey Fan. The geophysical sources are 10 kilohertz (kHz) and 3.5 kHz systems. These ... |
Info |
f392sc.m77t and f392sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-3-92-SC in in Southern California from 04/22/1992 to 05/15/1992
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise F-3-92-SC. The cruise was conducted in Southern California from April 22 to May 15, 1992. The chief scientists were Herman Karl and Monty Hampton from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was 10 kilohertz (kHz) and 3.5 kHz systems. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program ... |
Info |
f484wo.m77t - MGD77 data file for Geophysical data from field activity F-4-84-WO in Washington, Oregon from 07/11/1984 to 08/15/1984
Single-beam bathymetry and magnetics data along with DGPS navigation data was collected as part of field activity F-4-84-WO in Washington, Oregon from 07/11/1984 to 08/15/1984, http://walrus.wr.usgs.gov/infobank/f/f484wo/html/f-4-84-wo.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/f/f484wo ... |
Info |
f690sc.m77t and f690sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-6-90-SC in Southern California, Monterey Canyon from 06/19/1990 to 07/12/1990
Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-6-90-SC. The cruise was conducted in Southern California, Monterey Canyon from June 19 to July 12, 1990. The chief scientists were Jim Gardner from the USGS Coastal and Marine Geology office in Menlo Park, CA and Doug Masson. The purpose of this cruise was to survey with midrange sidescan sonar (TOBI: towed ocean bottom instrument).The geophysical source was 12 ... |
Info |
f786hw.m77t and f786hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-7-86-HW in in Hawaii from 11/28/1986 to 12/20/1986
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise F-7-86-HW. The cruise was conducted in Hawaii from November 28 to December 20, 1986. The chief scientists were Jim Hein from the USGS Coastal and Marine Geology office in Menlo Park, CA and Bill Schwab from the USGS Coastal and Marine Geology office in Woods Hole, Mass. This cruise had many purposes, the bathymetric data is a survey of a small area of the south Johnston Island ridge. The ... |
Info |
f790nc.m77t and f790nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-7-90-NC in the Gulf of Farallones, Northern California from 07/19/1990 to 08/03/1990
Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-7-90-NC. The cruise was conducted in the Gulf of Farallones, Northern California from July 19 to August 3, 1990. The chief scientists were Herman Karl and Dave Drake from the USGS Coastal and Marine Geology office in Menlo Park, CA and Bill Schwab from the USGS Coastal and Marine Geology office in Woods Hole, Mass. The purpose of this cruise was a slope stability survey ... |
Info |
f890nc.m77t and f890nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-8-90-NC in Gulf of Farallones, Northern California from 08/05/1990 to 08/17/1990
Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-8-90-NC. The cruise was conducted in the Gulf of Farallones, Northern California from August 5 to August 17, 1990. The chief scientists were Herman Karl and Dave Drake from the USGS Coastal and Marine Geology office in Menlo Park, CA and Bill Schwab from the USGS Coastal and Marine Geology office in Woods Hole, Mass. The purpose of this cruise was a slope stability ... |
Info |
f991cp.m77t and f991cp.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-9-91-CP in Central Pacific from 09/24/1991 to 09/25/1991
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise F-9-91-CP. The cruise was conducted in the Central Pacific from September 24 to September 25, 1991. The chief scientists was Jim Gardner from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was a 10 kilohertz (kHz) and 3.5 kHz system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) ... |
Info |
Fall 2000 USGS Mid-Atlantic Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2000 Atlantic Coast U.S. ... |
Info |
Faults--Drakes Bay and Vicinity, California
This part of DS 781 presents data of faults for the geologic and geomorphologic map of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Faults_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
Faults--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for faults for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Faults_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K ... |
Info |
Faults--Monterey Canyon and Vicinity Map Area, California
This part of DS 781 presents fault data for the geologic and geomorphic map of the Monterey Canyon and Vicinity map area, California. The vector data file is included in "Faults_MontereyCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/MontereyCanyon/data_catalog_MontereyCanyon.html. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G. ... |
Info |
Faults--Offshore of Aptos Map Area, California
This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Faults_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, ... |
Info |
Faults--Offshore of Bodega Head Map Area, California
This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Bodega Head map area, California. The vector data file is included in "Faults_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., ... |
Info |
Faults--Offshore of Bolinas Map Area, California
This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Faults_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., ... |
Info |
Faults--Offshore of Carpinteria, California
This part of DS 781 presents data for fault data for the Offshore of Carpinteria map area, California. The vector data file is included in "Faults_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., Sliter, R.W., Erdey, M.D., ... |
Info |
Faults--Offshore of Coal Oil Point, California
This part of DS 781 presents fault data for the Offshore of Coal Oil Point map area, California. The vector data file is included in "Faults_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., Krigsman, L.M., Greene, H.G., ... |
Info |
Faults--Offshore of Fort Ross Map Area, California
This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Fort Ross map area, California. The vector data file is included in "Faults_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
Faults--Offshore of Gaviota Map Area, California
This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Gaviota map area, California. The vector data file is included in "Faults_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of Gaviota ... |
Info |
Faults--Offshore of Half Moon Bay Map Area, California
This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Half Moon Bay map area, California. The vector data file is included in "Faults_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L. ... |
Info |
Faults--Offshore of Monterey, California
This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Monterey map area, California. The vector data file is included in "Faults_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, ... |
Info |
Faults--Offshore of Pacifica map area, California
This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Pacifica map area, California. The vector data file is included in "Faults_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, ... |
Info |
Faults--Offshore of Point Conception Map Area, California
This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Point Conception Map Area, California. The vector data file is included in "Faults_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series� ... |
Info |
Faults--Offshore of Point Reyes Map Area, California
This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Point Reyes map area, California. The vector data file is included in "Faults_OffshorePointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C ... |
Info |
Faults--Offshore of Salt Point Map Area, California
This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Salt Point map area, California. The vector data file is included in "Faults_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter ... |
Info |
Faults--Offshore of San Francisco Map Area, California
This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore San Francisco map area, California. The vector data file is included in "Faults_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W ... |
Info |
Faults--Offshore of San Gregorio Map Area, California
This part of SIM 3306 presents data for the faults for the geologic and geomorphic map of the Offshore of San Gregorio map area, California. The vector data file is included in "Faults_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., ... |
Info |
Faults--Offshore of Santa Barbara, California
This part of DS 781 presents fault data for the Offshore of Santa Barbara map area, California. The vector data file is included in "Faults_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C.A., Seitz, G.G., ... |
Info |
Faults--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in "Faults_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., ... |
Info |
Faults--Offshore of Tomales Point Map Area, California
This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Faults_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M ... |
Info |
Faults--Offshore of Ventura, California
This part of SA 781 presents fault data for the Offshore of Ventura map area, California. The vector data file is included in "Faults_OffshoreVentura.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., Erdey, M ... |
Info |
Faults--Offshore Pigeon Point, California
This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore Pigeon Point map area, California. The vector data file is included in "Faults_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., ... |
Info |
Faults--Offshore Refugio Beach, California
This part of DS 781 presents fault data for the geologic and geomorphic map of the Offshore of Refugio Beach map area, California. The vector data file is included in "Faults_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H ... |
Info |
Faults--Offshore Santa Cruz, California
This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Santa Cruz map area, California. The vector data file is included in "Faults_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., ... |
Info |
Faults—Point Sur to Point Arguello, California
This part of DS 781 presents data for the faults of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Faults_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. Faults in the Point Sur to Point Arguello region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, ... |
Info |
Faults--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the faults of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Faults_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. Faults in the Punta Gorda and Point Arena region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, ... |
Info |
Faults--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the faults of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Faults_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. Faults in the Punta Gorda and Point Arena region are identified on seismic-reflection data based on abrupt truncation or warping of reflections and (or) juxtaposition of reflection panels with different seismic parameters such as reflection presence, amplitude, frequency, ... |
Info |
FIIS_Breach_Shorelines.shp - Fire Island National Seashore Wilderness Breach Shoreline Data Collected from Fire Island, New York, October 2014 to October 2017
Hurricane Sandy made U.S. landfall, coincident with astronomically high tides, near Atlantic City, New Jersey, on October 29, 2012. The storm, the largest on historical record in the Atlantic basin, affected an extensive area of the east coast of the United States. The highest waves and storm surge were focused along the heavily populated New York and New Jersey coasts. At the height of the storm, a record significant wave height of 9.6 meters (m) was recorded at the wave buoy offshore of Fire Island, New ... |
Info |
FIIS_Breach_Shorelines.shp - Fire Island National Seashore Wilderness Breach Shoreline Data Collected from Fire Island, New York, October 2014 to September 2016
Hurricane Sandy made U.S. landfall, coincident with astronomical high tides, near Atlantic City, New Jersey, on October 29, 2012. The storm, the largest on historical record in the Atlantic basin, affected an extensive area of the east coast of the United States. The highest waves and storm surge were focused along the heavily populated New York and New Jersey coasts. At the height of the storm, a record significant wave height of 9.6 meters (m) was recorded at the wave buoy offshore of Fire Island, New ... |
Info |
FIIS_Shorelines_Oct2012_Oct2017.shp: Fire Island, NY pre- and post-storm shoreline data from October 2012 to October 2017
Hurricane Sandy made U.S. landfall, coincident with astronomically high tides, near Atlantic City, New Jersey, on October 29, 2012. The storm, the largest on historical record in the Atlantic basin, affected an extensive area of the east coast of the United States. The highest waves and storm surge were focused along the heavily populated New York and New Jersey coasts. At the height of the storm, a record significant wave height of 9.6 meters (m) was recorded at the wave buoy offshore of Fire Island, New ... |
Info |
Fire Island Shoreface Bathymetric Data collected with Personal Watercraft and Backpack along Fire Island, New York (2014) as a GeoTIFF
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ... |
Info |
First shot navigation point for each line of chirp, water-gun and boomer seismic reflection data collected within the New York Bight by the U.S. Geological Survey, 1995 - 1999 (Esri point, Geographic, WGS84)
These data represent the first shot point for each line of data acquired with various seismic-reflection systems utilized during U.S. Geological Survey geophysical research cruises. |
Info |
Fisheries Sediment Data (WIGLEY65 shapefile)
This is a part of the National Geophysical Data Center (NGDC) Seafloor Surficial Sediment (Deck 41) Data File. Deck 41 is an original data file created by the Marine Geology and Geophysics Group of NGDC from 1970-1975, abstracted from unpublished material contributed to NGDC by multiple groups of individuals. No updates of Deck 41 have been added since 1975. The data that comprise this portion of Deck 41 were generated by R.L. Wigley during 1965 aboard ALBATROSS IV cruises 65-2, 65-13, and 65-14. |
Info |
Fledermaus Scene combining three 150-meter bathymetry grids from U.S. Geological Survey cruises 02051, 03008 and 03032 surveyed in 2002 and 2003 in the region of the Puerto Rico Trench
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Florida Keys Corals: A Photographic Record of Changes from 1959 to 2015
This data release contains time-series photographs taken of corals and coral habitats in the Florida Keys between 1959 and 2015 at Carysfort Reef and Grecian Rocks (a total of six sites). The original intent was to show coral reef recovery after Hurricane Donna devastated the area in 1960. Corals, especially elkhorn and staghorn coral, grew prolifically after the storm until the late 1970s, then began to decline, with the maximum period of decline centered around 1983 and 1984. These time-series photographs ... |
Info |
Florida Reef Tract 1930s-2016 Seafloor Elevation Stability Models, Maps, and Tables
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the 1930’s and 2016 along the Florida Reef Tract (FRT) from Miami to Key West within a 982.4 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Yates and others (2021) derived from an elevation-change analysis between two elevation datasets acquired in the 1930’s ... |
Info |
Florida Reef Tract 2016-2019 Seafloor Elevation Stability Models, Maps, and Tables
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2016 and 2019 along the Florida Reef Tract (FRT) from Miami to Key West within a 939.4 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Fehr and others (2021) derived from an elevation-change analysis between two elevation datasets acquired in 2016/2017 ... |
Info |
Fluvial-Marine Interactions, Maine (BUYNEVICH01 shapefile)
Grab samples and cores were collected as part of a study of the fluvial-marine interaction in the system comprised by the Kennebec River, Androscoggin River, Merrymeeting Bay, and Kennebec Rver Estuary. Processes controlling the Holocene evolution of the popham Barrier were also examined. |
Info |
Folds--Drakes Bay and Vicinity Map Area, California
This part of DS 781 presents data of folds for the geologic and geomorphologic map of the Drakes Bay and Vicinity map area, California. The vector data file is included in "Folds_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
Folds--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Folds_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B. ... |
Info |
Folds--Monterey Canyon and Vicinity Map Area, California
This part of DS 781 presents fold data for the geologic and geomorphic map of the Monterey Canyon and Vicinity map area, California. The vector data file is included in "Folds_MontereyCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/MontereyCanyon/data_catalog_MontereyCanyon.html. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., ... |
Info |
Folds--Offshore of Aptos Map Area, California
This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Folds_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R ... |
Info |
Folds--Offshore of Bodega Head Map Area, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Bodega Head map area, California. The vector data file is included in "Folds_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., ... |
Info |
Folds--Offshore of Bolinas Map Area, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Folds_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, ... |
Info |
Folds--Offshore of Carpinteria, California
This part of DS 781 presents fold data for the Offshore of Carpinteria map area, California. The vector data file is included in "Folds_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., Sliter, R.W., Erdey, M.D., Wong, F.L., ... |
Info |
Folds--Offshore of Coal Oil Point, California
This part of DS 781 presents fold data for the Offshore of Coal Oil Point map area, California. The vector data file is included in "Folds_OffshoreCoalOilPoint.zip," which is accessible from https ://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., Krigsman, L.M., Greene, H.G., ... |
Info |
Folds--Offshore of Fort Ross Map Area, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Fort Ross map area, California. The vector data file is included in "Folds_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E ... |
Info |
Folds--Offshore of Gaviota Map Area, California
This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Gaviota map area, California. The vector data file is included in "Folds_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. In the offshore part of the map area, closely-spaced seismic-reflection profiles image many shallow, west-northwest striking folds that have variable geometry, length, amplitude, continuity, and wavelength. The two longest folds, the 17-km-long Molino anticline ... |
Info |
Folds--Offshore of Half Moon Bay Map Area, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Half Moon Bay map area, California. The vector data file is included in "Folds_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., ... |
Info |
Folds--Offshore of Monterey, California
This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Monterey map area, California. The vector data file is included in "Folds_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, ... |
Info |
Folds--Offshore of Pacifica map area, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Pacifica map area, California. The vector data file is included in "Folds_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R ... |
Info |
Folds--Offshore of Point Conception Map Area, California
This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Point Conception Map Area, California. The vector data file is included in "Folds_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series� ... |
Info |
Folds--Offshore of Point Reyes Map Area, California
This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Point Reyes map area, California. The vector data file is included in "Folds_OffshorePointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A ... |
Info |
Folds--Offshore of Salt Point Map Area, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Salt Point map area, California. The vector data file is included in "Folds_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, ... |
Info |
Folds--Offshore of San Francisco Map Area, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of San Francisco map area, California. The vector data file is included in "Folds_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R ... |
Info |
Folds--Offshore of San Gregorio Map Area, California
This part of SIM 3306 presents data for the folds for the geologic and geomorphic map of the Offshore of San Gregorio map area, California. The vector data file is included in "Folds_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, ... |
Info |
Folds--Offshore of Santa Barbara, California
This part of DS 781 presents fold data for the Offshore of Santa Barbara map area, California. The vector data file is included in "Folds_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C.A., Seitz, G.G., ... |
Info |
Folds--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in "Folds_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie ... |
Info |
Folds--Offshore of Tomales Point Map Area, California
This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Folds_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W. ... |
Info |
Folds--Offshore of Ventura, California
This part of DS 781 presents fold data for the Offshore of Ventura map area, California. The vector data file is included in "Folds_OffshoreVentura.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., Erdey, M.D ... |
Info |
Folds--Offshore Pigeon Point, California
This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore Pigeon Point map area, California. The vector data file is included in "Folds_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, ... |
Info |
Folds--Offshore Refugio Beach, California
This part of DS 781 presents fold data for the geologic and geomorphic map of the Offshore of Refugio Beach map area, California. The vector data file is included in "Folds_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G ... |
Info |
Folds--Offshore Santa Cruz, California
This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore of Santa Cruz map area, California. The vector data file is included in "Folds_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, ... |
Info |
Folds—Point Sur to Point Arguello, California
This part of DS 781 presents data for the folds of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Folds_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. Folds in the Point Sur to Point Arguello region are identified on seismic-reflection data based on warping and tilting of reflections. Folds were primarily mapped by interpretation of seismic reflection profile data collected by the U.S. Geological Survey between 2008 ... |
Info |
Foraminifera biostratigraphy of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
Foraminiferal Mg/Ca data from IODP sediment core U1446
In 2019, the magnesium-to-calcium (Mg/Ca) ratios were measured in the tests of planktic foraminiferal species, Globigerinoides ruber (white variety), in a subset of samples from Integrated Ocean Drilling Program (IODP) sediment core U1146 from the Bay of Bengal drilled November 2014 to January 2015. For further information regarding data collection and/or processing methods, refer to the associated journal article (Clemens and others, 2021). |
Info |
FtHase_2023_MBES: High-resolution Geophysical and Imagery Data Collected in May 2023 Near Fort Hase, Marine Corps Base Hawaii
An Ellipsoidally Referenced Survey (ERS) using a Norbit Winghead multibeam echosounder, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) nearshore Fort Hase Marine Corps Base Hawaii (MCBH), on the island of Oahu, May 4-12, 2023. This dataset, FtHase_2023_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid and the dataset FtHase_2023_MBES_Backscatter.zip includes the acoustic backscatter ... |
Info |
g175eg.m77t - MGD77 data file for Geophysical data from field activity G-1-75-EG in Eastern Gulf of Alaska, Continental Shelf from 06/22/1975 to 08/27/1975
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity G-1-75-EG in Eastern Gulf of Alaska, Continental Shelf from 06/22/1975 to 08/27/1975, http://walrus.wr.usgs.gov/infobank/g/g175eg/html/g-1-75-eg.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus ... |
Info |
g176ar.m77t - MGD77 data file for Geophysical data from field activity G-1-76-AR in Arctic from 09/07/1976 to 10/02/1976
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity G-1-76-AR in Arctic from 09/07/1976 to 10/02/1976. The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files, located in the former Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog, into MGD77T format provided by the NOAA's National Geophysical Data Center (NGDC). The MGD77T format includes a header (documentation) ... |
Info |
g177eg.m77t and g177eg.h77t: MGD77T data and header files for single-beam bathymetry data for field activity G-1-77-EG in Yakutat Bay, Eastern Gulf of Alaska from 04/27/1977 to 05/22/1977
Single-beam bathymetry data along with dead reckoning navigation data was collected as part of the U.S. Geological Survey cruise G-1-77-EG. The cruise was conducted in Yakutat Bay, Eastern Gulf of Alaska from April 27 to May 22, 1977. The chief scientist was Paul Carlson from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was a 3.5 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program ... |
Info |
g178eg.m77t - MGD77 data file for Geophysical data from field activity G-1-78-EG in Eastern Gulf of Alaska, Glacier Bay from 09/12/1978 to 09/23/1978
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity G-1-78-EG in Eastern Gulf of Alaska, Glacier Bay from 09/12/1978 to 09/23/1978, http://walrus.wr.usgs.gov/infobank/g/g178eg/html/g-1-78-eg.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/g/g178eg/html/g-1-78-eg.bath.html into MGD77T format provided by the ... |
Info |
g295sf.m77t and g295sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity G-2-95-SF in San Francisco Bay, Golden Gate from 05/30/1995 to 06/10/1995
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise G-2-95-SF. The cruise was conducted in San Francisco Bay, Golden Gate area from May 30 to June 10, 1995. The chief scientists were Terry Bruns, Paul Carlson, and Dennis Mann all from the USGS Coastal and Marine Geology office in Menlo Park, CA. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity ... |
Info |
GAK_250M_LCC_WGS84.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
The Gulf of Alaska U.S. EEZ GLORIA digital sidescan-sonar mosaic covers about 806,000 square kilometers (sq km) of sea-floor. The mosaic shows the sea-floor morphology from Uminak Pass to Dixon Entrance, from the shelf break seaward to about 400 km. An additional 70-km-wide swath was imaged along the British Columbia margin to follow the trace of the Queen Charlotte Fault south of the Dixon Entrance. Major features visible on the mosaic include continental-margin deformation structures and submarine-channel ... |
Info |
GAK_Q31.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q32.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q33.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q34.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q35.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q36.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q37.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q38.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q39.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q40.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q41.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q42.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q43.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q44.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q45.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q46.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q47.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q48.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q49.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q50.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q51.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q52.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q53.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q54.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q55.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q56.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q57.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q58.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q59.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
GAK_Q60.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (30 of 30) (LCC, 50 m, WGS84)
GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian ... |
Info |
Gamma-ray bulk density measurements of vibracore JRBP2018-VC01B from Searsville Lake, Jasper Ridge Biological Preserve, Stanford, California
This portion of the data release presents gamma-ray bulk density measurements of vibracore JRBP2018-VC01B collected from Searsville Lake, Jasper Ridge Biological Preserve, Stanford, California in October 2018 (USGS Field Activity 2018-682-FA). The gamma-ray bulk density data are provided in a comma-delimited file (.csv). |
Info |
General physiographic zones of the inner continental shelf between Cape Ann and Salisbury Beach Massachusetts (PHYSIOGRAPHICZONES, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
Geochemical analysis of authigenic carbonates and chemosynthetic mussels at Atlantic Margin seeps (ver. 2.0, March 2019)
Isotopic analyses of authigenic carbonates and methanotrophic deep-sea mussels, Bathymodiolus sp., was performed on samples collected from seep fields in the Baltimore and Norfolk Canyons on the north Atlantic margin. Samples were collected using remotely operated underwater vehicles (ROVs) during three different research cruises in 2012, 2013, and 2015. Analyses were performed by several different laboratories, and the results are presented in spreadsheet format. |
Info |
Geochemical analysis of seeps along the Queen Charlotte Fault
Geochemical analyses of authigenic carbonates, bivalves, and pore fluids were performed on samples collected from seep fields along the Queen Charlotte Fault, a right lateral transform boundary that separates the Pacific and North American tectonic plates. Samples were collected using grab samplers and piston cores, and were collected during three different research cruises in 2011, 2015, and 2017. |
Info |
Geochemical and isotopic compositions of stream sediment, parent rock, and nearshore sediment from southwest Puerto Rico, April 2017-June 2018
Geochemical and isotopic compositions were determined in stream sediment and parent rocks collected in April 2017 and June 2017 and in nearshore sediment collected bimonthly in sediment traps from May 2017 to June 2018 in the coastal zone and 12 drainages of southwest Puerto Rico: Rio Loco, Yauco, Guayanilla, Macana, Tallaboa, Matilde, Portugues, Bucana, Inabon, Jacaquas, Descalabrado, and Coamo. Geochemical compositional data include: a) total contents of major, minor, trace, and rare earth elements in the ... |
Info |
Geochemical composition of ferromanganese crusts, nodules, and coated cobbles from seamounts in the Papahanaumokuakea Marine National Monument
This portion of the data release provides geochemical analyses data of ferromanganese rock samples collected off the coast of Hawaii. Ferromanganese crusts, nodules, and coated cobbles were collected via ROV from seamounts within the Papahanaumokuakea Marine National Monument (PMNM) in the Pacific Ocean during E/V Nautilus expeditions NA134 and NA138 in 2021 and 2022, respectively. Ferromanganese rock samples were sent to USGS for subsampling and major and trace element geochemical analyses. Major and trace ... |
Info |
Geochemical data supporting investigation of solute and particle cycling and fluxes from two tidal wetlands on the south shore of Cape Cod, Massachusetts, 2012-19 (ver. 3.0, January 2025)
Assessment of geochemical cycling within tidal wetlands and measurement of fluxes of dissolved and particulate constituents between wetlands and coastal water bodies are critical to evaluating ecosystem function, service, and status. The U.S. Geological Survey and collaborators collected surface water and porewater geochemical data from a tidal wetland located on the eastern shore of Sage Lot Pond in Mashpee, Massachusetts, within the Waquoit Bay National Estuarine Research Reserve, between 2012 and 2019. ... |
Info |
Geochemical data to characterize chemical water column properties of flooded caves (Ox Bel Ha and Cenote Crustacea) within the coastal aquifer of the Yucatan Peninsula, Quintana Roo, from December 2013 to January 2015
Natural cave passages penetrating coastal aquifers in the Yucatan Peninsula (Quintana Roo, Mexico) were accessed to investigate how regional meteorology and hydrology control dissolved organic carbon and methane dynamics in karst subterranean estuaries, the region of aquifers where fresh and saline waters mix. Three field trips were carried out in December 2013, August 2014, and January 2015 to obtain 1) physicochemical and 2) geochemical data from the water column and 3) temporal records of water chemistry ... |
Info |
Geochemistry of authigenic carbonates from Cascadia Margin
Geochemical analysis of authigenic carbonates from the Cascadia Subduction Zone. Powdered carbonate samples for stable carbon (delta-C-13) and oxygen (delta-O-18) isotopes and carbonate phase were analyzed as a proxy for potential fluid sources, and to better understand how process, such as mixing, and oxidation, can alter the initial fluid isotopic composition and the archived fluid-source signature in the authigenic carbonates. |
Info |
Geochemistry of ferromanganese crusts, nodules, and hydrothermally altered rocks from the Arctic Ocean
Ferromanganese crusts, nodules, and hydrothermally altered rocks were collected via dredge within the Amerasia Basin in the Arctic Ocean during USCGC icebreaker Healy cruises HLY0805, HLY0905, and HLY1202 in 2008, 2009, and 2012 respectively. Dredged samples were donated and sent to USGS for subsampling and major and trace element geochemical analyses. Major and trace element data as well as location information (latitude, longitude, depth) for each sample are provided here. |
Info |
Geochemistry of fine-grained sediment in Bellingham Bay, Nooksack River, and small creeks from June 2017 to September 2019
Elemental compositions are reported for the fine fraction of surface sediments from Bellingham Bay (June 2017 and March 2019) and in the fine fraction of streambank sediment from the Nooksack River (September 2017, March 2019, September 2019), Squalicum Creek (March and September 2019), Whatcom Creek (March and September 2019), and Padden Creek (March and September 2019). Major oxide percentages are reported in Nooksack River fine sediment collected in September 2017. Ancillary data for sediment collected ... |
Info |
Geochemistry of fine sediment from San Francisco Bay shoals (2012) and tributaries (2010, 2012, 2013)
Elemental chemistry and weight percent of the less than 0.063 mm fine sediment fraction are reported for surface sediments from shoals, the ebb tide delta, local tributaries, and inland rivers that carry sediment to San Francisco Bay, California. |
Info |
Geochemistry of sediment and organic matter in drainages burned by the Altas and Nuns wildfires in October 2017 and of nearshore seabed sediment in north San Francisco Bay from March to April 2018
Fine-grained sediment was collected from the banks of Napa River, Sonoma Creek, and tributaries in March 2018 and from shallow nearshore areas of the northern reach of San Francisco Bay in April 2018. Bulk sediment was dated using activities of short-lived cosmogenic radionuclides (beryllium-7, cesium-137, and lead-210). Contents of potentially toxic metals and source-rock-indicative elements, including rare earth elements, were quantified in the fine fraction of sediment (particles less than 0.063 mm ... |
Info |
Geochemistry of sediment subsamples from Loki's Castle and Favne Vent Fields, Mohns Ridge
This data release contains geochemical data of sediment subsamples collected in 2018 and 2019 from Loki’s Ridge and Favne Vent Fields, Mohns Ridge, part of the Arctic Mid-Atlantic Ridge. Data include major, minor and trace element concentrations, location information (latitude, longitude, depth), analytical methods, and instrument detection limits where available. |
Info |
Geochemistry of surface sediment and sediment cores in Bellingham Bay, Whatcom County, Washington, in February 2020
Geochemical data are reported for surface sediments and long sediment cores from Bellingham Bay, Whatcom County, Washington, collected in early February 2020 after flood conditions on the Nooksack River. Data include total organic carbon content (TOC), carbonate content (CaCO3), ratios of stable carbon 13/12 isotopes (d13C), ratios of total carbon to total nitrogen (C:N), short-lived cosmogenic radionuclide activities (Beryllium-7, Cesium-137, and excess Lead-210), and elemental chemistry. |
Info |
Geochemistry time series and growth parameters from Tutuila, American Samoa coral record
Geochemical analysis (including age-corrected radiocarbon stable isotopes, and elemental composition) and growth parameters (including calcification rate, density, and extension information) were measured from a coral core collected from a reef off the southern side of Tutuila, American Samoa. The core was collected near Matautuloa Point on 8 April 2012 in collaboration with the Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), ... |
Info |
Geographic Locations of Seabed Sediment Samples from the Stellwagen Bank National Marine Sanctuary Region (SB_SEDSAMPLES Shapefile)
The U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region from 1993 to 2004. The mapped area is approximately 3,700 square km (1,100 square nm) in size and was subdivided into 18 quadrangles. Several series of sea floor maps of the region based on multibeam sonar surveys have been published. In addition, 2,628 seabed ... |
Info |
Geologic Interpretation of the Acoustic Data Collected During National Oceanic and Atmospheric Administration (NOAA) Survey H11252 (H11252_INTERP.SHP, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Geologic Interpretation of the Acoustic Data Collected During National Oceanic and Atmospheric Administration (NOAA) Survey H11361 (H11361_INTERP.SHP, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Geologic interpretation of the sidescan sonar mosaic of National Oceanic and Atmospheric Administration (NOAA) survey H11043 off Branford, Connecticut
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Geologic Observations-Oregon OCS Floating Wind Farm Site
This part of the Oregon Outer Continental Shelf (OCS) Floating Windfarm Suite Data Release presents geological observations from video collected on U.S. Geological Survey (USGS) field activity 2014-607-FA in the Floating Wind Farm survey area. The survey was conducted using 12 hour day operations out of Charleston Harbor near Coos Bay, Oregon. The cruise plan consisted of 23 days on site split between sonar mapping and video ground truth surveying. Activities parsed out to nine days of sonar mapping, three ... |
Info |
Geologic outcrop and subcrop type within the inner shelf of Long Bay (Polygon shapefile)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Geology and geomorphology--Drakes Bay and Vicinity Bay, California
This part of DS 781 presents data for the geologic and geomorphic map of the Drakes Bay and Vicinity, California. The polygon shapefile is included in "Geology_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., ... |
Info |
Geology and geomorphology--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Geology_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter ... |
Info |
Geology and geomorphology--Monterey Canyon and Vicinity Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of Monterey Canyon and Vicinity, California. The vector data file is included in "Geology_MontereyCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/MontereyCanyon/data_catalog_MontereyCanyon.html. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., ... |
Info |
Geology and geomorphology--Offshore of Aptos Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Aptos map area, California. The vector data file is included in "Geology_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., Golden, N.E., Hartwell, S.R., Ritchie, A.C., Kvitek, r.G., Maier, K.L., Endris, C.A., Davenport, C.W., Watt, J.T., Sliter, R.W., ... |
Info |
Geology and geomorphology--Offshore of Bodega Head Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Bodega Head map area, California. The vector data file is included in "Geology_OffshoreBodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E. ... |
Info |
Geology and geomorphology--Offshore of Bolinas Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Bolinas map area, California. The vector data file is included in "Geology_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., ... |
Info |
Geology and geomorphology--Offshore of Carpinteria, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Carpinteria map area, California. The vector data file is included in "Geology_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., Sliter, ... |
Info |
Geology and geomorphology--Offshore of Fort Ross Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Fort Ross map area, California. The vector data file is included in "Geology_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, ... |
Info |
Geology and geomorphology--Offshore of Gaviota Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Gaviota map area, California. The vector data file is included in "Geology_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series-Offshore of Gaviota, ... |
Info |
Geology and geomorphology--Offshore of Half Moon Bay map area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Half Moon Bay map area, California. The vector data file is included in "Geology_OffshoreHalfMoonBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Johnson, S.Y., Golden, N.E., Hartwell, S.R., Dieter, B.E., Manson, M.W., Sliter, R.W., Ross, S.L., Watt, J ... |
Info |
Geology and geomorphology--Offshore of Monterey, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Monterey map area, California. The vector data file is included in "Geology_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, eds. ... |
Info |
Geology and geomorphology--Offshore of Pacifica map area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Pacifica map area, California. The vector data file is included in "Geology_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross ... |
Info |
Geology and geomorphology--Offshore of Point Conception Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Point Conception map area, California. The vector data file is included in "Geology_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series-Offshore ... |
Info |
Geology and geomorphology--Offshore of Point Reyes Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Point Reyes map area, California. The vector data file is included in "Geology_OffshorePointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_OffshorePointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., ... |
Info |
Geology and geomorphology--Offshore of Salt Point Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Salt Point map area, California. The vector data file is included in "Geology_OffshoreSaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., ... |
Info |
Geology and geomorphology--Offshore of San Francisco Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of San Francisco map area, California. The polygon shapefile is included in "Geology_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W., ... |
Info |
Geology and geomorphology--Offshore of San Gregorio Map Area, California
This part of SIM 3306 presents data for the geologic and geomorphic map of the Offshore of San Gregorio map area, California. The vector data file is included in "Geology_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., Erdey ... |
Info |
Geology and geomorphology--Offshore of Santa Barbara, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Santa Barbara map area, California. The vector data file is included in "Geology_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., ... |
Info |
Geology and geomorphology--Offshore of Scott Creek map area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in "Geology_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., ... |
Info |
Geology and geomorphology--Offshore of Tomales Point Map Area, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Geology_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., Endris ... |
Info |
Geology and geomorphology--Offshore of Ventura, California
This part of DS 781 presents geologic data of the Offshore of Ventura map area, California. The vector data file is included in "Geology_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., Gutierrez, C.I., Sliter, R.W., ... |
Info |
Geology and geomorphology--Offshore Pigeon Point, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Pigeon Point map area, California. The vector data file is included in "Geology_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. Marine geology and geomorphology were mapped in the Offshore Pigeon Point map area, California, from approximate Mean High Water (MHW) to the 3-nautical-mile limit of California's State Waters. Offshore geologic units were delineated on the basis of ... |
Info |
Geology and geomorphology--Offshore Refugio Beach, California
This part of DS 781 presents the geologic and geomorphic map of the Offshore of Refugio Beach map area, California. The vector data file is included in "Geology_OffshoreRefugioBeach.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G., Seitz, G ... |
Info |
Geology and geomorphology--Offshore Santa Cruz, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore Santa Cruz map area, California. The vector data file is included in "Geology_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K ... |
Info |
Geology--Offshore of Coal Oil Point, California
This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Coal Oil Point map area, California. The vector data file is included in "Geology_OffshoreCoalOilPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad, J.E., Lorenson, T.D., ... |
Info |
Geomorphic habitat units derived from 2009 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 11 September 2009 1 meter resolution NAIP aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (17 September 2009) for areas < MHHW and aerial lidar surveys (4-6 April 2009) for elevations > MHHW. |
Info |
Geomorphic habitat units derived from 2011 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 03 September 2011* 0.3 meter resolution Microsoft/Digital Globe aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (25 August 2011) for areas < MHHW and aerial lidar surveys (13-15 April 2012) for elevations > MHHW. *Image date of 3-Sep-11 corrected in metadata. During product generation the imagery date was believed to be 8-25-2011, as reported by ... |
Info |
Geomorphic habitat units derived from 2012 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 30 August 2012 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (28 August 2012) for areas < MHHW and aerial lidar surveys (17 October 2012) for elevations > MHHW. |
Info |
Geomorphic habitat units derived from 2013 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 26 August 2013 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (16 September 2013) for areas < MHHW and aerial lidar surveys (17 October 2012) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (19 September 2013) for elevations > MHHW. |
Info |
Geomorphic habitat units derived from 2014 aerial imagery and elevation data for the Elwha River estuary, Washington
Estuary geomorphic units delineated at a scale of 1:1500 using a combination of (a) 28 August 2014 0.15 meter resolution NPS Elwha PlaneCam aerial imagery; and (b) elevation-colored and hillshaded digital elevation models from USGS backpack/jetski topobathy surveys (5-8 September 2014) for areas < MHHW and aerial lidar surveys (7 November 2014) supplemented with NPS Elwha PlaneCam SfM photogrammetry data (30 September 2014) for elevations > MHHW. |
Info |
Geomorphic provinces in the Hudson Canyon region (polyline shapefile, geographic, WGS 84)
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and ... |
Info |
Geophysical data for field activity 69002 (K-0-69-GM) in Bay of Campeche, Gulf of Mexico from 01/17/1969 to 01/29/1969
Single-beam bathymetry data along with transit satellite navigation data was collected as part of field activity 69002 (K-0-69-GM) in Gulf of Mexico from 01/17/1969 to 01/29/1969, http://walrus.wr.usgs.gov/infobank/k/k069gm/html/k-0-69-gm.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k069gm/html/k-0-69-gm.bath.html into MGD77T format provided by the ... |
Info |
Geophysical properties, geochronologic, and geochemical data of sediment cores collected from San Pablo Bay, California, October 17-20, 2016
Geophysical properties (P-wave velocity, gamma ray density, and magnetic susceptibility), geochronologic (radiocarbon, excess Lead-210, and Cesium-137), and geochemical data (organic carbon content and 60 element contents) are reported for select vibracores collected aboard the S/V Retriever October 17-20, 2016, in San Pablo Bay, California. Geophysical properties were measured with a Geotek Multi-Sensor Core Logger (MSCL). Radiocarbon was measured by accelerator mass spectrometry (AMS). Excess Lead-210 and ... |
Info |
Geophysical Surveys of Bear Lake, Utah-Idaho, 2002 - JPEG Images of Seismic Data
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
Geophysical Surveys of Bear Lake, Utah-Idaho, September 2002 - Bathymetric Grid (BATHYGRD.TIF)
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
Georeferenced National Ocean Service (NOS) Hydrographic Sheets for Grand Bay, Mississippi, and Surrounding Areas
Hydrographic sheets (H-sheets) and nautical charts produced by the National Ocean Service (NOS) during the 1800s provide historic sounding (water depth) measurements of coastal areas. The data can be vectorized into a geographic information system (GIS), adjusted to a modern vertical datum, and converted into a digital elevation model to provide an interpretation of the historic seafloor elevation. These data were produced to provide an estimate of historical bathymetry for the Mississippi-Alabama coastal ... |
Info |
Georeferenced scans of National Oceanic and Atmospheric Administration (NOAA) topographic sheets (T-Sheets) Collected Along the Fire Island and Great South Bay, New York, Coastline from 1834-1875
Topographic sheets (t-sheets) produced by the National Ocean Service (NOS) during the 1800s provide the position of past shorelines. The shoreline data can be vectorized into a geographic information system (GIS) and compared to modern shoreline data to calculate estimates of long-term shoreline rates of change. Many t-sheets were scanned and digitized by the National Oceanic and Atmospheric Administration (NOAA) and are available on the NOAA Shoreline web site (https://shoreline.noaa.gov/data/datasheets/t ... |
Info |
Georeferenced Scans of National Oceanic and Atmospheric Administration (NOAA) T-Sheets Collected Along the New Jersey Coastline from 1839-1875
Historical shoreline surveys were conducted by the National Ocean Service (NOS), dating back to the early 1800s. The maps resulting from these surveys, often called t-sheets, provide a reference of historical shoreline position that can be compared to modern data to identify shoreline change. The t-sheets are stored at the National Archives and many have been scanned by the National Oceanic and Atmospheric Administration (NOAA) and are available on the NOAA Shoreline Web site (http://www.shoreline.noaa.gov ... |
Info |
Georeferenced TIFF image displaying 1 meter resolution backscatter data collected by the U.S. Geological Survey in the Madison Swanson Marine Protected Area, Gulf of Mexico in 2000 (UTM Zone 16N, WGS 84, GeoTIFF image)
The U.S. Geological Survey (USGS) mapped approximately 22 square miles of the Madison Swanson Marine Protected Area (MPA) and Steamboat Lumps MPA, which are located on the Florida shelf edge in the northeastern Gulf of Mexico in 2000 using sidescan sonar and high-resolution chirp seismic-reflection systems. This survey was conducted as part of a larger study of the effectiveness of no-fishing reserves in protecting grouper spawning aggregations. Field activity information for this cruise is available on ... |
Info |
Georeferenced TIFF image displaying 1 meter resolution backscatter data collected by the U.S. Geological Survey in the Steamboat Lumps Marine Protected Area, Gulf of Mexico in 2000 (UTM Zone 16N, WGS 84, GeoTIFF image)
The U.S. Geological Survey (USGS) mapped approximately 22 square miles of the Madison Swanson Marine Protected Area (MPA) and Steamboat Lumps MPA, which are located on the Florida shelf edge in the northeastern Gulf of Mexico in 2000 using sidescan sonar and high-resolution chirp seismic-reflection systems. This survey was conducted as part of a larger study of the effectiveness of no-fishing reserves in protecting grouper spawning aggregations. Field activity information for this cruise is available on ... |
Info |
Georeferenced TIFF image displaying 2 meter resolution backscatter data collected by the U.S. Geological Survey in a subset of the Steamboat Lumps marine Protected Area, Gulf of Mexico in 2000 (UTM Zone 16N, WGS 84, GeoTIFF image)
The U.S. Geological Survey (USGS) mapped approximately 22 square miles of the Madison Swanson Marine Protected Area (MPA) and Steamboat Lumps MPA, which are located on the Florida shelf edge in the northeastern Gulf of Mexico in 2000 using sidescan sonar and high-resolution chirp seismic-reflection systems. This survey was conducted as part of a larger study of the effectiveness of no-fishing reserves in protecting grouper spawning aggregations. Field activity information for this cruise is available on ... |
Info |
Georeferenced TIFF images displaying backscatter data collected by the U.S. Geological Survey along the transit between the Madison Swanson and Steamboat Lumps Marine Protected Areas, Gulf of Mexico in 2000 (UTM Zone 16, WGS 84, 5 GeoTIFF images)
The U.S. Geological Survey (USGS) mapped approximately 22 square miles of the Madison Swanson Marine Protected Area (MPA) and Steamboat Lumps MPA, which are located on the Florida shelf edge in the northeastern Gulf of Mexico in 2000 using sidescan sonar and high-resolution chirp seismic-reflection systems. This survey was conducted as part of a larger study of the effectiveness of no-fishing reserves in protecting grouper spawning aggregations. Field activity information for this cruise is available on ... |
Info |
Geospatial Navigational Data Associated with Chirp Sub-Bottom Profiles Collected During USGS Field Activity Number 2014-303-FA in June and July 2014 from Fire Island, New York
During June 15-23 and July 10-12, 2014, the U.S. Geological Survey (USGS) conducted a nearshore geologic assessment, including bathymetric mapping, along Fire Island, New York (NY). This work was conducted in support of efforts to map the shoreface, characterize stratigraphy, and investigate changes in seafloor elevations near Fire Island, NY to assess the impacts of Hurricane Sandy to the area in October 2012. Geophysical data were collected as part of the Hurricane Sandy Supplemental Project (GS2-2B). The ... |
Info |
Geospatial Navigational Data Associated with Chirp Sub-Bottom Profiles Collected During USGS Field Activity Number 2023-325-FA in June and August 2023 from the Chandeleur Islands, Louisiana
As part of the 2022 Disaster Supplemental project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey to map the shoreface and inner shelf, as well as characterize stratigraphy near the Chandeleur Islands, Louisiana (LA) in June and August 2023. The purpose of this study was to conduct a morphologic and geologic assessment of the impacts of the 2020 and 2021 hurricane seasons within part of the Breton National ... |
Info |
Geospatial Navigational Data Associated with Chirp Sub-Bottom Profiles Collected During USGS Field Activity Number 2024-320-FA in 2024 Offshore of Breton Island, Louisiana
As part of the Breton Island Post Construction Monitoring project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey in August 2024 to map the borrow site created during the Breton Island, Louisiana (LA) restoration effort that began in December 2020. The restoration effort was part of the Deepwater Horizon oil spill settlement to restore natural resources and services injured by the spill. Following ... |
Info |
Geospatial Navigational Data Associated with Chirp Sub-Bottom Profiles Collected During USGS Field Activity Numbers 2021-326-FA and 2022-326-FA in 2021 and 2022 from Duck, North Carolina
In June/December 2021 and July 2022, the U.S. Geological Survey (USGS) and U.S. Army Corps of Engineers, Engineer Research and Development Center (USACE-ERDC) conducted repeat, nearshore geologic assessments, including bathymetric mapping, near Duck, North Carolina (NC). This work was performed in support of efforts to map the shoreface, characterize stratigraphy, and investigate changes in seafloor elevations near the USACE Field Research Facility and to measure the co-evolution of the morphology and ... |
Info |
Geotagged sea-floor images and location of bottom images collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (JPEG images, point shapefile, and CSV file)
Two marine geological surveys were conducted in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey (USGS), University of Connecticut, and University of New Haven through the Long Island Sound Mapping and Research Collaborative. Sea-floor images and videos were collected at 210 sampling sites within the survey area, and surficial sediment samples were collected at 179 of the sites. The sediment data and the observations from the images and videos are used ... |
Info |
Geotagged sea-floor images and locations of bottom images collected in Cape Cod Bay, Massachusetts, in September 2019 by the U.S. Geological Survey during field activity 2019-034-FA (JPEG images, point shapefile, and CSV file; GCS WGS 84)
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterize the surface and shallow subsurface geologic framework. Geophysical data collected include swath bathymetry, ... |
Info |
Geotagged sea-floor photographs and location of bottom photographs collected in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey during field activities 2016-005-FA and 2017-022-FA (JPEG images, point shapefile, and CSV file)
Two marine geological surveys were conducted in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey (USGS) as part of an agreement with the Massachusetts Office of Coastal Zone Management to map the geology of the sea floor offshore of Massachusetts. Samples of surficial sediment and photographs of the sea floor were collected at 76 sampling sites within the survey area, and sea-floor videos were collected at 75 of the sites. The sediment data and the observations from the ... |
Info |
GeoTIFF image of acoustic backscatter collected by the U.S. Geological Survey off of Marysville, Michigan within the St. Clair River, 2008 (GeoTIFF, MVILLE_05M.TIF).
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
GeoTIFF image of acoustic backscatter collected by the U.S. Geological Survey off of Port Lambton, Ontario within the St. Clair River, 2008 (GeoTIFF, PORTL_05M.TIF)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
GeoTIFF image of acoustic backscatter collected by the U.S. Geological Survey within the Upper St. Clair River between Michigan and Ontario, Canada, 2008 (GeoTIFF, MOSAIC_05M.TIF).
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
GeoTIFF image of interferometric backscatter data collected by the USGS within Red Brook Harbor, MA, 2009 (RB_Backscatter_1m)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and ... |
Info |
GeoTIFF image of interferometric backscatter data collected by the USGS within Red Brook Harbor, MA, 2009 (RB_Backscatter_5m)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and ... |
Info |
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor offshore of Fire Island Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor of the Hudson Shelf Valley (12-m resolution, Mercator, WGS 84)
The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, ... |
Info |
GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor southwest of Montauk Point, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of shaded-relief bathymetry, illuminated from 315 degrees, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84)
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and ... |
Info |
GeoTIFF image of shaded-relief bathymetry, illuminated from 45 degrees, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84)
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and ... |
Info |
GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Fire Island Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of shaded-relief bathymetry of the sea floor of the Atlantic Beach artificial reef (2-m resolution, Mercator, WGS 84)
The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship ... |
Info |
GeoTIFF image of shaded-relief bathymetry of the sea floor of the Hudson Shelf Valley (12-m resolution, Mercator, WGS 84)
The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, ... |
Info |
GeoTIFF image of shaded-relief bathymetry of the sea floor southwest of Montauk Point, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor offshore of Fire Island Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor of the Atlantic Beach artificial reef (2-m resolution, Mercator, WGS 84)
The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor of the Historic Area Remediation Site in 1996 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor of the Historic Area Remediation Site in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84)
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor of the Hudson Shelf Valley (12-m resolution, Mercator, WGS 84)
The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor of the Sandy Hook artificial reef (2-m resolution, Mercator, WGS 84)
The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the ... |
Info |
GeoTIFF image of the backscatter intensity of the sea floor southwest of Montauk Point, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 1996 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
GeoTIFF image of the shaded-relief bathymetry of the sea floor, colored by backscatter intensity, of the Historic Area Remediation Site in 1996 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
GeoTIFF image of the shaded-relief bathymetry of the sea floor, colored by backscatter intensity, of the Historic Area Remediation Site in 1998 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
GeoTIFF image of the shaded-relief bathymetry of the sea floor, colored by backscatter intensity, of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
GeoTIFF image of the shaded-relief bathymetry of the sea floor of the Sandy Hook artificial reef (2-m resolution, Mercator, WGS 84)
The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the ... |
Info |
GeoTIFF image of the shaded-relief bathymetry, pseudo-colored by backscatter intensity, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84)
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and ... |
Info |
GeoTIFF image of the shaded-relief bathymetry, pseudocolored by backscatter intensity, of the sea floor of the Sandy Hook artificial reef (2-m resolution, Mercator, WGS 84)
The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the ... |
Info |
GeoTIFF image the shaded-relief bathymetry, pseudocolored by backscatter intensity, of the sea floor of the Atlantic Beach artificial reef (2-m resolution, Mercator, WGS 84)
The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship ... |
Info |
GIS data: Sediment Sample Locations Collected in July 2013 from the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 13BIM05)
As part of the Barrier Island Evolution Research (BIER) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected sediment samples from the northern Chandeleur Islands in July 2013. The overall objective of this project, which integrates geophysical (bathymetric, seismic, and topographic) and sedimentologic data, is to understand better the depositional and erosional processes that drive the morphologic evolution of barrier islands over ... |
Info |
GIS data: Sediment Sample Locations Collected in March 2012 from the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 12BIM01)
As part of the Barrier Island Evolution Research (BIER) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected sediment samples from the northern Chandeleur Islands in March and September 2012. The overall objective of this project, which integrates geophysical (bathymetric, seismic, and topographic) and sedimentologic data, is to better understand the depositional and erosional processes that drive the morphologic evolution of barrier ... |
Info |
GIS data: Sediment Sample Locations Collected in September 2012 from the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 12LGC02)
As part of the Barrier Island Evolution Research (BIER) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected sediment samples from the northern Chandeleur Islands in March and September 2012. The overall objective of this project, which integrates geophysical (bathymetric, seismic, and topographic) and sedimentologic data, is to better understand the depositional and erosional processes that drive the morphologic evolution of barrier ... |
Info |
Global compilation of published gas hydrate-related bottom simulating reflections
Bottom simulating reflections (BSRs) are seismic features that are imaged in marine sediments using high-energy, impulsive seismic sources such as air guns or generator-injector guns. BSRs often cut across sediment stratigraphy and are interpreted as marking the deepest depth at which gas hydrate can exist. Gas hydrate is a naturally occurring and widely distributed frozen form of water and gas (usually methane) stable at low temperatures (up to about 25 degrees Celsius [°C]) and intermediate pressures ... |
Info |
Global ferromanganese crust and abyssal ferromanganese nodule prospective occurrence regions
This data release is a polygon shapefile representing prospective occurrence regions of ferromanganese crusts and abyssal ferromanganese nodules on the seafloor throughout the global oceans. Polygons represent areas where oceanographic criteria, such as low sedimentation rate and moderate primary productivity, overlap with geologic criteria, including regions with appropriate seafloor morphology for each mineral type, such as seamounts and ridges or abyssal plains. The regions indicate where ferromanganese ... |
Info |
Globorotalia truncatulinoides Sediment Trap Data in the Gulf of Mexico
Modern observations of planktic foraminifera from sediment trap studies help to constrain the regional ecology of paleoceanographically valuable species. Results from a weekly-resolved sediment trap time series (2008–2014) in the northern Gulf of Mexico demonstrate that 92% of Globorotalia truncatulinoides flux occurs in winter (January, February, and March), and that encrusted and non-encrusted individuals represent calcification in distinct depth habitats. Individual foraminiferal analysis (IFA) of G. ... |
Info |
Globorotalia truncatulinoides Trace Element Geochemistry (Barium, Magnesium, Strontium, Manganese, and Calcium) from the Gulf of Mexico Sediment Trap
Observations of elevated barium-to-calcium ratio (Ba/Ca) in Globorotalia truncatulinoides have been attributed to contaminant phases, deep calcification depth and diagenetic processes. U.S. Geological Survey (USGS) scientists and their collaborators investigated intra- and inter-test Ba/Ca variability in the non-spinose planktic foraminifer, G. truncatulinoides, from a sediment trap time series (2009-2017) in the northern Gulf of Mexico (generally 27.5°N and 90.3°W) to gain insights into the environmental ... |
Info |
GLORIA sidescan sonar mosaic
This GIS overlay is a component of the U. S Geological Survey, Woods Hole Field Center's, Gulf of Mexico ArcView GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. |
Info |
GLORIA sidescan sonar mosaic
This image is a 250m version of the composite Gulf of Mexico GLORIA sidescan sonar mosaic. |
Info |
GMX_250M_AEA_NAD27.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar composite mosaic (ACEA, 250 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q01.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (1 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q02.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (2 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q03.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (3 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q04.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (4 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q05.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (5 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q06.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (6 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q07.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (7 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q08.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (8 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q09.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (9 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q10.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (10 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q11.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (11 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q12.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (12 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q13.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (13 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q14.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (14 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q15.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (15 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GMX_Q16.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (16 of 16) (ACEA, 50 m, Clarke1866)
During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the ... |
Info |
GNSS Topography Survey Data Collected from Tres Palmas, Rincón, Puerto Rico
This data release presents the post-processed Global Navigation Satellite System (GNSS) ground-survey data acquired during the installation of a camera system at Tres Palmas, Rincón, Puerto Rico (PR). The data contains topographic survey data collected during the installation of the camera. Data were collected on foot, by a person equipped with a GNSS antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ). The GNSS measurements were made using Post-Processed Kinematic (PPK) ... |
Info |
Grab Sample Locations & Surficial Sediment Texture collected by the U.S. Geological Survey 1999-2003 offshore of the Grand Strand, South Carolina region (GRABS, Point shapefile)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Grain-size analyses of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the ... |
Info |
Grain size analyses of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
Grain-size analysis of sediment samples collected in July 2016 by the U.S. Geological Survey off Town Neck Beach, Sandwich in Massachusetts, during field activity 2016-037-FA (CSV file and simplified shapefile)
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ... |
Info |
Grain-size analysis results and locations of sediment samples collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-049-FA (simplified point shapefile and CSV files)
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg ... |
Info |
Grain size and charcoal abundance in sediment samples from Los Padres reservoir, Carmel River watershed, California
Sediment samples were collected from Los Padres reservoir in the Carmel River watershed, central California coast, between July 11 and 17, 2017, using a CME-45 barge-mounted drill rig, to characterize sedimentary properties in the reservoir deposits following the Soberanes Fire of 2016 and high river flows in winter 2017. Borehole samples were recovered using direct push coring with an Osterberg piston sampler operated by Taber Drilling Company of Sacramento, California, and overseen by AECOM, Inc. Sediment ... |
Info |
Grain-Size and Data Analysis Results from Sediment Samples Collected at Crocker Reef, Florida, Between 2017 and 2019
Sediment samples were collected from undisturbed sections of the seafloor around Crocker Reef, Florida. Crocker Reef is a barrier reef located in the northern portion of the Florida Reef Tract that has been classified by Kellogg and others (2015) as a senile or dead reef consisting of areas of sand and rubble with only scattered stony coral colonies. Samples were collected from November 2017 to April 2019 to help ground truth coincident instrumentation deployed during the same time interval, which was used ... |
Info |
Grainsize and Mineralogy Data of Sediments Samples Collected at Crocker Reef, Florida, 2013-2014
Understanding the processes that govern whether a coral reef is accreting (growing) or dissolving are fundamental to questions of reef health and resiliency. A total of 52 surficial sediment samples were collected within a 1-km x 1-km area around Crocker Reef in the Florida Keys, USA, between 2013 and 2014. Samples 1-35 were collected in July 2013 and samples 36-52 were collected in July 2014. The samples were processed using conventional, published techniques (see process step 2) to yield grain size and ... |
Info |
Grain-Size and Site Data From Sediment Samples Collected at Seven Mile Island, New Jersey and Rockaway Peninsula, New York, Between May 2021 and June 2021
Sediment grab samples were collected from one onshore location and 32 undisturbed locations along the seafloor around Seven Mile Island, New Jersey (NJ) and Rockaway Peninsula, New York (NY). The sediment grab samples were collected in May and June of 2021 at locations within the area where multibeam bathymetry surveys were also conducted during the same trip. All sediment samples were analyzed using a laser diffraction Coulter LS13 320 particle-size analyzer to measure the grain size distribution of the ... |
Info |
Grain-size data from core S3-15G, Monterey Fan, Central California
This data release presents sediment grain-size data from samples collected from core S3-15G, a 4.72-m long gravity core collected at a depth of 3,491 meters on the western levy of the Monterey Fan on May 31, 1978 (USGS Field Activity S-3-78-SC). |
Info |
Grain-size data from vibracores collected in 2014 from Barnegat Bay, New Jersey
In response to the 2010 Governor’s Action Plan to clean up the Barnegat Bay–Little Egg Harbor (BBLEH) estuary in New Jersey, the U.S. Geological Survey (USGS) partnered with the New Jersey Department of Environmental Protection in 2011 to begin a multidisciplinary research project to understand the physical controls on water quality in the bay. Between 2011 and 2013, USGS scientists mapped the geological and morphological characteristics of the seafloor of the BBLEH estuary using a suite of geophysical ... |
Info |
Grain Size Distribution of Surficial Sediments offshore of the Grand Strand, South Carolina region (GRAINSIZE_POLY, Polygon shapefile)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Grain_Size-met: Archive of sediment physical properties and grain-size data for sediment samples collected offshore of Assateague Island, Maryland and Virginia
This data release serves as an archive of sediment physical properties and grain-size data for surficial samples collected offshore of Assateague Island, Maryland and Virginia, for comparison with surficial estuarine and subaerial sedimentological samples collected and assessed following Hurricane Sandy (Ellis and others, 2015 (http://doi.org/10.3133/ofr20151219); Smith and others, 2015 (http://doi.org/10.3133/ofr20151169); Bernier and others, 2016 (https://pubs.usgs.gov/ds/0999/)). The sediment samples ... |
Info |
Grain size of bulk sediments from the Escanaba Trough, off the coast of Northern California, USA, from May-June 2022.
Sediment grain size was determined on one to five cm subsamples of push cores collected from the Escanaba Trough during May to June 2022. |
Info |
GrandBay_2010_Shoreline.shp - Grand Bay, Mississippi/Alabama, Shoreline Data Derived from 2010 Aerial Imagery
GrandBay_2010_Shoreline.zip features a digitized historical shoreline for the Grand Bay, Mississippi (MS) coastline (Pascagoula, MS to Point aux Pins, Alabama [AL]) derived from 2010 aerial imagery. Imagery of the Mississippi and Alabama coastlines was acquired from the National Agriculture Imagery Program (NAIP) and the city of Mobile, AL. Using ArcMap 10.3.1, the imagery was used to delineate and digitize the historical shoreline as either the Wet Dry Line (WDL) along sandy beaches or the vegetation edge ... |
Info |
GrandBay_2012_Shoreline.shp - Grand Bay, Mississippi/Alabama, Shoreline Data Derived from 2012 Aerial Imagery
GrandBay_2012_Shoreline.zip features a digitized historical shoreline for the Grand Bay, Mississippi (MS) coastline (Pascagoula, MS to Bayou La Fourche Bay, Alabama [AL]) derived from 2012 aerial imagery. Imagery of the Mississippi and Alabama coastlines was acquired from the National Agriculture Imagery Program (NAIP). Using ArcMap 10.3.1, the imagery was used to delineate and digitize a coarse historical shoreline as either proximal Wet Dry Line along sandy beaches or proximal vegetation edge along the ... |
Info |
GrandBayModel_InputBathymetry: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ... |
Info |
GrandBay_ValidationPeriod_Wave_WaterLevel: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output
The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ... |
Info |
Grayscale GeoTIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_1MSSS_UTM19.TIF, UTM Zone 19, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Grayscale GeoTIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H12296 in Block Island Sound (H12296_1MSSS_UTM19.TIF, UTM Zone 19, NAD 83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Grayscale GeoTIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H12298 in Block Island Sound (UTM Zone 19, NAD 83, H12298_1MSSS_UTM19.TIF)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along western Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs ... |
Info |
Grayscale GeoTIFF Image of the Bathymetry of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_UTM.TIF, UTM Zone 19)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of central Rhode Island Sound using sidescan-sonar imagery, bathymetry data, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
Grayscale Seismic-Reflection Images in PNG Format from Eastern Rhode Island Sound from 1975
During 1975, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in eastern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Grayscale Seismic-Reflection Images in PNG Format from Southern Rhode Island Sound Collected in 1980
During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in southern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 3 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Grayscale Seismic-Reflection Images in PNG Format from Western Rhode Island Sound (1980)
During 1980, a Uniboom seismic-reflection survey was conducted by the U.S. Geological Survey (USGS) in western Rhode Island Sound aboard the Research Vessel NeechoThe cruise consisted of 2 legs and had a total of 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. As a result of recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise ... |
Info |
Grayscale Shaded-Relief GeoTIFF Image Showing the 3-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11079 in Great Round Shoal Channel, Offshore Massachusetts (H11079_UTM_GSHS.TIF, UTM Zone 19)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Grayscale TIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H12013 off the entrance to the Connecticut River in northeastern Long Island Sound (H12013_1MSSS_UTM18.TIF, UTM Zone 18, NAD83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
Grey Scale Acoustic Backscatter Image of the Puerto Rico Trench, UTM Zone 19 (utm19_30m_mosaic)
The Puerto Rico Trench is a tectonic plate boundary where the North American Plate slides by and descends under the Caribbean Plate. Although much of the trench lies within the United States of America's Exclusive Economic Zone (EEZ), surprisingly few surveys have been conducted there during the past 25 years. This data set is a grey toned surface model image product derived from a process using multibeam bathymetry and acoustic-backscatter imagery data collected during the U.S. Geological Survey (USGS) ... |
Info |
Grey Toned Surface Model Image from the 150 meter grid of the Puerto Rico Trench (gtsurfmod.tif)
The Puerto Rico Trench is a tectonic plate boundary where the North American Plate slides by and descends under the Caribbean Plate. Although much of the trench lies within the United States of America's Exclusive Economic Zone (EEZ), surprisingly few surveys have been conducted there during the past 25 years. This data set is a grey toned surface model mosaic derived from the 150 meter grid made from the multibeam bathymetric data collected during the U.S. Geological Survey (USGS) science cruise 03008 in ... |
Info |
Grid File of Historical Bathymetric Soundings for Mississippi and Alabama Derived from National Ocean Service (NOS) Hydrographic Sheets
Hydrographic sheets (H-sheets) and nautical charts produced by the National Ocean Service (NOS) during the 1800s provide historic sounding (water depth) measurements of coastal areas. The data can be vectorized into a geographic information system (GIS), adjusted to a modern vertical datum, and converted into a digital elevation model to provide an interpretation of the historic seafloor elevation. These data were produced to provide an estimate of historical bathymetry for the Mississippi-Alabama coastal ... |
Info |
Grid of depth to basement in deep-water basins offshore Washington, Oregon, and California (cowbsmg.tif) based on data collected in 1984
COWBSMG is a 1000-m resolution grid of depth to basement off of Washington, Oregon, and California constructed from depth to basement contour data (cowbsm.shp, also in this data set) from 1:1,000,000-scale maps (Gardner and others, 1992, 1993a, 1993b). The range in depth to basement in this region is -5582 to -985 m with a mean of -3817 m. |
Info |
Grid of the sea-floor bathymetry offshore of Fire Island Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
Grid of the sea-floor bathymetry offshore of Moriches Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
Grid of the sea-floor bathymetry offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
Grid of the sea-floor bathymetry southwest of Montauk Point, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
Grid of the thickness of sediment above the Pleistocene surface Q30, inner shelf and back-barrier from Virginia border to Cape Lookout, North Carolina (q30thick, ESRI binary grid, 200 m cell size, UTM, Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Grid of the thickness of sediment above the Pleistocene surface Q50, inner shelf and back-barrier from Virginia border to Cape Lookout, North Carolina (q50thick, ESRI binary grid, 200 m cell size, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Grid Representing the Holocene Ravinement Surface off the Coast of Washington and Oregon
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Grid Representing the Last Lowstand of Sealevel off the Coast of Washington and Oregon
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Grid representing the sediment thickness between the lowstand and ravinement surfaces on the inner continental shelf off the northern Oregon and southern Washington coast
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Grid Representing the Sediment Thickness Between the Ravinement and Present Day Surfaces
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Grids Representing the Holocene Evolution off the Coast of Washington and Oregon at 1,000 Year Time Increments
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Grids Representing the Holocene Evolution off the Coast of Washington and Oregon at 1,000 Year Time Increments - Shifted and with Landward DEM
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Ground Control Point Data from the Outer Banks, North Carolina, post-Hurricane Dorian, September 2019
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project surveyed 34 features visible from the air to be used as ground control points (GCP) on the Outer Banks, North Carolina, on September 24 and 25, 2019, after the passing of Hurricane Dorian (U.S. landfall on September 6, 2019). Global Positioning System (GPS) data were collected in support of aerial imagery surveys documenting the storm impacts and subsequent recovery along the coast and will be used as control and check points in ... |
Info |
Ground Control Point Locations and Photographs From North Topsail Beach and Camp Lejeune, North Carolina, June 2019
Scientist from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected xyz locations for 53 Ground Control Points (GCP) in North Topsail Beach and within the Camp Lejeune Marine Corps Base, North Carolina, June 12-14, 2019. During this study, Global Positing System (GPS) data were collected using a single Spectra SP80 Global Navigation Satellite System (GNSS) receiver affixed to a 2-meter (m) survey pole. Additional attributes pertaining to each survey point ... |
Info |
Ground control point locations and topographic GNSS measurements collected during the UAS survey of the debris flow at South Fork Campground, Sequoia National Park, CA
This portion of the data release presents topographic Global Navigation Satellite System (GNSS) measurements acquired during the UAS survey of the debris flow at South Fork Campground in Sequoia National Park. The data contain the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing, as well as topographic measurements collected using a backpack-mounted GNSS rover. For the GCPs, 23 temporary points consisting of a combination of small square tarps with ... |
Info |
Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. Twenty temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of: nine submerged targets consisting of small (80 centimeter X 80 centimeter) ... |
Info |
Ground control point locations for the UAS survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the unoccupied aerial system (UAS) survey of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01. Twenty temporary ground control points (GCPs) consisting of small square tarps with black-and-white cross patterns were distributed throughout the area to establish survey control. The GCP positions were measured ... |
Info |
Ground control point locations for UAS survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unmanned aerial system (UAS) survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA on 2019-06-05. Eighteen temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white cross patterns ... |
Info |
Ground control point locations for UAS survey of the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unmanned aerial system (UAS) survey of the intertidal zone at Post Point, Bellingham Bay, WA on 2019-06-06. Nineteen temporary ground control points (GCPs) were distributed throughout each survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white cross patterns ... |
Info |
Ground control point locations for UAS survey of the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unmanned aerial system (UAS) survey of the intertidal zone at West Whidbey Island, WA on 2019-06-04. Twenty-five temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white cross patterns and ... |
Info |
Ground control point locations for UAS survey of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unmanned aerial system (UAS) survey of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA, on 2019-06-03. Twelve temporary ground control points (GCPs) were distributed throughout each survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white ... |
Info |
Ground control point locations for UAS survey of the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the Unmanned Aerial System (UAS) survey on of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta on 2018-10-23. The GCPs were used to establish ground control for the survey and consisted of 24 small (80 x 80 centimeter) square tarps with black-and-white cross patterns placed ... |
Info |
Ground control point locations for UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the August 2017 unoccupied aerial system (UAS) surveys of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. Eighteen temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of a combination of ... |
Info |
Ground control point locations for UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the July 2021 unoccupied aerial system (UAS) surveys of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. Eighteen temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of a combination of small ... |
Info |
Ground Penetrating Radar and Global Positioning System Data Collected from Central Florida Gulf Coast Barrier Islands, Florida, February-March 2021
A morphologically diverse and dynamic group of barrier islands along the Central Florida (FL) Gulf Coast (CFGC) form a 75-kilometer-long chain stretching from Anclote Key in the north to Egmont Key in the south. In 2021, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted ground penetrating radar (GPR) surveys on barrier islands located along the CFGC, in Pinellas County, FL. This study investigated the past evolution of the CFGC from field ... |
Info |
Ground Penetrating Radar and Global Positioning System Data Collected from Fire Island, New York, March-April 2021
Fire Island, New York (NY) is a 50-kilometer (km) long barrier island system fronting the southern coast of Long Island, NY with relatively complex geology. In 2016, the U.S. Geological Survey (USGS) conducted ground penetrating radar (GPR) surveys and sediment sampling at Fire Island to characterize and quantify spatial variability in the subaerial geology (Forde and others, 2018; Buster and others, 2018). These surveys, in combination with historical data, allowed for a preliminary reconstruction of the ... |
Info |
Ground-Penetrating Radar Data and Differential Global Positioning System Data Collected from Long Beach Island, New Jersey, April 2015
Scientists from the United States Geological Survey, St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey Pacific Coastal and Marine Science Center, and students from the University of Hawaii at Manoa collected sediment cores, sediment surface grab samples, ground-penetrating radar (GPR) and Differential Global Positioning System (DGPS) data from within the Edwin B. Forsythe National Wildlife Refuge-Holgate Unit located on the southern end of Long Beach Island, New Jersey, in April 2015 ... |
Info |
Ground Penetrating Radar (GPR) Profile Trace Data Collected from Dauphin Island, Alabama in April 2013
From April 13-20, 2013, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) conducted geophysical and sediment sampling surveys on Dauphin Island, Alabama, as part of field activity number 13BIM01. This dataset, Ground Penetrating Radar (GPR) Profile Trace Data Collected from Dauphin Island, Alabama in April 2013, contains the unprocessed, raw profile trace data obtained during this survey. |
Info |
Gulf of Maine Contaminated Sediments Database (GOMCSDB shapefile)
The Contaminated Sediments Database for the Gulf of Maine provides a compilation and synthesis of existing data to help establish the environmental status of our coastal sediments and the transport paths and fate of contaminants in this region. This information, in turn, forms one of the essential bases for developing successful remediation and resource management policies. The Contaminated Sediments Database for the Gulf of Maine provides a compilation and synthesis of existing data to help establish the ... |
Info |
Gulf of Mexico GLORIA sidescn sonar geologic interpretation
This GIS overlay is a component of the U. S Geological Survey, Woods Hole Field Center's, Gulf of Mexico ArcView GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. |
Info |
Gulf of Mexico Hydrocarbon Seeps (SEEPS.SHP)
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. |
Info |
Gulf of Mexico Sediment Trap Foraminifera Data
The U.S. Geological Survey (USGS) deployed a sediment trap (McLane PARFLUX 78H) mooring in the northern Gulf of Mexico (27.5 °N and 90.3°W, water depth 1150 meters [m]) in January 2008 to collect seasonal time-series data on the flux and assemblage composition of planktic foraminifers. The trap was positioned in the water column at a depth of 700 m on the mooring cable to enable the collection of deeper dwelling species of planktic foraminifera. The trap contains 21 collection cups that were programmed to ... |
Info |
Habitat--Monterey Canyon and Vicinity, California
This part of DS 781 presents data for the habitat map of the seafloor of the Monterey Canyon and Vicinity map area, California. The vector data file is included in "Habitat_MontereyCanyon.zip," which is accessible from https://doi.org/10.5066/F7XD0ZQ4. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., ... |
Info |
Habitat--Offshore of Gaviota Map Area, California
This part of DS 781 presents data for the habitat map of the Offshore of Gaviota Map Area, California. The vector data file is included in "Habitat_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of Gaviota, California: U.S. ... |
Info |
Habitat--Offshore of Point Conception Map Area, California
This part of DS 781 presents data for the habitat map of the Offshore of Point Conception Map Area, California. The vector data file is included in "Habitat_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series—Offshore of Point ... |
Info |
HATTERAS_INDEX - Hatteras Island, North Carolina (geographic, WGS84)
The shoreline of Cape Hatteras, North Carolina, is experiencing long-term coastal erosion. In order to better understand and monitor the changing coastline, historical aerial imagery is used to map shoreline change. For the area of Hatteras Island from Cape Point to Oregon Inlet, fourteen aerial datasets from 1978-2002 were scanned and georeferenced for use in a Geographic Information System (GIS). Shoreline positions (high water line) were digitized from georeferenced imagery. The shoreline vectors were ... |
Info |
hawaii_geo - Geologic attributes of the coastal zone of Hawaii, Hawaii
Geologic attributes of the coastal zone of Hawaii, Hawaii |
Info |
hawaii_slp - Coastal Slope along the coastal zone of Hawaii, Hawaii
Coastal Slope along the coastal zone of Hawaii, Hawaii |
Info |
High-resolution acoustic backscatter data collected southwest of Chenega Island, Alaska during field activity 2014-622-FA
High-resolution acoustic backscatter data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Chenega Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder. |
Info |
High-resolution acoustic backscatter data collected southwest of Montague Island, Alaska during field activity 2014-622-FA
High-resolution acoustic backscatter data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Montague Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder. |
Info |
High-resolution bathymetry data collected in 2004 in Skagit Bay, Washington
These metadata describe the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) 2004 bathymetry data collected in Skagit Bay Washington that is provided as a 1-m resolution TIFF image, as well as a 1-m resolution shaded-relief TIFF image. In 2004, 2005, 2007, and 2010 the USGS, PCMSC collected bathymetry and acoustic backscatter data in Skagit Bay, Washington using an interferometric bathymetric sidescan-sonar system mounded to the USGS R/V Parke Snavely and the USGS R/V Karluk. ... |
Info |
High-resolution bathymetry data collected in 2005 in Skagit Bay, Washington
These metadata describe the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) 2005 bathymetry data collected in Skagit Bay Washington that is provided as a 1-m resolution TIFF image, as well as a 1-m resolution shaded-relief TIFF image. In 2004, 2005, 2007, and 2010 the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) collected bathymetry and acoustic backscatter data in Skagit Bay, Washington using an interferometric bathymetric sidescan sonar ... |
Info |
High-resolution bathymetry data collected in 2007 in Skagit Bay, Washington
These metadata describe the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) 2007 bathymetry data collected in Skagit Bay Washington that is provided as a 1-m resolution TIFF image, as well as a 1-m resolution shaded-relief TIFF image. In 2004, 2005, 2007, and 2010 the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) collected bathymetry and acoustic backscatter data in Skagit Bay, Washington using an interferometric bathymetric sidescan sonar ... |
Info |
High-resolution bathymetry data collected in 2010 in Skagit Bay, Washington
These metadata describe the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) 2010 bathymetry data collected in Skagit Bay Washington that is provided as a 1-m resolution TIFF image, as well as a 1-m resolution shaded-relief TIFF image. In 2004, 2005, 2007, and 2010 the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) collected bathymetry and acoustic backscatter data in Skagit Bay, Washington using an interferometric bathymetric sidescan sonar ... |
Info |
High-resolution chirp seismic-reflection data collected offshore Oceanside, southern California during field activity 2017-686-FA from 2017-10-23 to 2017-10-31
This section of the data release contains approximately 369 line-kilometers of processed, high-resolution chirp seismic-reflection profiles that were collected aboard the R/V Snavely in 2017 on U.S. Geological Survey cruise 2017-686-FA offshore Oceanside, southern California. The along-shore and across-shore chirp profiles are oriented to assess sand and gravel resources in Federal and State waters for potential use in future beach nourishment projects along stretches of the coast where critical erosion ... |
Info |
High-resolution, chirp seismic-reflection data collected offshore Oceanside to San Diego, southern California, during field activity 2018-638-FA from 2018-05-21 to 2018-05-26
This part of the data release contains processed, high-resolution, chirp seismic-reflection profiles that were collected aboard the R/V Bold Horizon in 2018 on U.S. Geological Survey cruise 2018-638-FA offshore Oceanside to San Diego, southern California. Approximately 127 line-kilometers of chirp data were collected offshore Oceanside (BH lines) and 125 line-kilometers were collected offshore Silver Strand, San Diego (SS lines). The data were acquired using an Edgetech 512 Chirp sub-bottom profiling system ... |
Info |
High-resolution chirp seismic-reflection data collected offshore San Francisco, California, during field activity 2019-649-FA from 2019-10-11 to 2019-10-18
This part of the data release contains approximately 783 line-kilometers of processed, high-resolution, chirp seismic-reflection data that were collected aboard the R/V Bold Horizon in 2019 on U.S. Geological Survey cruise 2019-649-FA offshore San Francisco, California. The chirp profiles were acquired using an Edgetech 3200 5-16 chirp sub-bottom profiling system. These data are divided up and presented by navigation line, as reflected in the individual file names. |
Info |
High resolution double-difference relocations of earthquakes in and offshore Puerto Rico and Virgin Islands during the deployment of ocean bottom seismometers from mid-2015 to mid-2016
Puerto Rico is a Caribbean Island with a population of about 3.2 million people who are exposed to natural hazards including earthquakes and submarine landslides that can generate tsunamis. Previous work has shown seismicity offshore Puerto Rico especially between the coastline and the Puerto Rico Trench north of the island. The Puerto Rico Seismic Network maintains the local seismic network to record earthquakes, but these earthquake locations rely on seismic instruments that are all located on land. As ... |
Info |
High-resolution magnetic susceptibility of sediment cores from the New England collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
High-resolution marine seismic reflection data from the San Francisco Bay area, collected in 1993 during USGS Field Activity J8-93-SF
Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. This particular dataset was acquired in 1993 during USGS Field Activity J8-93-SF using the vessel David Johnston. The dataset includes navigational data in ASCII format, gif images of the seismic-profile lines, and seismic data in industry-standard SEG-Y format. These ... |
Info |
High-resolution marine seismic reflection data from the San Francisco Bay area, collected in 1994 during USGS Field Activity J2-94-SF
Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. This particular dataset was acquired in 1995 during USGS Field Activity J2-94-SF using the vessel David Johnson. The dataset includes navigational data in ASCII format, gif images of the seismic-profile lines, and seismic data in industry-standard SEG-Y format. These ... |
Info |
High-resolution marine seismic reflection data from the San Francisco Bay area, collected in 1995 during USGS Field Activity G2-95-SF
Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. This particular dataset was acquired in 1995 during USGS Field Activity G2-95-SF using the vessel Robert Gray. The dataset includes navigational data in ASCII format, gif images of the seismic-profile lines, and seismic data in industry-standard SEG-Y format. These ... |
Info |
High-resolution marine seismic reflection data from the San Francisco Bay area, collected in 1997 during USGS Field Activity J4-97-SF
Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. This particular dataset was acquired in 1997 during USGS Field Activity J4-97-SF using the vessel David Johnston. The dataset includes navigational data in ASCII format, gif images of the seismic-profile lines, and seismic data in industry-standard SEG-Y format. These ... |
Info |
High-resolution multibeam backscatter data collected in 2004 for the northern Channel Islands region, southern California
This data release presents data for 5-m resolution acoustic-backscatter data of the northern Channel Islands region, southern California. In 2004 the U.S. Geological Survey, Pacific Coastal and Marine Science Center collected multibeam-bathymetry and acoustic-backscatter data in the northern Channel Islands region, southern California. The region was mapped aboard the R/V Ewing using a Kongsberg Simrad EM-1002 multibeam echosounder. These data were previously published on-line at http://pubs.usgs.gov/of ... |
Info |
High-resolution multibeam bathymetry data collected in 2004 for the northern Channel Islands region, southern California
This data release presents data for 5-m resolution multibeam-bathymetry data of the northern Channel Islands region, southern California. In 2004 The U.S. Geological Survey, Pacific Coastal and Marine Science Center collected multibeam-bathymetry and acoustic-backscatter data in the northern Channel Islands region, southern California. The region was mapped aboard the R/V Ewing using a Kongsberg Simrad EM-1002 multibeam echosounder. These data were previously published on-line at http://pubs.usgs.gov/of ... |
Info |
High-resolution multibeam bathymetry data collected southwest of Chenega Island, Alaska during field activity 2014-622-FA
High-resolution multibeam data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Chenega Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder. |
Info |
High-resolution multibeam bathymetry data collected southwest of Montague Island, Alaska during field activity 2014-622-FA
High-resolution multibeam data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game in May of 2014 southwest of Montague Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during USGS field activity 2014-622-FA, using a pole mounted 100-kHz Reson 7111 multibeam echosounder. |
Info |
High-resolution multichannel seismic-reflection data acquired in the northern Gulf of Mexico, 1998-99
This report consists of two-dimensional marine seismic reflection profile data from the northern Gulf of Mexico. These data were acquired in 1998 and 1999 with the Research Vessels Tommy Munro (M1-98-GM) and Gyre (G1-99-GM). The data are available in binary and GIF image formats. Binary data are in Society of Exploration Geologists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with your Web browser. |
Info |
High-resolution multichannel seismic reflection data collected along the New England outer continental shelf, slope, and rise south of Martha's Vineyard and Nantucket, Massachusetts, U.S. Geological Survey Field Activity 2016-018-FA
High resolution multichannel seismic-reflection data were collected along the New England outer continental shelf, slope, and rise south of Martha's Vineyard and Nantucket, Massachusetts, aboard the Woods Hole Oceanographic Institute (WHOI) research vessel Neil Armstrong on June 11 - 12, 2016 in order to characterize the stratigraphy of a portion of the New England continental margin incised by submarine canyons and showing evidence of mass transport processes. The activity was conducted as a part of the ... |
Info |
High-resolution multichannel sparker seismic-reflection data acquired along the Cascadia margin during USGS field activity 2019-024-FA
High-resolution multichannel sparker seismic (MCS) data were collected by the U.S. Geological Survey in collaboration with the University of Washington (UW) in the summer of 2019 along the Cascadia submarine forearc offshore Oregon and Washington. |
Info |
High-Resolution Seismic-Reflection Boomer Profiles in SEG-Y and JPEG Formats From Cruise RAFA08034 off Edgartown, Massachusetts (08034_BOOMERPROFILES)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
High-Resolution Seismic-Reflection Chirp Profiles in SEG-Y and JPEG Formats From Cruise RAFA08034 off Edgartown, Massachusetts (08034_KELPROFILES)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
High-Resolution Seismic-Reflection Profiles in SEG-Y and JPEG Formats From the Cruise RAFA07034 in the Vicinity of Woods Hole, Offshore Massachusetts
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Hillshaded-relief image produced from lead-line and single-beam sonar soundings, swath interferometric, multibeam, and lidar datasets (bb_navd88_hs_10m, Esri grid, UTM Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
Hillshaded-relief image produced from the late Wisconsinan to early Holocene regressive unconformity (Ur) beneath Vineyard and western Nantucket Sounds, Massachusetts (GeoTIFF Image; UTM, Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ... |
Info |
Hillshaded relief produced from bathymetric data collected by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts between Duxbury and Hull (DH_hlshd5m, Esri binary grid, UTM Zone 19, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Hillshaded relief produced from bathymetric data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006-2007 (BATHY_HILLSH.ASC, ESRI ASCII GRID)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Hillshade of Multibeam Bathymetry 2 meter/pixel of Boston Harbor and Approaches (bh_2mmbhsf)
These data are high-resolution bathymetric measurements of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km² of sidescan sonar and bathymetric data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed and gridded by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS). |
Info |
Hillshade of Swath Bathymetry collected by the USGS offshore of the Grand Strand, South Carolina, 1999-2003 (BATHY_HILLSH, grid)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Historical bathymetry soundings between 1916 and 1920 around the Mississippi and Alabama barrier islands
In order to characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi and Alabama (MSAL) barrier islands. One goal of this work was to create a time-series of bathymetric change maps around the islands between 1916 and 2016. |
Info |
Historical coastal bluff edge positions at Barter Island, Alaska for the years spanning 1950 to 2020
This dataset includes one vector shapefile delineating the position of the top edge of the coastal permafrost bluffs at Barter Island, Alaska spanning seven decades, between the years of 1950 and 2020. Bluff-edge positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the bluff edge through time. These data were used to calculate rates of change every 10 meters alongshore using the ... |
Info |
Historical shoreline positions at Barter Island, Alaska for the years spanning 1947 to 2020
This dataset includes one vector shapefile delineating the position of the shorelines at Barter Island, Alaska spanning seven decades, between the years 1947 and 2020. Shoreline positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the shoreline through time. These data were used to calculate rates of change every 10 meters alongshore using the Digital Shoreline Analysis System ... |
Info |
Historic shoreline positions for Rincon, Puerto Rico 1936-2006 (shorelines.shp)
The 8 km of shoreline from Punta Higüero to Punta Cadena in Rincón, Puerto Rico is experiencing long-term coastal erosion. This study documents historical shoreline changes at Rincón for the period 1936-2005. Twelve historical shoreline positions were compiled from existing data, new orthophotography, and GPS field surveys. Shoreline vectors represent the high water line at the time of the survey. |
Info |
HLY1001_Averaged
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1002_Averaged
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1002_CTD_casts
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1002_Healy_Continuous
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1002_Healy_Discrete
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1102_CTD_casts
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1102_Healy_Continuous
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
HLY1102_Healy_Discrete
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
Holocene evolution of sea-surface temperature and salinity in the Gulf of Mexico
Stable oxygen and carbon isotope composition (δ18O and δ13C) and magnesium-to-calcium (Mg/Ca) ratios were measured in the tests of planktic foraminiferal species, Globigerinoides ruber (white variety), in a northwestern Gulf of Mexico (GoM) sediment core 2010-GB2-GC1 collected from the Garrison Basin (26.67°N, 93.92°W) at a water depth of 1776 meters (m), aboard the R/V Cape Hatteras in April 2010. These measurements are used to generate sub-centennial-scale reconstructions of sea surface temperature ... |
Info |
Holocene fluvial and estuarine (Qfe) and nearshore marine (Qmn) sediment thickness offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This ... |
Info |
Hourly Time Fixes for GLORIA Cruise FARN82-7 (WHSC 82005) - FARN82-7PNTS
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. |
Info |
Hourly Time Fixes for GLORIA Cruise Farn85-1 (WHSC 85027) - FARN85-1PNTS.SHP
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. |
Info |
Hourly Time Fixes for GLORIA Cruise Farn85-2 (WHSC 85028) - FARN85-2PNTS.SHP
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. |
Info |
Hourly Time Fixes for GLORIA Cruise Farn85-3A (WHSC 85034) - FARN85-3PNTS.SHP
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. |
Info |
Hurricane Delta Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Louisiana coast and attributed to coastal processes during [Atlantic Basin] Hurricane Delta, which made landfall in the U.S. on October 9, 2020. |
Info |
Hurricane Florence Assessment of Potential Coastal Change Impacts: NHC Advisory 57, 1100 AM EDT THU SEP 13 2018
This dataset defines storm-induced coastal erosion hazards for the Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Florence in September 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune ... |
Info |
Hurricane Florence Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the southeast coast of the United States from North Carolina to Virginia and attributed to coastal processes during [Atlantic Basin] Hurricane Florence, which made landfall in the U.S. on September 14, 2018. |
Info |
Hurricane Harvey Assessment of Potential Coastal Change Impacts: NHC Advisory 020, 700 AM CDT FRI AUG 25 2017
This dataset defines storm-induced coastal erosion hazards for the Texas and Louisiana coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Harvey in August 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ... |
Info |
Hurricane Irma Assessment of Potential Coastal Change Impacts: NHC Advisory 41, 800 AM EDT SAT SEPT 9 2017
This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia and South Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Irma in September 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of ... |
Info |
Hurricane Irma Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Florida coast and attributed to coastal processes during [Atlantic Basin] Hurricane Irma, which made landfall in the U.S. on September 9, 2017. |
Info |
Hurricane Isaias Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the coast of the Carolinas and attributed to coastal processes during [Atlantic Basin] Hurricane Isaias, which made landfall in the U.S. on August 4, 2020. |
Info |
Hurricane Joaquin Assessment of Potential Coastal Change Impacts: NHC Advisory 27, 0800 AM EDT SUN OCT 04 2015
This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island and Massachusetts coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Joaquin in October 2015. Storm-induced water levels, due to both surge and waves, were compared to beach and dune ... |
Info |
Hurricane Laura Overwash Extents
The National Assessment of Coastal Change Hazards project project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Louisiana coast and attributed to coastal processes during [Atlantic Basin] Hurricane Laura, which made landfall in the U.S. on August 27, 2020. |
Info |
Hurricane Maria Assessment of Potential Coastal Change Impacts: NHC Advisory 41, 0800 AM EDT TUE SEPT 26 2017
This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland and Delaware coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Maria in September 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the ... |
Info |
Hurricane Matthew Assessment of Potential Coastal Change Impacts: NHC Advisory 037, 800 AM EDT FRI OCT 07 2016
This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia, South Carolina and North Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Matthew in October 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of ... |
Info |
Hurricane Matthew Overwash Extents
The National Assessment of Coastal Change Hazards project exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the southeast coast of the United States from Florida to North Carolina and attributed to coastal processes during [Atlantic Basin] Hurricane Matthew, which made landfall in the U.S. on October 8, 2016. |
Info |
Hurricane Matthew Overwash Extents (version 2.0, 20210916)
The National Assessment of Coastal Change Hazards project exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Florida, Georgia, North Carolina,and South Carolina coasts and attributed to coastal processes during [Atlantic Basin] Hurricane Matthew, which made landfall in the U.S. on October 8, 2018. |
Info |
Hurricane Michael Assessment of Potential Coastal Change Impacts: NHC Advisory 15, 0400 AM CDT WED OCT 10 2018
This dataset defines storm-induced coastal erosion hazards for the Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Michael in October 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ... |
Info |
Hurricane Michael Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the Florida coast and attributed to coastal processes during [Atlantic Basin] Hurricane Michael, which made landfall in the U.S. on October 10, 2018. |
Info |
Hurricane Nate Assessment of Potential Coastal Change Impacts: NHC Advisory 12, 0800 AM EDT SAT OCT 07 2017
This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Nate in October 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three ... |
Info |
Hurricane Sally Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Florida and Alabama coast and attributed to coastal processes during [Atlantic Basin] Hurricane Sally, which made landfall in the U.S. on September 16, 2020. |
Info |
Hurricane Sandy Assessment of Potential Coastal Change Impacts: NHC Advisory 29, 1100 AM EDT MON OCT 29 2012
This dataset defines hurricane-induced coastal erosion hazards for the Delaware, Maryland, New Jersey, New York, and Virginia coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Sandy in October 2012. Hurricane-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the ... |
Info |
Hurricane Sandy washover deposit data from southern Long Beach Island, New Jersey: Grain-size data
Sedimentologic and topographic data from Hurricane Sandy washover deposits were collected from Southern Long Beach Island, New Jersey, in order to document changes to the barrier-island beaches, dunes, and coastal wetlands due to Hurricane Sandy and subsequent storm events. These data will provide a baseline dataset for use in future coastal change descriptive and predictive studies and assessments. The data presented here were collected as part of the U.S. Geological Survey’s Barrier Island and Estuarine ... |
Info |
Hurricane Zeta Overwash Extents
The National Assessment of Coastal Change Hazards project exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Louisiana coast and attributed to coastal processes during [Atlantic Basin] Hurricane Zeta, which made landfall in the U.S. on October 28, 2020. |
Info |
HW1_250M_LCC_WGS84.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey a total of 29 mosaics of 50-meter resolution were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological ... |
Info |
HW1_Q01.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q02.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q03.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q04.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q05.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q06.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q07.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q08.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q09.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q10.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q11.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q12.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q13.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q14.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q15.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q16.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q17.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q18.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q19.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q20.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q21.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q22.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q23.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q24.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q25.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q26.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q27.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q28.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW1_Q29.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 29) (LCC, 50 m, WGS84)
Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range ... |
Info |
HW2_250M_LCC_WGS84.TIF - Hawaii II - Central Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, as part of that program, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted nine cruises within the U.S. EEZ off Hawaii. The surveys during that time period focused on the central Hawaiian region. The results of these surveys were 24 ... |
Info |
HW2_Q30A.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q30.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q31.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q32.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q33.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q34.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q35.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q36.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q37.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q38.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q39.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q40.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q41.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q42.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q43.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q44.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q45.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q46.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q47.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q48.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q49.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q50.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q51.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW2_Q52.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 24) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of ... |
Info |
HW3_250M_LCC_WGS84.TIF - Hawaii III - Northwestern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q53.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q54.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q55.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q56.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q57.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q58.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q59.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q60.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q61.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q62.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q63.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q64.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q65.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q66.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q67.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q68.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q69.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q70.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q71.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q72.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q73.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
HW3_Q74.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 22) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of ... |
Info |
Hydrological and chemical records from the flooded Ox Bel Ha cave system in the Yucatan Peninsula, Quintana Roo, from August 2014 to January 2015
Natural cave passages penetrating coastal aquifers in the Yucatan Peninsula (Quintana Roo, Mexico) were accessed to investigate how regional meteorology and hydrology control dissolved organic carbon and methane dynamics in karst subterranean estuaries, the region of aquifers where fresh and saline waters mix. Three field trips were carried out in December 2013, August 2014, and January 2015 to obtain 1) physicochemical and 2) geochemical data from the water column and 3) temporal records of water chemistry ... |
Info |
Hydrological Data Concerning Submarine Groundwater Discharge Along the Western Margin of Indian River Lagoon, East-Central Florida-December 2016 and January 2017
Stretching along approximately 200 kilometers (km) of the Atlantic Coast of central Florida, Indian River Lagoon is one of the most biologically diverse estuarine systems in the continental United States. This shallow, brackish lagoon varies in width from about 0.5–9.0 km, with substantial human infrastructure lining both shores. Scientists from the U. S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center used continuous resistivity profiling (CRP), a towed electronic array, to ... |
Info |
HYPACK ASCII navigation files collected by the U.S. Geological Survey in the Madison Swanson and Steamboat Lumps Marine Protected Areas, Gulf of Mexico in 2000 (Geographic, WGS 84)
The U.S. Geological Survey (USGS) mapped approximately 22 square miles of the Madison Swanson Marine Protected Area (MPA) and Steamboat Lumps MPA, which are located on the Florida shelf edge in the northeastern Gulf of Mexico in 2000 using sidescan sonar and high-resolution chirp seismic-reflection systems. This survey was conducted as part of a larger study of the effectiveness of no-fishing reserves in protecting grouper spawning aggregations. Field activity information for this cruise is available on ... |
Info |
HYPACK NAVIGATION: Text Files of the DGPS Navigation Logged with HYPACK Software on USGS Cruise 06018 from Sept. 6 to Sept. 8, 2006
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
iCoast - Did the Coast Change? Crowd-sourced Coastal Classifications
On October 29, 2012, Hurricane Sandy made landfall as a post-tropical storm near Brigantine, New Jersey, with sustained winds of 70 knots (80 miles per hour) and tropical-storm-force winds extending 870 nautical miles in diameter (Blake and others, 2013). The effects of Hurricane Sandy’s winds and storm surge included erosion of the beaches and dunes as well as breaching of barrier islands in both natural and heavily developed areas of the coast (Spokin et. al., 2014). On November 4-6, 2012, the U.S. ... |
Info |
Idealized Antecedent Topography Sensitivity Study: Initial Baseline and Modified Profiles Modeled with XBeach
Antecedent topography is an important aspect of coastal morphology when studying and forecasting coastal change hazards. The uncertainty in morphologic response of storm-impact models and their use in short-term hazard forecasting and decadal forecasting is important to account for when considering a coupled model framework. Mickey and others (2020) provided a methodology to investigate uncertainty of profile response within the storm impact model, XBeach, related to varying antecedent topographies. A ... |
Info |
Image of the 4-m Sun-illuminated Topography of the Sea Floor off Eastern Cape Cod (CAPENORTHSUN_GEO4M_WGS84.TIF, Geographic, WGS84)
This data set includes sun-illuminated of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echo sounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up to 7 ... |
Info |
Image of the 4-m Sun-illuminated Topography of the Sea Floor off Eastern Cape Cod (CAPESOUTHSUN_GEO4M_WGS84.TIF, Geographic, WGS84)
This data set includes sun-illuminated of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echo sounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up ... |
Info |
Imagery from USGS CoastCam deployed at Madeira Beach, Florida
A digital video camera was installed at Madeira Beach, Florida (FL) and faced west along the beach. Every hour during daylight hours, daily from 2017 to 2022, the camera collected raw video and produced snapshots and time-averaged image products. The images included in this data release were collected from January 21, 2017, to December 31, 2017. The camera is part of a U.S. Geological Survey (USGS) research project to study the beach and nearshore environment. USGS researchers analyzed the imagery collected ... |
Info |
Interferometric sonar (swath bathymetry and acoustic backscatter) tracklines collected by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (Geographic, WGS 84, Esri Polyline Shapefile)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island. For more information about the WHCMSC Field Activity, see https: ... |
Info |
Interpolated 3-m bathymetric grid of NOAA survey H11043 off Branford, Connecticut (H11043_BATHY3)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Interpolated 5-m bathymetric grid of NOAA survey H11044 off Milford, Connecticut (H11044_BATHY5)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Interpolated 5-m bathymetric grid of NOAA survey H11045 off Bridgeport, Connecticut (H11045_BATHY5)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Interpolated digital elevation model (DEM) of the nearshore around Ship, Horn, and Petit Bois Islands, Mississippi: 1916 to 1920
To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. Datasets include 1916 through 1920 soundings collected by the United States Coast and ... |
Info |
Interpolated digital elevation model (DEM) of the nearshore around Ship, Horn, and Petit Bois Islands, Mississippi: 2008 to 2009
To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. Datasets include 1916 through 1920 soundings collected by the United States Coast and ... |
Info |
Interpolated digital elevation model (DEM) of the nearshore around Ship, Horn, and Petit Bois Islands, Mississippi: 2016
To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. Datasets include 1916 through 1920 soundings collected by the United States Coast and ... |
Info |
Interpolated swath bathymetry collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center surrounding the nearshore of the Elizabeth Islands, MA, 2010 (ei_2hm_fill, ESRI grd)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Interpolated swath bathymetry hillshaded image collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center surrounding the nearshore of the Elizabeth Islands, MA, 2010 (ei_2hm_fillhs.tif, GeoTIFF)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Interpolated swath bathymetry shaded relief image collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center surrounding the nearshore of the Elizabeth Islands, MA, 2010 (ei_2hm_shdrlf_image_dd.tif, GeoTIFF)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11077 of Woods Hole, MA (H11077_INTERP.SHP, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_INTERP.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11346 of Edgartown Harbor, MA (H11346_INTERP.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11445 Offshore of Plum Island, New York (H11445INTERP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11446 Offshore of Orient Point, New York (H11446INTERP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11995 in Rhode Island Sound (H11995_INTERP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11996 in Rhode Island Sound (H11996_INTERP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_INTERP.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11999 Offshore of Duck Pond Point, New York (H11999INTERP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H12007 and USGS Cruise 2011-006-FA in the Vicinity of Cross Rip Channel in Nantucket Sound, Offshore Southeastern Massachusetts (H12007_INTERP.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H12012 Offshore in Northeastern Long Island Sound (Geographic, WGS84, H12012_INTERP.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), has produced detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Entrance to the Connecticut River in Eastern Long Island Sound (H12013_INTERP.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H12023 in Block Island Sound (H12023_INTERP shapefile, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H12296 in Block Island Sound (H12296_INTERP shapefile, Geographic, WGS 84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H12298 in Block Island Sound (Geographic, WGS 84, H12298INTERP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along western Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H12299 in Block Island Sound (Geographic, WGS 84, H12299INTERP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs and ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H12324 in Narragansett Bay (Geographic, WGS 84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along southern Narragansett Bay, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During September 2014, bottom photographs and surficial ... |
Info |
Interpretation of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Surveys H12009, h12010, H12011, H12015, H12033, H12137, and H12139 and U.S. Geological Survey (USGS) Cruise 2011-006-FA in Block Island Sound (BISOUND_INTERP.SHP, Geographic, WGS84)
The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ... |
Info |
Interpretation of channels on the SeaMARC 1A sidescan sonar image of the Mississippi Fan, USGS Gulf of Mexico Cruise 90001 (CHANNEL.SHP)
Since 1982 the U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the growing ... |
Info |
Interpretation of depositional units of the Mississippi Fan
This GIS layer contains an interpretive layer of depositional units at the edge of the Mississippi Fan. |
Info |
Interpretation of depositional units on the SeaMARC 1A image of the Mississippi Fan, USGS Gulf of Mexico Cruise 90001 (INTERP.SHP)
Since 1982 the U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the growing ... |
Info |
Interpretation of meandering channel in the Mississippi Fan
This GIS layer contains an interpretive layer tracing a meandering channel found in the Gulf of Mexico Mississippi Fan. |
Info |
Interpretation of National Oceanic and Atmospheric Administration Survey H11321 Sidescan-Sonar Image, Central Rhode Island Sound (H11321INTERP shapefile)
The U.S. Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan-sonar imagery, bathymetry data and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, including: (1) ... |
Info |
Interpretation of NOAA H11310 Sidescan Sonar and Bathymetric Data from Central Narragansett Bay (H11310INT.SHP)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The mosaic presented herein covers an area of the sea ... |
Info |
Interpretation of Sea Floor Features of National Oceanic and Atmospheric Administration (NOAA) H11320 Sidescan Sonar and Bathymetric Data from Rhode Island Sound (H11320INTERP)
The U.S. Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, including: (1) ... |
Info |
Interpretation of sea floor geologic units for Buzzards Bay, Massachusetts (BuzzardsBay_surfgeol, polygon shapefile; Geographic WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
Interpretation of sea floor geologic units for offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This ... |
Info |
Interpretation of sea floor geologic units for Vineyard and western Nantucket Sounds, Massachusetts (polygon shapefile; Geographic, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ... |
Info |
Interpretation of sea-floor geologic units on the Massachusetts inner continental shelf between Nahant and Northern Cape Cod Bay (Nahant_CCB_surfgeol polygon shapefile; Geographic WGS 84)
These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ... |
Info |
Interpretation of Sedimentary Environments from National Oceanic and Atmospheric Administration (NOAA) Survey H11997 Offshore in Eastern Long Island Sound (H11997_SEDENV.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Interpretation of Sedimentary Environments from National Oceanic and Atmospheric Administration (NOAA) Survey H12013 Off the Mouth of the Connecticut River in Eastern Long Island Sound (H12013_SEDENV.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
Interpretation of Sidescan-sonar Imagery in the John Day Reservoir
A two-week field operation was conducted in the John Day Reservoir on the Columbia River to image the floor of the pool, to measure the distribution and thickness of post-impoundment sediment, and to verify these geophysical data with video photography and bottom sediment samples. The field program was a cooperative effort between the USGS Coastal and Marine Geology Team of the Geologic Division and the USGS Columbia River Research Laboratory of the Biological Resources Division. The data collection was ... |
Info |
Interpretation of Sidescan-Sonar Imagery of National Oceanic and Atmospheric Administration (NOAA) Survey H11322 in Western Rhode Island Sound (H11322INTERP, Geographic)
The U.S. Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan-sonar and bathymetric data collected onboard the NOAA Ship RUDE, as well as historic seismic records. The mosaic, bathymetry, and their ... |
Info |
Interpretation of the depth to two Pleistocene refelctors, R5 and R6, mapped within the Hudson Shelf Valley derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Grid, UTM Zone 18N, WGS84)
These data represent the depth to two Pleistocene reflectors mapped within the Hudson Shelf Valley. These data were mapped based on 15 cubic inch water gun and CHIRP records collected May, 1996. See Allison, 1997; Lanier, 1999; Lotto, 2000. |
Info |
Interpretation of the distribution of Cretaceious/Early Tertiary deposits on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polygon shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection and sidescan-sonar data. The derivative data are in an ESRI shapefile, polygon vector format and are intended to represent the distribution of early Tertiray/late Cretaceous deposits throughout the inner-continental shelf within the New York Bight. These data are helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal ... |
Info |
Interpretation of the distribution of gas and clinoforms mapped within two Pleistocene channels within the Hudson Shelf Valley, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polygon, Geographic, WGS84)
These data represent gas and clinoforms mapped wtihin two Pleistocene channels, Hudson Shelf Valley. These data were mapped based on 15 cubic inch water gun and CHIRP seismic-reflection records collected May, 1996. See Allison, 1997; Lanier, 1999; Lotto, 2000. |
Info |
Interpretation of the distribution of Holocene deposits within Raritan Bay, New York, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polygon, Geographic, WGS84)
These data are in an ESRI shapefile, polygon vector format and are intended to represent the distribution of Holocene deposits within Raritan Bay, New York. These data are helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal processes. |
Info |
Interpretation of the distribution of Holocene fine sand deposits on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polygon shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection and sidescan-sonar data. The derivative data are in an ESRI shapefile, polygon vector format and are intended to represent the distribution of Holocene fine sand deposits throughout the inner-continental shelf within the New York Bight. These data are helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal processes. |
Info |
Interpretation of the distribution of Holocene low-amplitude sand ridges on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polygon shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection and sidescan-sonar data. The derivative data are in an ESRI shapefile, polygon vector format and are intended to represent the distribution of Holocene low-amplitude sand ridges ((fine sand) with reworked, high-backscatter early Pleistocene coarse sand depositts in the troughs) throughout the inner-continental shelf within the New York Bight. These data are helpful in understanding the stratigraphic evolution of the inner-continental shelf, the ... |
Info |
Interpretation of the distribution of Holocene sand waves (bedforms) on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polygon shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection and sidescan-sonar data. The derivative data are in an ESRI shapefile, polygon vector format and are intended to represent the distribution of Holocene bedforms (large sand waves) throughout the inner-continental shelf within the New York Bight. These data are helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal ... |
Info |
Interpretation of the distribution of Holocene silty deposits on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polygon shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection and sidescan-sonar data. The derivative data are in an ESRI shapefile, polygon vector format and are intended to represent the distribution of Holocene silty deposits throughout the inner-continental shelf within the New York Bight. These data are helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal processes. |
Info |
Interpretation of the distribution of Pleistocene fluvioglacial gravelly sand deposits on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polygon shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection and sidescan-sonar data. The derivative data are in an ESRI shapefile, polygon vector format and are intended to represent the distribution of Pleistocene fluvioglacial gravelly sand deposits (reworked into a series of low-amplitude, fine sand, transverse bedforms) throughout the inner-continental shelf within the New York Bight. These data are helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional ... |
Info |
Interpretation of the distribution of Pleistocene gravelly sand deposits on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polygon shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection and sidescan-sonar data. The derivative data are in an ESRI shapefile, polygon vector format and are intended to represent the distribution of Pleistocene gravelly sand deposits throughout the inner-continental shelf within the New York Bight. These data are helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal ... |
Info |
Interpretation of the distribution of sedimentary environments of the sidescan sonar mosaic of National Oceanic and Atmospheric Administration (NOAA) survey H11043 off Branford, Connecticut
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Interpretation of the elevation of the base of the Holocene ravinement derived from seismic data collected within the new York Bight by the U.S. Geological Survey, 1995 - 1998 (Grid, UTM Zone 18N, WGS84 and Esri polyline shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection profile data. The derivative data are in a grid format and are intended to represent the elevation of the Holocene Ravinement surface throughout the inner-continental shelf within the New York Bight. The gridded elevation of the Holocene Ravinement is helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal processes. The ... |
Info |
Interpretation of the elevation of the coastal-plain unconformity derived from seismic data collected within the New York Bight by the U.S. Geological Survey, 1995 - 1998 (Grid, UTM Zone 18N, WGS84 and Esri polyline shapefile, Geographic, WGS84)
Mapping the elevation of the coastal-plain unconformity is useful for delineating the geologic framework of the New York Bight inner-continental shelf. This in turn aids in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal processes. The grid showing structure of the coastal-plain unconformity is an important factor in the framework of the coastal region. |
Info |
Interpretation of the New York Bight Fault Zone on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Esri polyline shapefile, Geographic, WGS84)
The New York Bight fault (Hutchinson, 1984) was clearly evident within the high-resolution seismic records acquired with a CHIRP, boomer, and 15 cubic inch water gun systems. This fault was mapped from these data. Thus, yeilding a more complete picture of the inner-shelf geologic framework of the area. |
Info |
Interpretation of the seabed geologic substrates in quadrangle 2 of the Stellwagen Bank National Marine Sanctuary region offshore of Boston, Massachusetts based on data collected by the U.S. Geological Survey from 1993-2019
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 2, which is one of 18 similarly-sized quadrangles that comprise the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a ... |
Info |
Interpretation of the seabed geologic substrates in quadrangle 5 of the Stellwagen Bank National Marine Sanctuary region offshore of Boston, Massachusetts based on data collected by the U.S. Geological Survey from 1993-2019
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated ... |
Info |
Interpretation of the Sedimentary Environments of National Oceanic and Atmospheric Administration (NOAA) Survey H11321, Central Rhode Island Sound (H11321ENVIRONS shapefile)
The U.S. Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan-sonar imagery, bathymetric data, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, including: (1) ... |
Info |
Interpretation of the Sedimentary Environments of National Oceanic and Atmospheric Administration (NOAA) Survey H11322, Western Rhode Island Sound (H11322ENVIRONS, Geographic)
The U.S. Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan-sonar and bathymetric data collected onboard the NOAA Ship RUDE, as well as historic seismic records. The mosaic, bathymetry, and their ... |
Info |
Interpretation of the Sidescan-sonar Imagery in Lake Mohave
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and ... |
Info |
Interpretation of the Surficial Geology in the Pulley Ridge Study Area (PULLEY_INTERP.SHP)
Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in the southeastern Gulf of Mexico about 250 km west of Cape Sable, Florida. This barrier island chain formed during the initial stage of the Holocene marine transgression. These islands were then submerged and left abandoned near the outer edge of the Florida Platform. The southern portion of Pulley Ridge hosts zooxanthellate scleractinian corals, ... |
Info |
Interpretation of the Surficial Geology of Apalachicola Bay and St. George Sound, Florida (SURFICIALGEOLOGY)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Interpretation of the Surficial Geology of Lake Mead Based on Sidescan-Sonar Imagery, Topography and Sediment Thickness (LAKEMEAD_INTERP.SHP)
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Interpretation of the surficial geology within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, SURFICIAL_GEOLOGY)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Interpretation of the thickness of Holocene deposits on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Grid, UTM Zone 18N, WGS84 and Esri polyline shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection profile data. The derivative data are in a grid format and are intended to represent the thickness and distribution of Holocene deposits throughout the inner-continental shelf within the New York Bight. The gridded Holocene thickness is helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal processes. The grid showing ... |
Info |
Interpretation of the thickness of Pleistocene deposits on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Grid, UTM Zone 18N, WGS84 and Esri polyline shapefile, Geographic, WGS84)
These data orginate from interpretations of seismic reflection profile data. The derivative data are in a grid format and are intended to represent the thickness and distribution of Pleistocene deposits throughout the inner-continental shelf within the New York Bight. The gridded Pleistocene thickness is helpful in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal processes. The grid ... |
Info |
Interpretation of the thickness of Quaternary deposits on the inner-continental shelf within the New York Bight, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Grid, UTM Zone 18N, WGS84 and Esri polyline shapefile, Geographic, WGS84)
Mapping the thickness of the Quaternary sediment is useful for delineating the geologic framework of the New York Bight inner-continental shelf. This in turn aids in understanding the stratigraphic evolution of the inner-continental shelf, the regional sediment transport system, and the influence of the inner-shelf framework on coastal processes. The grid showing the thickness of Quaternary sediment is an important factor in the framework of the coastal region. |
Info |
Interpretation of the thickness of the upper-most mappable unit, Holocene u1, within the Hudson Shelf Valley, derived from seismic data collected by the U.S. Geological Survey, 1995 - 1999 (Grid, UTM Zone 18N, WGS84)
These data represent gas found within the upper most mappable unit wtihin the Hudson Shelf Valley; Holocene unit, u1. These data were mapped based CHIRP seismic-reflection records collected May, 1996. See Allison, 1997; Lanier, 1999; Lotto, 2000. |
Info |
Interpretation Showing the Distribution of Sea-Floor Sedimentary Environments in Great Round Shoal Channel, MA (H11079_SEDENV.SHP, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Interpretation Showing the Distribution of Surficial Sediment in Quicks Hole, MA (H11076_SEDDIST.SHP, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Interpretations of Bottom Features from National Oceanic and Atmospheric Administration (NOAA) Survey H11076 of Quicks Hole, MA (H11076_INTERP.SHP, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Interpretations of the Surficial Geology from National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of Great Round Shoal Channel, MA (H11079_SURFGEOL.SHP, Geographic)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Interpreted and Uninterpreted Seismic-Reflection Profiles from the inner continental shelf off the northern Oregon and southern Washington coast (HTML files)
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Interpreted Distribution of the Axes of Fluvially-Cut Late Pleistocene Channels Buried Beneath Edgartown Harbor, Massachusetts, in Geographic, WGS84 (H11346_BCHANNELS.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Interpretive Data Layer Showing Distribution of Modern Features Within National Oceanic and Atmospheric Adminitration (NOAA) Survey H11250 (H11250G_MOD, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Interpretive Data Layer Showing the Framework Geology of National Oceanic and Atmospheric Administration (NOAA) Survey H11250 (H11250G_GEOL, Geographic)
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Intrinsic and Extrinsic Calibration Data From USGS CoastCam deployed at Madeira Beach, Florida
A digital video camera was installed at Madeira Beach, Florida (FL) and faced west along the beach. Every hour during daylight hours, daily from 2017 to 2022, the camera collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The camera is part of a U.S. Geological Survey (USGS) research project to study the beach and ... |
Info |
IRIS Chirp Seismic-Reflection Profile JPEG Images Collected in Apalachicola Bay on U.S. Geological Survey Cruise 06001
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
Isochron of dredge-spoil thickness beneath Buzzards Bay, Massachusetts (DredgeSpoil, Esri binary grid; UTM, Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
Isochron of Holocene fluvial and estuarine (Qfe) sediment thickness beneath the Massachusetts inner continental shelf between Nahant and Northern Cape Cod Bay (qfeiso Esri binary grid; UTM, Zone 19N, WGS 84)
These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ... |
Info |
Isochron of Holocene marine (Qmn and Qmd) sediment thickness on the Massachusetts inner continental shelf between Nahant and Northern Cape Cod Bay (qmiso Esri binary grid; UTM, Zone 19N, WGS 84)
These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ... |
Info |
Isopach grid of the modern marine sand above the top of Pleistocene surface along the inner shelf from Virginia border to Cape Hatteras, North Carolina (modsand, ESRI binary grid, 100 m cellsize, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Isopach grid of the Quaternary sediment thickness, inner shelf and back-barrier from Virginia border to Cape Lookout, North Carolina (q0thick, ESRI binary grid, 200 m cell size, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Isopach Map of Postimpoundment Sediment in Lake Mead - Geographic Coordinates
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Isopach of Holocene fluvial and estuarine (Qfe), nearshore marine (Qmn), and deepwater marine (Qmd) sediment thickness beneath Vineyard and western Nantucket Sounds, Massachusetts (Esri binary grid; UTM, Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ... |
Info |
Isopach of Holocene fluvial and estuarine (Qfe) sediment and nearshore marine (Qmn) sediment thickness beneath Buzzards Bay, Massachusettts (Qfeqmniso, Esri binary grid; UTM, Zone 19N, WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
Isopachs--Bolinas to Pescadero, California
This part of DS 781 presents data for the isopachs for the Bolinas to Pescadero, California, region. The vector data file is included in "Isopachs_BolinastoPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness for the seafloor within the 3-nautical-mile limit of California's State Waters between offshore Offshore Bolinas and offshore Pescadero ... |
Info |
Isopachs--Pigeon Point to Monterey, California
This part of DS 781 presents data for the sediment-thickness isopachs for the Pigeon Point to Monterey Bay, California, map region. The vector data file is included in "Isopachs_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from seismic ... |
Info |
Isopachs--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the isopachs for the Point Conception to Hueneme Canyon, California, region. The vector data file is included in "Isopachs_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection data collected in 2014 ... |
Info |
Isopachs—Point Sur to Point Arguello, California
This part of DS 781 presents data for the isopachs of the Point Sur to Point Arguello, California, region. The vector data file is included in the “Isopachs_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between 2008 and 2014, ... |
Info |
Isopachs--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the isopachs of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Isopachs_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and ... |
Info |
Isopachs--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the isopachs of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "Isopachs_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and ... |
Info |
Isopachs--Salt Point to Drakes Bay, California
This part of DS 781 presents data for the isopachs for the Salt Point to Drakes Bay, California, region. The vector data file is included in "Isopachs_SaltPointToDrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/SaltPointToDrakesBay/data_catalog_SaltPointToDrakesBay.html. As part of the USGS's California Seafloor Mapping Program, a 20-m grid of sediment thickness for the seafloor within the 3-nautical-mile limit of California's State Waters between Salt Point and Drakes Bay was ... |
Info |
Isopachs--Santa Barbara Channel, California
This part of DS 781 presents data for the isopachs for the Santa Barbara Channel, California, region. The vector data file is included in "Isopachs_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness for the seafloor within the 3-nautical-mile limit of California's State Waters from the Offshore of Refugio Beach map area to the ... |
Info |
Ivan_R0_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Ivan_R1_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Ivan_R2_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Ivan_R3_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Ivan_R4_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
j100sf.m77t and j100sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-1-00-SF in Grizzly Bay and Suisun Bay from 03/13/2000 to 03/14/2000
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise J-1-00-SF. The cruise was conducted in Grizzly Bay and Suisun Bay in the San Francisco Bay area, California from March 13 to March 14, 2000. The chief scientist was John Chin from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to study San Francisco Bay's response of bed morphology and surficial sediment texture to flow events. These data are ... |
Info |
j200sf.m77t and j200sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-00-SF in Grizzly Bay, San Pablo Bay from 03/22/2000 to 03/27/2000
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise J-2-00-SF. The cruise was conducted in Grizzly Bay and San Pablo Bay in the San Francisco Bay area, California from March 22 to March 27, 2000. The chief scientist was Bruce Jaffe from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was for ground truthing, and to collect box cores and gravity cores. These data are reformatted from space-delimited ... |
Info |
j281nc.m77t and j281nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-81-NC in Carmel Bay, Monterey Bay, Northern California from 06/23/1981 to 06/30/1981
Single-beam bathymetry data along with miniranger navigation data was collected as part of the U.S. Geological Survey cruise J-2-81-NC. The cruise was conducted in Carmel Bay, Monterey Bay, Northern California from June 23 to June 30, 1981. The chief scientist was John Dingler from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was a 12 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology ... |
Info |
j295mb.m77t and j295mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-95-MB in Monterey Bay from 03/06/1995 to 04/15/1995
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-2-95-MB. The cruise was conducted from in Monterey Bay, California from March 6 to April 15, 1995. The chief scientists were Roberto Anima, Andy Stevenson, and Steve Eittreim all from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to compile a side-scan sonar mosaic of the offshore area of Monterey Bay Marine Santuary. The geophysical source ... |
Info |
j299sf.m77t and j299sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-99-SF in Grizzly Bay, San Francisco Bay from 02/24/1999 to 03/08/1999
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-2-99-SF. The cruise was conducted in Grizzly Bay and San Francisco Bay, California from February 24 to March 8, 1999. The chief scientist was John Chin from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to survey Grizzly Bay and adjacent areas for seasonal changes in bottom morphology and sediment texture. The geophysical source was a 200 ... |
Info |
j399sf.m77t and j399sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-3-99-SF in Grizzly Bay, San Francisco Bay from 11/08/1999 to 11/18/1999
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-3-99-SF. The cruise was conducted in Grizzly Bay and San Francisco Bay, California from November 8 to November 18, 1999. The chief scientist was John Chin from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to survey Grizzly Bay and adjacent areas for seasonal changes in bottom morphology and sediment texture. The geophysical source was a 200 ... |
Info |
j483hb.m77t and j483hb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-4-83-HB in Humboldt Bay, California from 08/16/1983 to 08/19/1983
Single-beam bathymetry data along with miniranger navigation data was collected as part of the U.S. Geological Survey cruise J-4-83-HB. The cruise was conducted in Humboldt Bay, California from August 16 to August 19, 1983. The chief scientist was John Dingler from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of the cruise was to conduct a survey of the underwater exterior and related features of both Humboldt Bay jetties and the Crescent City Outer Breakwater. The geophysical ... |
Info |
j695mb.m77t and j695mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-6-95-MB in Monterey Bay from 10/16/1995 to 11/30/1995
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-6-95-MB. The cruise was conducted from in Monterey Bay, California from October 16 to November 30, 1995. The chief scientists were Roberto Anima, Andy Stevenson, and Steve Eittreim all from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to produce a mosaic of the northern Monterey Bay Santuary continental shelf area from as near shore out to ... |
Info |
JI_250M_LCC_WGS84.TIF - Johnston Atoll U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The surveys during that time period, and conducted in succession from 6 December 1990 ... |
Info |
JI_Q01.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q02.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q03.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q04.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q05.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q06.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q07.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q08.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q09.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q10.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q11.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q12.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q13.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q14.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q15.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
JI_Q16.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 16) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area ... |
Info |
John Day Reservoir sediment sample locations and analyses - 2002
A two-week field operation was conducted in the John Day Reservoir on the Columbia River to image the floor of the pool, to measure the distribution and thickness of post-impoundment sediment, and to verify these geophysical data with video photography and bottom sediment samples. The field program was a cooperative effort between the USGS Coastal and Marine Geology Team of the Geologic Division and the USGS Columbia River Research Laboratory of the Biological Resources Division. The data collection was ... |
Info |
JPEG formatted images of EdgeTech 512i chirp seismic-reflection profiles collected by the U.S. Geological Survey in the Cape Ann - Salisbury Beach, MA survey area.
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
JPEG formatted images of EdgeTech SB-512i and SB-424 chirp seismic-reflection profiles collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_SeismicProfiles)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
JPEG formatted images of EdgeTech SB-512i chirp seismic-reflection profiles collected in Buzzards Bay by the U.S. Geological Survey offshore of Massachusetts in 2009, 2010, and 2011.
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
JPEG formatted images of EdgeTech SB-512i, EdgeTech SB-424, and Knudsen 3200 chirp seismic-reflection profiles collected by the U.S. Geological Survey offshore of Massachusetts within northern Cape Cod Bay.
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
JPEG formatted images of Knudsen 3202 chirp seismic-reflection profiles collected by the USGS within Red Brook Harbor, MA, 2009
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
JPEG image of Seismic-Reflection Profiles Collected in the Pulley Ridge Study Area in 1996 and 2001
These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote sensing is the next best tool. It was uncertain if Pulley Ridge represented a drowned reef or paleoshoreline. Through seismic imaging, it was determined from the high-amplitude, level-bedded nature of material in the sub-surface that Pulley Ridge represents several stages of barrier-island development. |
Info |
JPEG images of Boomer seismic data collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (JPEG IMAGES)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
JPEG images of boomer seismic data from back-barrier research cruise 2001-013-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from back-barrier research cruise 2002-015-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from back-barrier research cruise 2003-005-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from back-barrier research cruise 2003-005-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from back-barrier research cruise 2003-042-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from back-barrier research cruise 2004-005-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from back-barrier research cruise 2004-006-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from inner shelf U.S. Geological Survey research cruise 1999-045-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from inner shelf U.S. Geological Survey research cruise 2001-005-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from inner shelf U.S. Geological Survey research cruise 2002-012-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of boomer seismic data from inner shelf U.S. Geological Survey research cruise 2002-013-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of Chirp seismic data collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (JPEG IMAGES)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
JPEG images of chirp seismic data from a 2002 nearshore survey collected by Virginia Institute of Marine Science
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from a 2005 nearshore survey collected by Virginia Institute of Marine Science
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from back-barrier research cruise 2001-013-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from back-barrier research cruise 2002-015-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from back-barrier research cruise 2003-005-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from back-barrier research cruise 2003-042-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from back-barrier research cruise 2004-005-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from inner shelf U.S. Geological Survey research cruise 1999-045-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from inner shelf U.S. Geological Survey research cruise 2001-005-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from inner shelf U.S. Geological Survey research cruise 2002-012-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from inner shelf U.S. Geological Survey research cruise 2002-013-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from inner shelf U.S. Geological Survey research cruise 2003-003-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG images of chirp seismic data from inner shelf U.S. Geological Survey research cruise 2004-003-FA collected by the U.S. Geological Survey
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
JPEG Images of chirp subbottom profiler data collected by the U.S. Geological Survey in Moultonborough Bay, Lake Winnipesaukee, New Hampshire in 2005 (JPEG Image Format)
In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ... |
Info |
JPEG images of chirp, water-gun, and boomer seismic reflection data collected within the New York Bight by the U.S. Geological Survey 1995 - 1999
JPG images of each seismic line were generated in order to incorporate images of the seismic data into Geographic Information System (GIS) projects and data archives utilizing HTML. The JPG format is universal and enables hassle-free transfer of data. These data yield a pictoral view of the seismic data acquired. |
Info |
JPEG images of Seismic data collected by the U.S. Geological Survey as part of the Geologic Framework Studies project offshore of the Grand Strand, South Carolina
JPEG images of each seismic line were generated in order to incorporate images of the seismic data into Geographic Information System (GIS) projects and data archives utilizing HTML. The JPG format is universal and enables hassle-free transfer of data. These data yield a pictorial view of the seismic data acquired.In 1999, the USGS, in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, ... |
Info |
JPEG images of seismic data collected offshore of the Chandeleur Islands, LA, 2006
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
JPEG images of seismic data collected offshore of the Chandeleur Islands, LA, 2007
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
JPEG images of seismic data collected off the southern shore of Martha's Vineyard, MA, 2007
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
JPEG Images of Seismic-Reflection Profiles Collected in Lake Mead in 1999
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
JPEG Images of Seismic-Reflection Profiles Collected in Lake Mead in 2000
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
JPEG Images of Seismic-Reflection Profiles Collected in Lake Mead in 2001
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
JPEG Images of seismic-reflection profiles collected in Lake Mohave in 2002
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and ... |
Info |
JPEG Images of Seismic-Reflection Profiles Collected in the John Day Reservoir in 2000
A two-week field operation was conducted in the John Day Reservoir on the Columbia River to image the floor of the pool, to measure the distribution and thickness of post-impoundment sediment, and to verify these geophysical data with video photography and bottom sediment samples. The field program was a cooperative effort between the USGS Coastal and Marine Geology Team of the Geologic Division and the USGS Columbia River Research Laboratory of the Biological Resources Division. The data collection was ... |
Info |
JPEG images of seismic reflection profiles with adjacent vibracore locations collected by the U.S. Geological Survey within Apalachicola Bay, Florida (2005-2007)
In 2007, the U.S. Geological Survey collected 24 vibracores within Apalachicola Bay, Florida. The vibracores were collected using a Rossfelder electric vibracore system during a cruise on the R/V Gilbert. Selection of the core sites was based on a geophysical survey that was conducted during 2005 and 2006 in collaboration with the National Oceanic and Atmospheric Administration's (NOAA) Coastal Services Center (CSC) and the Apalachicola Bay National Estuarine Research Reserve. This report contains the ... |
Info |
July 2010 Dauphin Island USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2010 Dauphin Island U.S. ... |
Info |
June 2008 Alabama and Florida USGS EAARL Lidar-derived dune crest, toe and shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the June 2008 Louisiana, ... |
Info |
k176ar.m77t - MGD77 data file for Geophysical data from field activity K-1-76-AR in Arctic from 07/24/1976 to 09/26/1976
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-1-76-AR in Arctic from 07/24/1976 to 09/26/1976, http://walrus.wr.usgs.gov/infobank/k/k176ar/html/k-1-76-ar.meta.html. The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k176ar/html/k-1-76-ar.bath.html ... |
Info |
k177ar.m77t - MGD77 data file for Geophysical data from field activity K-1-77-AR in Beaufort Sea, Arctic from 07/15/1977 to 08/25/1977
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-1-77-AR in Beaufort Sea, Arctic from 07/15/1977 to 08/25/1977, http://walrus.wr.usgs.gov/infobank/k/k177ar/html/k-1-77-ar.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k177ar/html/k-1-77 ... |
Info |
k178ar.m77t - MGD77 data file for Geophysical data from field activity K-1-78-AR in Barrows to Pt. Barrows, Arctic from 08/18/1978 to 09/18/1978
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-1-78-AR in Barrows to Pt. Barrows, Arctic from 08/18/1978 to 09/18/1978, http://walrus.wr.usgs.gov/infobank/k/k178ar/html/k-1-78-ar.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k178ar ... |
Info |
k179ar.m77t - MGD77 data file for Geophysical data from field activity K-1-79-AR in Prudhoe Bay, Alaska, Arctic Ocean from 07/23/1979 to 08/20/1979
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-1-79-AR in Prudhoe Bay, Alaska, Arctic Ocean from 07/23/1979 to 08/20/1979, http://walrus.wr.usgs.gov/infobank/k/k179ar/html/k-1-79-ar.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k179ar ... |
Info |
k180ar.m77t - MGD77 data file for Geophysical data from field activity K-1-80-AR in Arctic from 07/18/1980 to 08/19/1980
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-1-80-AR in Arctic from 07/18/1980 to 08/19/1980, http://walrus.wr.usgs.gov/infobank/k/k180ar/html/k-1-80-ar.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k180ar/html/k-1-80-ar.bath.html ... |
Info |
k181ar.m77t - MGD77 data file for Geophysical data from field activity K-1-81-AR in Arctic from 07/15/1981 to 08/02/1981
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-1-81-AR in Arctic from 07/15/1981 to 08/02/1981, http://walrus.wr.usgs.gov/infobank/k/k181ar/html/k-1-81-ar.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k181ar/html/k-1-81-ar.bath.html ... |
Info |
k181hw.m77t - MGD77 data file for Geophysical data from field activity K-1-81-HW in Hawaii from 01/26/1981 to 02/05/1981
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-1-81-HW in Hawaii from 01/26/1981 to 02/05/1981, http://walrus.wr.usgs.gov/infobank/k/k181hw/html/k-1-81-hw.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k181hw/html/k-1-81-hw.bath.html ... |
Info |
k183ar.m77t - MGD77 data file for Geophysical data from field activity K-1-83-AR in Arctic from 07/22/1983 to 08/03/1983
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-1-83-AR in Arctic from 07/22/1983 to 08/03/1983, http://walrus.wr.usgs.gov/infobank/k/k183ar/html/k-1-83-ar.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k183ar/html/k-1-83-ar.bath.html ... |
Info |
k185ar.m77t and k185ar.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-85-AR in the Arctic from 09/04/1985 to 09/04/1985
Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise K-1-85-AR. The cruise was conducted in the Arctic on September 4, 1993. The chief scientists were Erk Reimnitz and Peter Barnes from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study and the geophysical source are unknown. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) ... |
Info |
k190gb.m77t and k190gb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-90-GB in Glacier Bay, Alaska from 06/14/1990 to 06/24/1990
Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise K-1-90-GB. The cruise was conducted in Glacier Bay, Alaska from June 14 to June 24, 1990. The chief scientist was Paul Carlson from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study was to look at glacial discharge streams and morainal banks of tidewater glaciers and imaging of gulleys and chutes on a pro-delta face in Queen Inlet and ice gouges ... |
Info |
k191yb.m77t and k191yb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-91-YB in Yakutat Bay, Alaska from 06/22/1991 to 06/28/1991
Single-beam bathymetry data along with radar and GPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-91-YB. The cruise was conducted in Yakutat Bay, Alaska from June 22 to June 28, 1991. The chief scientists were Paul Carlson from the USGS Coastal and Marine Geology office in Menlo Park, CA, and Ross Powell from Northern Illinois University. The overall purpose of this study is a continuation of previous studies of morainal bank and proximal environments of tidewater glaciers ... |
Info |
k193hw.m77t and k193hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-93-HW in Oahu, Hawaii from 02/20/1993 to 02/26/1993
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-93-HW. The cruise was conducted in Oahu, Hawaii from February 20 to February 26, 1993. The chief scientist was Mike Torresan from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to create a detailed bathymetric map of the Mamala Bay seafloor that delimits the general extent of the acoustically-resolvable dredged material deposits. The ... |
Info |
k194hw.m77t and k194hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-94-HW in Mamala Bay, Offshore Honolulu, Oahu, Hawaii from 05/10/1994 to 05/16/1994
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-94-HW. The cruise was conducted in Oahu, Hawaii from May 10 to May 16, 1994. The chief scientists were Mike Torresan and Monty Hampton from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to create a detailed bathymetric map of the Mamala Bay seafloor that delimits the general extent of the acoustically-resolvable dredged material deposits. ... |
Info |
k195hw.m77t and k195hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-95-HW in in Hawaii from 06/14/1995 to 06/18/1995
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-95-HW. The cruise was conducted in Oahu, Hawaii from June 14 to June 18, 1995. The chief scientist was Mike Torresan from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to conduct an integrated study on the distribution and character of dredged materials as well as the effects of dredged material on the marine environment. A three phase ... |
Info |
k279ar.m77t - MGD77 data file for Geophysical data from field activity K-2-79-AR in Prudhoe Bay, Alaska, Arctic from 08/25/1979 to 09/23/1979
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-2-79-AR in Prudhoe Bay, Alaska, Arctic from 08/25/1979 to 09/23/1979, http://walrus.wr.usgs.gov/infobank/k/k279ar/html/k-2-79-ar.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k279ar/html/k ... |
Info |
k281ar.m77t - MGD77 data file for Geophysical data from field activity K-2-81-AR in Arctic from 08/04/1981 to 08/07/1981
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-2-81-AR in Arctic from 08/04/1981 to 08/07/1981, http://walrus.wr.usgs.gov/infobank/k/k281ar/html/k-2-81-ar.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k281ar/html/k-2-81-ar.bath.html ... |
Info |
k283ar.m77t - MGD77 data file for Geophysical data from field activity K-2-83-AR in Arctic and Beaufort Sea, Alaska from 08/05/1983 to 08/22/1983
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-2-83-AR in Arctic and Beaufort Sea, Alaska from 08/05/1983 to 08/22/1983, http://walrus.wr.usgs.gov/infobank/k/k283ar/html/k-2-83-ar.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k283ar ... |
Info |
k283np.m77t - MGD77 data file for Geophysical data from field activity K-2-83-NP in Gorda Ridge, North Pacific from 10/08/1983 to 10/13/1983
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-2-83-NP in Gorda Ridge, North Pacific from 10/08/1983 to 10/13/1983, http://walrus.wr.usgs.gov/infobank/k/k283np/html/k-2-83-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k283np/html/k-2-83-np.bath.html into MGD77T format provided by the NOAA's ... |
Info |
k291bg.m77t and k291bg.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-2-91-BG in Bering Glacier, Alaska from 07/02/1991 to 07/06/1991
Single-beam bathymetry data along with radar and GPS navigation data was collected as part of the U.S. Geological Survey cruise K-2-91-BG. The cruise was conducted in Bering Glacier, Alaska from July 2 to July 6, 1991. The chief scientists were Paul Carlson from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study is to collect bathymetry, sidescan and samples from Icy Bay to Vitus Lake, Alaska. The geophysical source is 7 kilohertz (kHz) and 3.5 kHz systems. These ... |
Info |
k293hw.m77t and k293hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-2-93-HW in Kauai, Hawaii from 02/27/1993 to 03/02/1993
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise K-2-93-HW. The cruise was conducted in Kauai, Hawaii from February 27 to March 2, 1993. The chief scientist was Monty Hampton from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to create a detailed bathymetric map of the Mamala Bay seafloor that delimits the general extent of the acoustically-resolvable dredged material deposits. The geophysical ... |
Info |
k294hw.m77t and k294hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-2-94-HW in Mamala Bay, Offshore Honolulu, Oahu, Hawaii from 05/16/1994 to 05/23/1994
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-2-94-HW. The cruise was conducted in Mamala Bay, Offshore Honolulu, Oahu, Hawaii from May 16 to May 23, 1994. The chief scientists were Mike Torresan and Monty Hampton from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to sample and groundtruth the 1993 Acoustic data of the seafloor of Mamala Bay over the US Corps of Engineers Deep Ocean ... |
Info |
k382ar.m77t - MGD77 data file for Geophysical data from field activity K-3-82-AR in Arctic from 08/25/1982 to 09/08/1982
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-3-82-AR in Arctic from 08/25/1982 to 09/08/1982, http://walrus.wr.usgs.gov/infobank/k/k382ar/html/k-3-82-ar.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k382ar/html/k-3-82-ar.bath.html into MGD77T format provided by the NOAA's National Geophysical ... |
Info |
k482ar.m77t - MGD77 data file for Geophysical data from field activity K-4-82-AR in Arctic from 09/13/1982 to 10/10/1982
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity K-4-82-AR in Arctic from 09/13/1982 to 10/10/1982, http://walrus.wr.usgs.gov/infobank/k/k482ar/html/k-4-82-ar.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k482ar/html/k-4-82-ar.bath.html into MGD77T format provided by the NOAA's National Geophysical ... |
Info |
Katrina_R0_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Katrina_R1_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Katrina_R2_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Katrina_R3_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Katrina_R4_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
kauai_geo - Geologic attributes of the coastal zone of Kauai, Hawaii
Geologic attributes of the coastal zone of Kauai, Hawaii |
Info |
kauai_slp - Coastal Slope along the coastal zone of Kauai, Hawaii
Coastal Slope along the coastal zone of Kauai,Hawaii |
Info |
KEYS2016_SM_z17_n88g12B_classified_metadata: Coastal Topography-Upper Florida Keys Reef Tract, Florida, 26-30 June 2016
Binary point-cloud data were produced for a portion of the upper Florida Keys reef tract, Florida, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1-Unclassified, 2-Ground ... |
Info |
KEYS2016_SM_z17_n88g12B_mosaic_metadata: Coastal Topography-Upper Florida Keys Reef Tract, Florida, 26-30 June 2016
A digital elevation model (DEM) mosaic was produced for a portion of the upper Florida Keys reef tract, Florida, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1 ... |
Info |
Klein 3000 sidescan-sonar survey lines collected in Moultonborough Bay, Lake Winnipesaukee, New Hampshire by the U.S. Geological Survey in 2005 (Geographic, WGS 84, Esri Polyline Shapefile, 2005-004-FA_SONARTRK).
In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ... |
Info |
Knudsen 3202 seismic-reflection data trackline navigation collected by the USGS within Red Brook Harbor, MA, 2009 (RB_SeismicTrackline)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
KP_250M_LCC_WGS84.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q01.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q02.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q03.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q04.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q05.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q06.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
KP_Q07.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 7) (LCC, 50 m, WGS84)
In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone ... |
Info |
l1080np.m77t - MGD77 data file for Geophysical data from field activity L-10-80-NP in Northern Pacific from 10/10/1980 to 10/18/1980
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity L-10-80-NP in Northern Pacific from 10/10/1980 to 10/18/1980, http://walrus.wr.usgs.gov/infobank/l/l1080np/html/l-10-80-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1080np/html/l-10-80-np.bath.html into MGD77T format provided by the NOAA's National ... |
Info |
l1081na.m77t - MGD77 data file for Geophysical data from field activity L-10-81-AA in North Aleutians, Alaska from 08/16/1981 to 08/23/1981
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity L-10-81-AA in North Aleutians, Alaska from 08/16/1981 to 08/23/1981, The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1081aa/html/l-10-81-aa.bath.html into MGD77T format provided by the NOAA's National ... |
Info |
l1082bs.m77t - MGD77 data file for Geophysical data from field activity L-10-82-BS in Bering Sea, Alaska from 08/06/1982 to 08/24/1982
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-10-82-BS in Bering Sea, Alaska from 08/06/1982 to 08/24/1982, http://walrus.wr.usgs.gov/infobank/l/l1082bs/html/l-10-82-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1082bs/html/l-10-82-bs.bath.html into MGD77T format ... |
Info |
l1182cs.m77t - MGD77 data file for Geophysical data from field activity L-11-82-CS in Chukchi Sea, Alaska from 08/27/1982 to 09/16/1982
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-11-82-CS in Chukchi Sea, Alaska from 08/27/1982 to 09/16/1982, http://walrus.wr.usgs.gov/infobank/l/l1182cs/html/l-11-82-cs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1182cs/html/l-11-82-cs.bath.html, http://walrus.wr.usgs ... |
Info |
l1280wf.m77t - MGD77 data file for Geophysical data from field activity L-12-80-WF in Juan de Fuca from 10/29/1980 to 11/13/1980
Single-beam bathymetry and magnetic data along with DGPS navigation data was collected as part of field activity L-12-80-WF in Juan de Fuca from 10/29/1980 to 11/13/1980, http://walrus.wr.usgs.gov/infobank/l/l1280wf/html/l-12-80-wf.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1280wf/html/l-12-80-wf.bath.html and http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l1281np.m77t - MGD77 data file for Geophysical data from field activity L-12-81-NP in North Pacific Ocean from 09/19/1981 to 10/05/1981
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-12-81-NP in North Pacific Ocean from 09/19/1981 to 10/05/1981, http://walrus.wr.usgs.gov/infobank/l/l1281np/html/l-12-81-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1281np/html/l-12-81-np.bath.html, http://walrus.wr.usgs ... |
Info |
l1282wg.m77t - MGD77 data file for Geophysical data from field activity L-12-82-WG in Western Gulf of Alaska from 09/22/1982 to 10/05/1982
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-12-82-WG in Western Gulf of Alaska from 09/22/1982 to 10/05/1982, http://walrus.wr.usgs.gov/infobank/l/l1282wg/html/l-12-82-wg.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1282wg/html/l-12-82-wg.bath.html, http://walrus.wr.usgs ... |
Info |
l1380np.m77t - MGD77 data file for Geophysical data from field activity L-13-80-NP in Northern Pacific from 11/18/1980 to 12/11/1980
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-13-80-NP in Northern Pacific from 11/18/1980 to 12/11/1980, http://walrus.wr.usgs.gov/infobank/l/l1380np/html/l-13-80-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1380np/html/l-13-80-np.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l1381nc.m77t - MGD77 data file for Geophysical data from field activity L-13-81-NC in Northern California from 10/09/1981 to 10/23/1981
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity L-13-81-NC in Northern California from 10/09/1981 to 10/23/1981, http://walrus.wr.usgs.gov/infobank/l/l1381nc/html/l-13-81-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1381nc/html/l-13-81-nc.bath.html into MGD77T format provided by the NOAA's ... |
Info |
l1382wf.m77t - MGD77 data file for Geophysical data from field activity L-13-82-WF in Juan de Fuca from 10/17/1982 to 10/29/1982
Single-beam bathymetry and gravity data along with DGPS navigation data was collected as part of field activity L-13-82-WF in Juan de Fuca from 10/17/1982 to 10/29/1982, http://walrus.wr.usgs.gov/infobank/l/l1382wf/html/l-13-82-wf.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l1382wf/html/l-13-82-wf.bath.html and http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l176mx.m77t - MGD77 data file for Geophysical data from field activity L-1-76-MX in Baja California from 01/06/1976 to 02/17/1976
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity L-1-76-MX in Baja California from 01/06/1976 to 02/17/1976, http://walrus.wr.usgs.gov/infobank/l/l176mx/html/l-1-76-mx.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l176mx/html/l-1-76-mx.bath.html into MGD77T format provided by the NOAA's National ... |
Info |
l182nc.m77t - MGD77 data file for Geophysical data from field activity L-1-82-NC in Northern California from 02/02/1982 to 02/03/1982
Single-beam bathymetry and magnetic data along with DGPS navigation data was collected as part of field activity L-1-82-NC in Northern California from 02/02/1982 to 02/03/1982, http://walrus.wr.usgs.gov/infobank/l/l182nc/html/l-1-82-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l182nc/html/l-1-82-nc.bath.html and http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l184an.m77t - MGD77 data file for Geophysical data from field activity L-1-84-AN in Antarctica from 01/04/1984 to 02/01/1984
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-1-84-AN in Antarctica from 01/04/1984 to 02/01/1984, http://walrus.wr.usgs.gov/infobank/l/l184an/html/l-1-84-an.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l184an/html/l-1-84-an.bath.html, http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l275np.m77t - MGD77 data file for Geophysical data from feld activity L-2-75-NP in Gulf of Alaska from 08/25/1975 to 09/04/1975
Single-beam bathymetry and magnetics data along with DGPS navigation data was collected as part of field activity L-2-75-NP in Gulf of Alaska from 08/25/1975 to 09/04/1975, http://walrus.wr.usgs.gov/infobank/l/l275np/html/l-2-75-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l275np/html/l-2-75-np.bath.html and http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l282nc.m77t - MGD77 data file for Geophysical data from field activity L-2-82-NC in Off San Mateo, Northern California from 02/07/1982 to 02/12/1982
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-2-82-NC in Off San Mateo, Northern California from 02/07/1982 to 02/12/1982, http://walrus.wr.usgs.gov/infobank/l/l282nc/html/l-2-82-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l282nc/html/l-2-82-nc.bath.html, http://walrus ... |
Info |
l284an.m77t - MGD77 data file for Geophysical data from field activity L-2-84-AN in Antarctica from 02/03/1984 to 03/03/1984
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-2-84-AN in Antarctica from 02/03/1984 to 03/03/1984, http://walrus.wr.usgs.gov/infobank/l/l284an/html/l-2-84-an.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l284an/html/l-2-84-an.bath.html, http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l285nc.m77t - MGD77 data file for Geophysical data from field activity L-2-85-NC in Northern California from 04/03/1985 to 04/04/1985
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity L-2-85-NC in Northern California from 04/03/1985 to 04/04/1985, http://walrus.wr.usgs.gov/infobank/l/l285nc/html/l-2-85-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l285nc/html/l-2-85-nc.bath.html into MGD77T format provided by the NOAA's National ... |
Info |
l2b78sc.m77t - MGD77 data file for Geophysical data from field activity L-2B-78-SC in Southern California from 05/25/1978 to 05/29/1978
Single-beam bathymetry and magnetics data along with DGPS navigation data was collected as part of field activity L-2B-78-SC in Southern California from 05/25/1978 to 05/29/1978, http://walrus.wr.usgs.gov/infobank/l/l2b78sc/html/l-2b-78-sc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l2b78sc/html/l-2b-78-sc.bath.html and http://walrus.wr.usgs.gov ... |
Info |
l376wo.m77t - MGD77 data file for Geophysical data from field activity L-3-76-WO in Washington to Vancouver Island, British Columbia from 06/11/1976 to 06/20/1976
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-3-76-WO in Washington to Vancouver Island, British Columbia from 06/11/1976 to 06/20/1976, http://walrus.wr.usgs.gov/infobank/l/l376wo/html/l-3-76-wo.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l376wo/html/l-3-76-wo.bath.html, ... |
Info |
l378eg.m77t - MGD77 data file for Geophysical data from field activity L-3-78-EG in Eastern Gulf of Alaska from 06/22/1978 to 07/04/1978
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-3-78-EG in Eastern Gulf of Alaska from 06/22/1978 to 07/04/1978, http://walrus.wr.usgs.gov/infobank/l/l378eg/html/l-3-78-eg.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l378eg/html/l-3-78-eg.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l380np.m77t - MGD77 data file for Geophysical data field activity L-3-80-NP in North Pacific from 05/22/1980 to 06/04/1980
Single-beam bathymetry and magnetics data along with DGPS navigation data was collected as part of field activity L-3-80-NP in North Pacific from 05/22/1980 to 06/04/1980, http://walrus.wr.usgs.gov/infobank/l/l380np/html/l-3-80-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l380np/html/l-3-80-np.bath.html and http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l382nc.m77t - MGD77 data file for Geophysical data from field activity L-3-82-NC in Off San Mateo County, Northern California from 02/27/1982 to 03/01/1982
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-3-82-NC in Off San Mateo County, Northern California from 02/27/1982 to 03/01/1982, http://walrus.wr.usgs.gov/infobank/l/l382nc/html/l-3-82-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l382nc/html/l-3-82-nc.bath.html, http:/ ... |
Info |
l383wf.m77t - MGD77 data file for Geophysical data from field activity L-3-83-WF in Juan de Fuca from 08/19/1983 to 09/01/1983
Single-beam bathymetry and gravity data along with DGPS navigation data was collected as part of field activity L-3-83-WF in Juan de Fuca from 08/19/1983 to 09/01/1983, http://walrus.wr.usgs.gov/infobank/l/l383wf/html/l-3-83-wf.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l383wf/html/l-3-83-wf.bath.html and http://walrus.wr.usgs.gov/infobank/l/l383wf ... |
Info |
l384sp.m77t - MGD77 data file for Geophysical data from field activity L-3-84-SP in Tonga, Southern Pacific from 04/02/1984 to 05/01/1984
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-3-84-SP in Tonga, Southern Pacific from 04/02/1984 to 05/01/1984, http://walrus.wr.usgs.gov/infobank/l/l384sp/html/l-3-84-sp.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l384sp/html/l-3-84-sp.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l385nc.m77t - MGD77 data file for Geophysical data from field activity L-3-85-NC in Northern California from 07/15/1985 to 07/17/1985
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity L-3-85-NC in Northern California from 07/15/1985 to 07/17/1985, http://walrus.wr.usgs.gov/infobank/l/l385nc/html/l-3-85-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l385nc/html/l-3-85-nc.bath.html into MGD77T format provided by the NOAA's National ... |
Info |
l3a81nc.m77t - MGD77 data file for Geophysical data from field activity L-3A-81-NC in Central Coast, Northern California from 04/16/1981 to 04/26/1981
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-3A-81-NC in Central Coast, Northern California from 04/16/1981 to 04/26/1981, http://walrus.wr.usgs.gov/infobank/l/l3a81nc/html/l-3a-81-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l3a81nc/html/l-3a-81-nc.bath.html, http:/ ... |
Info |
l475bs.m77t - MGD77 data file for Geophysical data from field activity L-4-75-BS in Bering Sea, Aleutian Basin, Alaska from 09/07/1975 to 09/18/1975
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-4-75-BS in Bering Sea, Aleutian Basin, Alaska from 09/07/1975 to 09/18/1975, http://walrus.wr.usgs.gov/infobank/l/l475bs/html/l-4-75-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l475bs/html/l-4-75-bs.bath.html, http://walrus ... |
Info |
l476wg.m77t - MGD77 data file for Geophysical data from field activity L-4-76-WG in Western Gulf of Alaska from 06/26/1976 to 07/25/1976
Single-beam bathymetry, magnetics, gravity data along with DGPS navigation data was collected as part of field activity L-4-76-WG in Western Gulf of Alaska from 06/26/1976 to 07/25/1976, http://walrus.wr.usgs.gov/infobank/l/l476wg/html/l-4-76-wg.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l476wg/html/l-4-76-wg.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l477nc.m77t - MGD77 data file for Geophysical data from field activity L-4-77-NC in Northern California from 05/10/1977 to 05/21/1977
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-4-77-NC in Northern California from 05/10/1977 to 05/21/1977, http://walrus.wr.usgs.gov/infobank/l/l477nc/html/l-4-77-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l477nc/html/l-4-77-nc.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l478bs.m77t - MGD77 data file for Geophysical data from field activity L-4-78-BS in Bering Sea, Alaska from 07/08/1978 to 08/01/1978
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-4-78-BS in Bering Sea, Alaska from 07/08/1978 to 08/01/1978, http://walrus.wr.usgs.gov/infobank/l/l478bs/html/l-4-78-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l478bs/html/l-4-78-bs.bath.html into MGD77T format provided by ... |
Info |
l482np.m77t - MGD77 data file for Geophysical data from field activity L-4-82-NP in Low-energy abyssal hill areas midway between San Franciso and Hawaii from 03/01/1982 to 03/15/1982
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-4-82-NP in Low-energy abyssal hill areas midway between San Franciso and Hawaii from 03/01/1982 to 03/15/1982, http://walrus.wr.usgs.gov/infobank/l/l482np/html/l-4-82-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l482np/html/l ... |
Info |
l483bs.m77t - MGD77 data file for Geophysical data from field activity L-4-83-BS in Bering Sea, Alaska from 09/16/1983 to 10/02/1983
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-4-83-BS in Bering Sea, Alaska from 09/16/1983 to 10/02/1983, http://walrus.wr.usgs.gov/infobank/l/l483bs/html/l-4-83-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l483bs/html/l-4-83-bs.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l485wf.m77t - MGD77 data file for Geophysical data from field activity L-4-85-WF in Juan de Fuca from 07/28/1985 to 08/08/1985
Single-beam bathymetry and magnetics data along with DGPS navigation data was collected as part of field activity L-4-85-WF in Juan de Fuca from 07/28/1985 to 08/08/1985, http://walrus.wr.usgs.gov/infobank/l/l485wf/html/l-4-85-wf.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l485wf/html/l-4-85-wf.bath.html http://walrus.wr.usgs.gov/infobank/l/l485wf ... |
Info |
l486nc.m77t and l486nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity L-4-86-NC in Northern California from 08/21/1986 to 09/05/1986
Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise L-4-86-NC. The cruise was conducted in Northern California from August 21 to September 5, 1986. The chief scientists were Dave Cacchione and Dave Drake from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise is unknown. The geophysical sources were 12 kilohertz (kHz) and 3.5 kHz systems. These data are reformatted from space-delimited ... |
Info |
l576bs.m77t - MGD77 data file for Geophysical data from field activity L-5-76-BS in Southern Bering Sea Shelf from 07/28/1976 to 08/25/1976
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-5-76-BS in Southern Bering Sea Shelf from 07/28/1976 to 08/25/1976, http://walrus.wr.usgs.gov/infobank/l/l576bs/html/l-5-76-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l576bs/html/l-5-76-bs.bath.html, http://walrus.wr.usgs ... |
Info |
l578bs.m77t - MGD77 data file for Geophysical data from field activity L-5-78-BS in Bering Sea, Alaska from 08/05/1978 to 08/09/1978
Single-beam bathymetry and gravity data along with DGPS navigation data was collected as part of field activity L-5-78-BS in Bering Sea, Alaska from 08/05/1978 to 08/09/1978, http://walrus.wr.usgs.gov/infobank/l/l578bs/html/l-5-78-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l578bs/html/l-5-78-bs.bath.html and http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l580aa.m77t - MGD77 data file for Geophysical data from field activity L-5-80-AA in Aleutian Arc, Alaska from 06/23/1980 to 07/05/1980
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-5-80-AA in Aleutian Arc, Alaska from 06/23/1980 to 07/05/1980, http://walrus.wr.usgs.gov/infobank/l/l580aa/html/l-5-80-aa.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l580aa/html/l-5-80-aa.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l582sp.m77t - MGD77 data file for Geophysical data from field activity L-5-82-SP in Tonga Ridge, Southern Pacific from 03/28/1982 to 04/25/1982
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-5-82-SP in Tonga Ridge, Southern Pacific from 03/28/1982 to 04/25/1982, http://walrus.wr.usgs.gov/infobank/l/l582sp/html/l-5-82-sp.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l582sp/html/l-5-82-sp.bath.html, http://walrus.wr ... |
Info |
l583hw.m77t - MGD77 data file for Geophysical data from field activity L-5-83-HW in Horizon Guyot, Necker Ridge, Hawaii, Johnston, Palmyra, Kingman Island from 10/29/1983 to 11/26/1983
Single-beam bathymetry data along with DGPS navigation data was collected as part of field activity L-5-83-HW in Horizon Guyot, Necker Ridge, Hawaii, Johnston, Palmyra, Kingman Island from 10/29/1983 to 11/26/1983, http://walrus.wr.usgs.gov/infobank/l/l583hw/html/l-5-83-hw.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l583hw/html/l-5-83-hw.bath.html ... |
Info |
l585nc.m77t - MGD77 data file for Geophysical data from field activity L-5-85-NC in Northern California from 08/10/1985 to 08/31/1985
Single-beam bathymetry and magnetics data along with DGPS navigation data was collected as part of field activity L-5-85-NC in Northern California from 08/10/1985 to 08/31/1985, http://walrus.wr.usgs.gov/infobank/l/l585nc/html/l-5-85-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l585nc/html/l-5-85-nc.bath.html and http://walrus.wr.usgs.gov/infobank ... |
Info |
l676ar.m77t - MGD77 data file for Geophysical data from field activity L-6-76-AR in Arctic from 08/27/1976 to 09/03/1976
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-6-76-AR in Arctic from 08/27/1976 to 09/03/1976, http://walrus.wr.usgs.gov/infobank/l/l676ar/html/l-6-76-ar.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l676ar/html/l-6-76-ar.bath.html, http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l677eg.m77t - MGD77 data file for Geophysical data from field activity L-6-77-EG in Eastern Gulf of Alaska from 06/13/1977 to 06/30/1977
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-6-77-EG in Eastern Gulf of Alaska from 06/13/1977 to 06/30/1977, http://walrus.wr.usgs.gov/infobank/l/l677eg/html/l-6-77-eg.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l677eg/html/l-6-77-eg.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l678ar.m77t - MGD77 data file for Geophysical data from field activity L-6-78-AR in Arctic from 08/26/1978 to 09/20/1978
Single-beam bathymetry and gravity data along with DGPS navigation data was collected as part of field activity L-6-78-AR in Arctic from 08/26/1978 to 09/20/1978, http://walrus.wr.usgs.gov/infobank/l/l678ar/html/l-6-78-ar.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l678ar/html/l-6-78-ar.bath.html and http://walrus.wr.usgs.gov/infobank/l/l678ar/html/l ... |
Info |
l680bs.m77t - MGD77 data file for Geophysical data from field activity L-6-80-BS in North Bering Sea, Alaska from 07/08/1980 to 07/28/1980
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-6-80-BS in North Bering Sea, Alaska from 07/08/1980 to 07/28/1980, http://walrus.wr.usgs.gov/infobank/l/l680bs/html/l-6-80-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l680bs/html/l-6-80-bs.bath.html, http://walrus.wr.usgs ... |
Info |
l681np.m77t - MGD77 data file for Geophysical data from field activity L-6-81-NP in Off British Columbia and Washington, Northern Pacific from 05/31/1981 to 06/07/1981
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-6-81-NP in Off British Columbia and Washington, Northern Pacific from 05/31/1981 to 06/07/1981, http://walrus.wr.usgs.gov/infobank/l/l681np/html/l-6-81-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l681np/html/l-6-81-np.bath ... |
Info |
l682sp.m77t - MGD77 data file for Geophysical data from field activity L-6-82-SP in Vanuatu from 04/27/1982 to 05/16/1982
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-6-82-SP in Vanuatu from 04/27/1982 to 05/16/1982, http://walrus.wr.usgs.gov/infobank/l/l682sp/html/l-6-82-sp.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l682sp/html/l-6-82-sp.bath.html, http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l683sp.m77t - MGD77 data file for Geophysical data from field activity L-6-83-SP in Southern Pacific from 12/05/1983 to 12/11/1983
Single-beam bathymetry and gravity data along with DGPS navigation data was collected as part of field activity L-6-83-SP in Southern Pacific from 12/05/1983 to 12/11/1983, http://walrus.wr.usgs.gov/infobank/l/l683sp/html/l-6-83-sp.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l683sp/html/l-6-83-sp.bath.html and http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l685nc.m77t - MGD77 data file for Geophysical data from field activity L-6-85-NC in Northern California from 09/03/1985 to 09/20/1985
Single-beam bathymetry and magnetics data along with DGPS navigation data was collected as part of field activity L-6-85-NC in Northern California from 09/03/1985 to 09/20/1985, http://walrus.wr.usgs.gov/infobank/l/l685nc/html/l-6-85-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l685nc/html/l-6-85-nc.bath.html and http://walrus.wr.usgs.gov/infobank ... |
Info |
l776bs.m77t - MGD77 data file for Geophysical data from field activity L-7-76-BS in Bering Sea, Alaska from 09/03/1976 to 09/10/1976
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-7-76-BS in Bering Sea, Alaska from 09/03/1976 to 09/10/1976, http://walrus.wr.usgs.gov/infobank/l/l776bs/html/l-7-76-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l776bs/html/l-7-76-bs.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l777wg.m77t - MGD77 data file for Geophysical data from field activity L-7-77-WG in Western Gulf of Alaska from 07/03/1977 to 07/22/1977
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity L-7-77-WG in Western Gulf of Alaska from 07/03/1977 to 07/22/1977, http://walrus.wr.usgs.gov/infobank/l/l777wg/html/l-7-77-wg.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l777wg/html/l-7-77-wg.bath.html, http://walrus.wr.usgs.gov ... |
Info |
l780bs.m77t - MGD77 data file for Geophysical data from field activity L-7-80-BS in Bering Sea, Alaska from 08/01/1980 to 08/26/1980
Single-beam bathymetry and gravity data along with DGPS navigation data was collected as part of field activity L-7-80-BS in Bering Sea, Alaska from 08/01/1980 to 08/26/1980, http://walrus.wr.usgs.gov/infobank/l/l780bs/html/l-7-80-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l780bs/html/l-7-80-bs.bath.html and http://walrus.wr.usgs.gov/infobank/l ... |
Info |
l781wg.m77t - MGD77 data file for Geophysical data from field activity L-7-81-WG in Western Gulf of Alaska from 06/11/1981 to 06/30/1981
Single-beam bathymetry, gravity, and magnetic data along with transit satellite navigation data was collected as part of field activity L-7-81-WG in Western Gulf of Alaska from 06/11/1981 to 06/30/1981,http://walrus.wr.usgs.gov/infobank/l/l781wg/html/l-7-81-wg.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l781wg/html/l-7-81-wg.bath.html http://walrus ... |
Info |
l782sp.m77t - MGD77 data file for Geophysical data from field activity L-7-82-SP in Solomon Islands from 05/19/1982 to 06/11/1982
Single-beam bathymetry, gravity, and magnetic data along with transit satellite navigation data was collected as part of field activity L-7-82-SP in Solomon Islands from 05/19/1982 to 06/11/1982,http://walrus.wr.usgs.gov/infobank/l/l782sp/html/l-7-82-sp.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l782sp/html/l-7-82-sp.bath.html http://walrus.wr.usgs ... |
Info |
l783sp.m77t - MGD77 data file for Geophysical data from field activity L-7-83-SP in Southern Pacific from 12/28/1983 to 01/03/1984
Single-beam bathymetry, gravity, and magnetic data along with transit satellite navigation data was collected as part of field activity L-7-83-SP in Southern Pacific from 12/28/1983 to 01/03/1984, http://walrus.wr.usgs.gov/infobank/l/l783sp/html/l-7-83-sp.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l783sp/html/l-7-83-sp.bath.html http://walrus.wr ... |
Info |
l785nc.m77t - MGD77 data file for Geophysical data from field activity l-7-85-nc in Southern Pacific from 12/28/1983 to 01/03/1984
Single-beam bathymetry data along with transit satellite navigation data was collected as part of field activity L-7-85-NC in Northern California from 09/23/1985 to 10/04/1985, http://walrus.wr.usgs.gov/infobank/l/l785nc/html/l-7-85-nc.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l785nc/html/l-7-85-nc.bath.html into MGD77T format provided by the NOAA ... |
Info |
l876np.m77t - MGD77 data file for Geophysical data from field activity L-8-76-NP in Northern Pacific from 09/29/1976 to 10/21/1976
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-8-76-NP in Northern Pacific from 09/29/1976 to 10/21/1976, http://walrus.wr.usgs.gov/infobank/l/l876np/html/l-8-76-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l876np/html/l-8-76-np.bath.html http://walrus.wr ... |
Info |
l877bs.m77t - MGD77 data file for Geophysical data from field activity L-8-77-BS in Bering Sea, Alaska from 07/29/1977 to 08/21/1977
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-8-77-BS in Bering Sea, Alaska from 07/29/1977 to 08/21/1977, http://walrus.wr.usgs.gov/infobank/l/l877bs/html/l-8-77-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l877bs/html/l-8-77-bs.bath.html http://walrus.wr ... |
Info |
l878np.m77t - MGD77 data file for field activity L-8-78-NP in Northern Pacific from 09/29/1978 to 10/07/1978
Single-beam bathymetry, gravity, and magnetic data along with transit satellite navigation data was collected as part offield activity L-8-78-NP in Northern Pacific from 09/29/1978 to 10/07/1978, http://walrus.wr.usgs.gov/infobank/l/l878np/html/l-8-78-np.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l878np/html/l-8-78-np.bath.html http://walrus.wr ... |
Info |
l881wg.m77t - MGD77 data file for Geophysical data from field activity L-8-81-WG in Western Gulf of Alaska from 07/04/1981 to 07/16/1981
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-8-81-WG in Western Gulf of Alaska from 07/04/1981 to 07/16/1981, http://walrus.wr.usgs.gov/infobank/l/l881wg/html/l-8-81-wg.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l881wg/html/l-8-81-wg.bath.html http:/ ... |
Info |
l882np.m77t - MGD77 data file for Geophysical data from field activity L-8-82-NP in Northern Pacific from 06/18/1982 to 07/08/1982
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-8-82-NP in Northern Pacific from 06/18/1982 to 07/08/1982, http://walrus.wr.usgs.gov/infobank/l/l882np/html/L-8-82-NP.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l882np/html/L-8-82-NP.bath.html http://walrus.wr ... |
Info |
l884sp.m77t - MGD77 data file for Geophysical data from field activity L-8-84-SP in Southern Pacific from 07/19/1984 to 07/26/1984
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-8-84-SP in Southern Pacific from 07/19/1984 to 07/26/1984, http://walrus.wr.usgs.gov/infobank/l/l884sp/html/L-8-84-SP.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l884sp/html/L-8-84-SP.bath.html http://walrus.wr ... |
Info |
l977ar.m77t - MGD77 data file for Geophysical data from field activity L-9-77-AR in Arctic from 08/25/1977 to 10/08/1977
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-9-77-AR in Arctic from 08/25/1977 to 10/08/1977, http://walrus.wr.usgs.gov/infobank/l/l977ar/html/l-9-77-ar.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l977ar/html/l-9-77-ar.bath.html http://walrus.wr.usgs.gov ... |
Info |
l978hw.m77t - MGD77 data file for Geophysical data from field activity L-9-78-HW in Hawaii from 10/12/1978 to 10/19/1978
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-9-78-HW in Hawaii from 10/12/1978 to 10/19/1978, http://walrus.wr.usgs.gov/infobank/l/l978hw/html/l-9-78-hw.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l978hw/html/l-9-78-hw.bath.html http://walrus.wr.usgs.gov ... |
Info |
l980bs.m77t - MGD77 data file for Geophysical data from field activity L-9-80-BS in Bering Sea, Alaska from 09/24/1980 to 10/06/1980
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-9-80-BS in Bering Sea, Alaska from 09/24/1980 to 10/06/1980, http://walrus.wr.usgs.gov/infobank/l/l980bs/html/l-9-80-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l980bs/html/l-9-80-bs.bath.html http://walrus.wr ... |
Info |
l981aa.m77t - MGD77 data file for Geophysical data from field activity L-9-81-AA in Aleutian Arc, Alaska from 07/19/1981 to 08/13/1981
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-9-81-AA in Aleutian Arc, Alaska from 07/19/1981 to 08/13/1981, http://walrus.wr.usgs.gov/infobank/l/l981aa/html/l-9-81-aa.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l981aa/html/l-9-81-aa.bath.html http://walrus ... |
Info |
l982bs.m77t - MGD77 data file for Geophysical data from field activity L-9-82-BS in Bering Sea, Alaska from 07/11/1982 to 08/03/1982
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity L-9-82-BS in Bering Sea, Alaska from 07/11/1982 to 08/03/1982, http://walrus.wr.usgs.gov/infobank/l/l982bs/html/l-9-82-bs.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l982bs/html/l-9-82-bs.bath.html http://walrus.wr ... |
Info |
l984cp.m77t - MGD77 data file for Geophysical data from field activity 84015 (L-9-84-CP) in Majuro to Honolulu, Central Pacific from 07/27/1984 to 08/16/1984
Single-beam bathymetry, magnetics, and gravity data along with transit satellite navigation data was collected as part of field activity 84015 (L-9-84-CP) from Majuro to Honolulu, Central Pacific from 07/27/1984 to 08/16/1984. These data are reformatted from space-delimited ASCII text files, located in the former Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog, into MGD77T format for NOAA's National Geophysical Data Center (NGDC). The MGD77T format includes a header (documentation ... |
Info |
Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: False-Floor Experiment Flow Velocity and Shear Stress
Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in mats on the scale of tens of meters (m), and may break apart into pieces between 1 and 10 centimeters (cm) in diameter. These more mobile pieces are susceptible to alongshore and cross-shore transport, and lead to beach re-oiling on the time scale of months to years following a spill. The U.S. Geological Survey (USGS) conducted experiments March 10 ... |
Info |
Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: False-Floor Experiment Interpretive Video
Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in mats on the scale of tens of meters (m), and may break apart into pieces between 1 and 10 centimeters (cm) in diameter. These more mobile pieces are susceptible to alongshore and cross-shore transport, and lead to beach re-oiling on the time scale of months to years following a spill. The U.S. Geological Survey (USGS) conducted experiments March 10 ... |
Info |
Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: Sea Floor Interaction Experiment Flow Velocity
Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in mats on the scale of tens of meters (m), and may break apart into pieces between 1 and 10 centimeters (cm) in diameter. These more mobile pieces are susceptible to alongshore and cross-shore transport, and lead to beach re-oiling on the time scale of months to years following a spill. The U.S. Geological Survey (USGS) conducted experiments March 10 ... |
Info |
Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: Sea Floor Interaction Experiment Interpretive Video
Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in mats on the scale of tens of meters (m), and may break apart into pieces between 1 and 10 centimeters (cm) in diameter. These more mobile pieces are susceptible to alongshore and cross-shore transport, and lead to beach re-oiling on the time scale of months to years following a spill. The U.S. Geological Survey (USGS) conducted experiments March 10 ... |
Info |
Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: Sea Floor Interaction Experiment Interpretive Video Previews
Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in mats on the scale of tens of meters (m), and may break apart into pieces between 1 and 10 centimeters (cm) in diameter. These more mobile pieces are susceptible to alongshore and cross-shore transport, and lead to beach re-oiling on the time scale of months to years following a spill. The U.S. Geological Survey (USGS) conducted experiments March 10 ... |
Info |
Laboratory Observations of Artificial Sand and Oil Agglomerates: Video and Velocity Data: Sea Floor Interaction Experiment Preview Video (GoPro)
Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in mats on the scale of tens of meters (m), and may break apart into pieces between 1 and 10 centimeters (cm) in diameter. These more mobile pieces are susceptible to alongshore and cross-shore transport, and lead to beach re-oiling on the time scale of months to years following a spill. The U.S. Geological Survey (USGS) conducted experiments March 10 ... |
Info |
Laboratory Observations of Artificial Sand and Oil Agglomerates: Video and Velocity Data: Sea Floor Interaction Experiment Video (GoPro)
Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in mats on the scale of tens of meters (m), and may break apart into pieces between 1 and 10 centimeters (cm) in diameter. These more mobile pieces are susceptible to alongshore and cross-shore transport, and lead to beach re-oiling on the time scale of months to years following a spill. The U.S. Geological Survey (USGS) conducted experiments March 10 ... |
Info |
Laboratory Observations of Oscillatory Flow Over Sand Ripples: Image Metadata
These data comprise laboratory observations of oscillatory flows over mobile sand ripples. The data were collected January 6-7, 2016, in the small-oscillatory flow tunnel (S-OFT) in the Sediment Dynamics Laboratory at the U.S. Naval Research Laboratory (NRL), Stennis Space Center, Mississippi (MS), while Donya Frank-Gilchrist was a National Research Council post-doctoral fellow there. The flow tunnel has a 2-m long acrylic test section which was filled with coarse quartz sand. A piston and flywheel were ... |
Info |
Laboratory Observations of Oscillatory Flow Over Sand Ripples: Velocity Metadata
These data comprise laboratory observations of oscillatory flows over mobile sand ripples. The data were collected January 6-7, 2016, in the small-oscillatory flow tunnel (S-OFT) in the Sediment Dynamics Laboratory at the U.S. Naval Research Laboratory (NRL), Stennis Space Center, Mississippi (MS), while Donya Frank-Gilchrist was a National Research Council post-doctoral fellow there. The flow tunnel has a 2-m long acrylic test section which was filled with coarse quartz sand. A piston and flywheel were ... |
Info |
Laboratory Observations of Variable Size and Shape Particles-Artificial Sand and Oil Agglomerates: June 2017 Velocity Data
Following marine oil spills, weathered oil can mix with sediment in the surf zone and settle to the seafloor to form mats up to hundreds of meters long. Wave action fragments these mats into 1- to 10-centimeter (cm) diameter sand and oil agglomerates (SOAs). SOAs can persist for years, becoming buried in or exhumed from the seafloor and/or transported cross-shore and alongshore (Dalyander and others., 2015). These fragments are angular near the source mat and become increasingly rounded as they are ... |
Info |
Laboratory Observations of Variable Size and Shape Particles-Artificial Sand and Oil Agglomerates: June 2017 Video Data
Following marine oil spills, weathered oil can mix with sediment in the surf zone and settle to the seafloor to form mats up to hundreds of meters long. Wave action fragments these mats into 1- to 10-centimeter (cm) diameter sand and oil agglomerates (SOAs). SOAs can persist for years, becoming buried in or exhumed from the seafloor and/or transported cross-shore and alongshore (Dalyander and others, 2015). These fragments are angular near the source mat and become increasingly rounded as they are ... |
Info |
Laboratory Observations of Variable Size and Shape Particles-Artificial Sand and Oil Agglomerates: November 2016 Velocity Data
Following marine oil spills, weathered oil can mix with sediment in the surf zone and settle to the seafloor to form mats up to hundreds of meters long. Wave action fragments these mats into 1- to 10-centimeter (cm) diameter sand and oil agglomerates (SOAs). SOAs can persist for years, becoming buried in or exhumed from the seafloor and/or transported cross-shore and alongshore (Dalyander and others, 2015). These fragments are angular near the source mat and become increasingly rounded as they are ... |
Info |
Laboratory Observations of Variable Size and Shape Particles-Artificial Sand and Oil Agglomerates: November 2016 Video Data
Following marine oil spills, weathered oil can mix with sediment in the surf zone and settle to the seafloor to form mats up to hundreds of meters long. Wave action fragments these mats into 1- to 10-centimeter (cm) diameter sand and oil agglomerates (SOAs). SOAs can persist for years, becoming buried in or exhumed from the seafloor and/or transported cross-shore and alongshore (Dalyander and others, 2015). These fragments are angular near the source mat and become increasingly rounded as they are ... |
Info |
Lake Okeechobee Bathymetry data
The data from the bathymetric mapping of Lake Okeechobee are provided in two forms: as raw data files and as elevation contour maps |
Info |
lanai_geo - Geologic attributes of the coastal zone of Lanai, Hawaii
Geologic attributes of the coastal zone of Lanai, Hawaii |
Info |
lanai_slp - Coastal Slope along the coastal zone of Lanai, Hawaii
Coastal Slope along the coastal zone of Lanai, Hawaii |
Info |
Land-Cover Data Derived from Landsat Satellite Imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1985 and 2015
This U.S. Geological Survey (USGS) data release includes geospatial datasets that were created to analyze wetland changes along the Virginia and Maryland Atlantic coasts between 1984 and 2015. Wetland change was determined by assessing two metrics: wetland persistence and land-cover switching. Because seasonal water levels, beach width, and vegetation differences can affect change analyses, only images acquired during the spring (March, April, and May) were included in the wetland-change metrics (N=10). ... |
Info |
Landslide debris aprons offshore of southern California, 2023
Landslide debris aprons have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES), single-beam echosounder data, and seismic reflection data. |
Info |
Landslide evacuation zones offshore of Southern California, 2023
Landslide evacuation zones, which represent the areas from which material is removed by landslide processes, have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES) and single-beam echosounder data. |
Info |
Landslide mass-wasting zones offshore of Southern California, 2023
Landslide mass-wasting zones have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES) and single-beam echosounder data. |
Info |
Landslide scarps offshore of Southern California, 2023
Landslide scarp features have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES) and single-beam echosounder data. |
Info |
Landslides offshore of southern California, 2023
Landslides have been mapped offshore of Southern California. Polygons were mapped from visual interpretation of high-resolution multibeam echosounder data (MBES), single-beam echosounder data, and seismic reflection data. |
Info |
Late Holocene and Living Coral Composition of Pompano Ridge, FL
Pompano Ridge is a coral reef located on the southeast Florida nearshore ridge complex, ~600 meters (m) off the coast of northern Broward County in southeast Florida (26°13 North, 80°5 West). This data release compiles data collected on the late Holocene and living coral composition of Pompano Ridge. The data are described in detail in Modys and others (2024). The samples were collected under Scientific Activity Licenses (SAL) from the Florida Fish and Wildlife Conservation Commission (SAL-18-1650(A) ... |
Info |
Late Pleistocene coral ages and elevations from south Florida
This data release compiles Uranium-series (U-series) data and descriptive collection information (such as sample/core identifier, location, elevation, etc.) for late Pleistocene coral subsamples from coral reef cores previously collected throughout the Florida Keys (Florida) by U.S. Geological Survey (USGS) researchers. The samples were collected under scientific research permits from the Florida Keys National Marine Sanctuary (FKNMS) and U.S. National Park Service (NPS) and all samples are currently ... |
Info |
Lidar-Derived Bare-Earth XYZ for EAARL Coastal Topography—Cape Hatteras, North Carolina, Post-Hurricane Isabel, 2003
ASCII XYZ data for Cape Hatteras, North Carolina, were produced from remotely sensed, geographically referenced elevation measurements collected post-Hurricane Isabel on September 21, 2003 by the U.S. Geological Survey, in cooperation with the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground ... |
Info |
Lidar-Derived Classified Point-Cloud for Coastal Topography—Chandeleur Islands, Louisiana, 23-25 June 2016
Binary point-cloud data were produced for the Chandeleur Islands, Louisiana, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1-Unclassified, 2-Ground (includes model key ... |
Info |
Lidar-Derived Seamless Digital Elevation Model (DEM) Mosaic for Coastal Topography—Chandeleur Islands, Louisiana, 23-25 June 2016
A digital elevation model (DEM) mosaic was produced for the Chandeleur Islands, Louisiana, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1-Unclassified, 2-Ground (includes ... |
Info |
Lidar_MHW_Shorelines_1998_2014.shp - Mean High Water (MHW) Shorelines Extracted from Lidar Data for Dauphin Island, Alabama from 1998 to 2014.
This shapefile consists of Dauphin Island, AL shorelines extracted from lidar data collected from November 1998 to January 2014. This dataset contains 14 Mean High Water (MHW) shorelines separated into 37 shoreline segments alongshore Dauphin Island, AL. The individual sections are divided according to location along the island and shoreline type: open ocean, back-barrier, marsh shoreline. Raw lidar point data was converted to a gridded surface, from which a contour of the operational MHW shoreline (0.24 ... |
Info |
Line Navigation for the Boomer High-Resolution Seismic-Reflection Profiles Collected During U.S. Geological Survey (USGS) R/V Rafael Cruise 08034 off Edgartown, Massachusetts (08034_BOOMERNAVLINE.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Line Navigation for the Chirp High-Resolution Seismic-Reflection Profiles Collected During U.S. Geological Survey (USGS) R/V Rafael Cruise 08034 off Edgartown, Massachusetts (08034_KELNAVLINE.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Lipid biomarker analyses (alkanes, sterols and fatty acids) of authigenic carbonates collected on the FK190612 research expedition in the north Pacific Ocean in June and July 2019 along the Cascadia Margin.
Carbonate lipid biomarkers (n-alkanes, fatty acids, and fatty alcohols/sterols) were determined in carbonate rocks collected on the FK190612 research expedition in the north Pacific Ocean along the Cascadia Margin on in June and July 2019. |
Info |
Lipid biomarker data from Escanaba Trough sediments, off the coast of Northern California, USA, from May-June 2022.
Lipid biomarkers, including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and sterols, were measured on sediments from the Escanaba Trough, a hydrothermal spreading center off the coast of Northern CA. |
Info |
Lithologic Descriptions from the Continental Margin Program (HATHLITH71 shapefile)
This data set contains lithologic information on bottom sediments from the Continental Margin Program. The program was a joint collaboration between the U.S. Geological Survey and the Woods Hole Oceanographic Institution during the 1960s to conduct a geological reconnaissance investigation of the continental shelf and slope off the Atlantic coast of the United States. Only those records without complete size analyses and only those stations from the Gulf of Maine, Georges Bank, and southeastern New England ... |
Info |
Lithologic Descriptions of Bottom Sediments for the New England coast and the Gulf of Maine region (SMITHSONIAN shapefile)
These data, which comprise part of the Smithsonian Institution Master Sediment data file, were abstracted by the staff of the Smithsonian Institution from materials submitted for archival by various groups and individuals. Most of the data in this set were collected by the National Ocean Service (NOS, formerly the U.S. Coast and Geodetic Survey) for the purpose of charting the coastal waters and navigable waterways of the United States. Prior to 1985, the NOS data were released as part of the National ... |
Info |
Local radiocarbon reservoir age (Delta-R) variability from the nearshore and open-ocean environments of the Florida Keys reef tract during the Holocene and associated U-series and radiocarbon data (Marine13 Radiocarbon Calibration Curve)
Holocene-aged corals from reef cores collected throughout the Florida Keys reef tract (FKRT) were dated using a combination of U-series and radiocarbon techniques to quantify the millennial-scale variability in the local radiocarbon reservoir age (ΔR) of the shallow water environments of south Florida. ΔR provides a measure of the deviation of local radiocarbon concentrations of marine environments from the global average and can be used as a tracer of oceanic circulation and local hydrology. U.S. ... |
Info |
Local radiocarbon reservoir age (ΔR) variability from the nearshore and open-ocean environments of the Florida Keys reef tract during the Holocene and associated U-series and radiocarbon data (Marine20 Radiocarbon Calibration Curve)
68 Holocene-aged corals from reef cores collected throughout the Florida Keys reef tract (FKRT) were dated using a combination of U-series and radiocarbon techniques to quantify the millennial-scale variability in the local radiocarbon reservoir age (ΔR) of the shallow water environments of south Florida. ΔR provides a measure of the deviation of local radiocarbon concentrations of marine environments from the global average and can be used as a tracer of oceanic circulation and local hydrology. U.S. ... |
Info |
Location and analyses of sediment samples collected at Head of the Meadow Beach, Truro during field activity 2020-015-FA on March 4, 2020 (ver. 2.0, December 2023)
The data in this release map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA and provide environmental context for the camera calibration information for the 2019 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2020-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of the CoastCam, which are ... |
Info |
Location and analyses of sediment samples collected at Marconi Beach, Wellfleet during field activity 2021-022-FA on March 10, 2021 (ver. 2.0, December 2023)
The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ... |
Info |
Location and analyses of sediment samples collected by the U.S. Geological Survey in 2015 along the Delmarva Peninsula, MD and VA (Esri point shapefile and CSV file, Geographic, WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
Location and analyses of sediment samples collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-030-FA, aboard the R/V Auk, May 18-23, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Location and analyses of sediment samples collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-044-FA, aboard the R/V Auk, September 12-14, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Location and analyses of sediment samples collected on Stellwagen Bank during U.S. Geological Survey field activity 2019-008-FA, aboard the R/V Auk, July 30, 31, and August 1, 2019 (ver. 1.1, May 2023)
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Location and analyses of sediment samples collected on Stellwagen Bank off Boston, Massachusetts from November 5, 2013 to April 30, 2019 during U.S. Geological Survey field activities
These data are part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary (SBNMS) region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The data were collected in collaboration with the Stellwagen Bank National Marine Sanctuary and will aid research on the ecology of fish and invertebrate species that inhabit ... |
Info |
Location and analyses of sediment samples collected on Stellwagen Bank off Boston, Massachusetts from September 2020 to August 2021 during three U.S. Geological Survey field activities
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Location and analysis of sediment samples collected by the U.S. Geological Survey in 2014 along the Delmarva Peninsula, MD and VA (Esri point shapefile and CSV file, Geographic, WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
Location and analysis of sediment samples collected during field activity 2011-015-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management offshore of Massachusetts around Cape Cod and the Islands in September 2011 (point shapefile and CSV file)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The project is focused on the inshore waters (5–30 meters deep) of Massachusetts. This dataset is from U ... |
Info |
Location and analysis of sediment samples collected during field activity 2012-035-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management in Ipswich Bay and Massachusetts Bay, Massachusetts, in August 2012 (point shapefile and CSV file)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The program is focused on the inshore waters (primarily 5-30 meters deep, although the region surveyed in ... |
Info |
Location and analysis of sediment samples collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (point shapefile)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Location and analysis of sediment samples collected in 2014 by the U.S. Geological Survey offshore of Fire Island, NY (Esri point shapefile, GCS WGS 84)
The U.S. Geological Survey (USGS) conducted a geophysical and sampling survey in October 2014 that focused on a series of shoreface-attached ridges offshore of western Fire Island, NY. Seismic-reflection data, surficial grab samples and bottom photographs and video were collected along the lower shoreface and inner continental shelf. The purpose of this survey was to assess the impact of Hurricane Sandy on this coastal region. These data were compared to seismic-reflection and surficial sediment data ... |
Info |
Location and grain-size analysis results of sediment samples collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (simplified point shapefile and CSV files)
Two marine geological surveys were conducted in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey (USGS), University of Connecticut, and University of New Haven through the Long Island Sound Mapping and Research Collaborative. Sea-floor images and videos were collected at 210 sampling sites within the survey area, and surficial sediment samples were collected at 179 of the sites. The sediment data and the observations from the images and videos are used ... |
Info |
Location and grain-size analysis results of sediment samples collected in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey during field activities 2016-005-FA and 2017-022-FA (simplified point shapefile and CSV file)
Two marine geological surveys were conducted in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey (USGS) as part of an agreement with the Massachusetts Office of Coastal Zone Management to map the geology of the sea floor offshore of Massachusetts. Samples of surficial sediment and photographs of the sea floor were collected at 76 sampling sites within the survey area, and sea-floor videos were collected at 75 of the sites. The sediment data and the observations from the ... |
Info |
Location and radiochemical data from sediment cores collected on Deer Island, Mississippi
In December 2021, four sediment push cores (core names appended with 'M' for marsh push core) and peat augers (core names appended with 'R' for Russian peat auger) were collected from the marshes of Deer Island, Mississippi during U.S. Geological Survey (USGS) field activity number (FAN) 2021-351-FA. Select intervals from the manual push cores were analyzed for determination of lead-210 activities via alpha spectroscopy for development of accumulation rates using standard model methods. Twenty percent of ... |
Info |
Location and sediment texture information of surficial sediment samples collected within the New York Bight by the U.S. Geological Survey, 1995 - 1999 (Esri point shapefile, Geographic, WGS84)
A better understanding of sediment dynamics in coastal areas can be attained by mapping the surface sediment distribution and subsurface stratigraphy of the lower shoreface and inner-continental shelf. In 1995, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, began a program to produce geologic maps of the sea floor throughout the New York Bight Apex using high-resolution sidescan-sonar, subbottom profiling, and sediment sampling techniques. The goals of the investigation ... |
Info |
Location of bottom photographs along with images collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (point shapefile and JPEG images)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Location of bottom photographs along with images collected in 2014 by the U.S. Geological Survey offshore of Fire Island, NY (JPEG images and Esri point shapefile, Geographic, WGS 84)
The U.S. Geological Survey (USGS) conducted a geophysical and sampling survey in October 2014 that focused on a series of shoreface-attached ridges offshore of western Fire Island, NY. Seismic-reflection data, surficial grab samples and bottom photographs and video were collected along the lower shoreface and inner continental shelf. The purpose of this survey was to assess the impact of Hurricane Sandy on this coastal region. These data were compared to seismic-reflection and surficial sediment data ... |
Info |
Location of bottom photographs along with images collected in July 2016 by the U.S. Geological Survey off Town Neck Beach in Sandwich, Massachusetts, during field activity 2016-037-FA (JPEG images, point shapefile, and CSV file)
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ... |
Info |
Location of bottom still imagery along with images collected during field activity 2011-015-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management offshore of Massachusetts around Cape Cod and the Islands in September 2011 (JPEG images, point shapefile, and CSV file)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The project is focused on the inshore waters (5–30 meters deep) of Massachusetts. This dataset is from U ... |
Info |
Location of bottom still imagery along with images collected during field activity 2012-035-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management in Ipswich Bay and Massachusetts Bay, Massachusetts, in August 2012 (JPEG images, point shapefile, and CSV file)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The program is focused on the inshore waters (primarily 5-30 meters deep, although the region surveyed in ... |
Info |
Location of bottom video tracklines along with videos collected in July 2016 by the U.S. Geological Survey off Town Neck Beach in Sandwich, Massachusetts, during field activity 2016-037-FA (MP4 video files and polyline shapefile)
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ... |
Info |
Location of bottom video tracklines collected during field activity 2011-015-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management offshore of Massachusetts around Cape Cod and the Islands in September 2011 (polyline shapefile)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The project is focused on the inshore waters (5–30 meters deep) of Massachusetts. This dataset is from U ... |
Info |
Location of bottom video tracklines collected during field activity 2012-035-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management in Ipswich Bay and Massachusetts Bay, Massachusetts, in August 2012 (polyline shapefile)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The program is focused on the inshore waters (primarily 5-30 meters deep, although the region surveyed in ... |
Info |
Location of cores collected during cruise R/V ATLANTIC TWIN 84-1 (AT-84-1) (MMS84)
This GIS layer contains the station navigation for vibracores collected in Long Island Sound during 1984. These cores were originally collected to study nearshore geologic framework. |
Info |
Location of cores collected during cruise R/V ATLANTIC TWIN 88-1 (AT-88-1)(MMS88)
This GIS layer contains the station navigation for vibracores collected in Long Island Sound during 1988. These cores were originally collected to study nearshore geologic framework. |
Info |
Location of sea floor video tracklines along with videos collected in 2014 by the U.S. Geological Survey offshore of Fire Island, NY (MP4 videos files and Esri polyline shapefile, Geographic, WGS 84)
The U.S. Geological Survey (USGS) conducted a geophysical and sampling survey in October 2014 that focused on a series of shoreface-attached ridges offshore of western Fire Island, NY. Seismic-reflection data, surficial grab samples and bottom photographs and video were collected along the lower shoreface and inner continental shelf. The purpose of this survey was to assess the impact of Hurricane Sandy on this coastal region. These data were compared to seismic-reflection and surficial sediment data ... |
Info |
Locations and analyses of sediment samples collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-043-FA, aboard the R/V Auk, Aug 22 and 23, 2017 (geographic, WGS84)
This field activity is part of an effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000-scale) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The data collected in this study will aid research on the ecology of fish and invertebrate species that inhabit the region. On August 22 and 23, 2017, the U.S. Geological ... |
Info |
Locations and analyses of sediment samples collected on Stellwagen Bank on U.S. Geological Survey field activity 2015-062-FA, aboard the R/V Auk, Oct. 21 and 22 and Nov. 3 and 4 2015 (geographic, WGS84)
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Locations and analyses of sediment samples collected on Stellwagen Bank on U.S. Geological Survey field activity 2017-009-FA, aboard the R/V Auk, Jan. 30, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Locations and analysis of sediment samples collected in the Duxbury to Hull Massachusetts survey area (DH_SedimentSamples shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Locations and analysis of sediment samples collected offshore of Massachusetts within Northern Cape Cod Bay(CCB_SedSamples Esri Shapefile, and ASCII text format, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
Locations and grain-size analysis results of sediment samples collected in Cape Cod Bay, Massachusetts, in September 2019 by the U.S. Geological Survey during field activity 2019-034-FA (point shapefile and CSV file, GCS WGS 84, MLLW vertical datum)
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterize the surface and shallow subsurface geologic framework. Geophysical data collected include swath bathymetry, ... |
Info |
Locations of All Shotpoints for R/V GYRE Cruise G1-99-GM (99002) - GOM99SHTALLG.SHP
All shotpoint locations from multichannel seismics survey, USGS cruise G1-99-GM During June 1998 and April 1999, the U.S. Geological Survey (USGS) conducted two research cruises in the northern Gulf of Mexico to acquire high-resolution seismic reflection data across the upper and middle continental slope as part of an investigation of the seismic character, distribution, and potential effects of naturally-occurring marine gas hydrates and related free gas within the gas hydrate stability zone. Over 1600 km ... |
Info |
Locations of All Shotpoints, USGS Cruise M1-98-GM (GOM98SHTALLG.SHP)
All shotpoint locations from multichannel seismics survey, USGS cruise M1-98-GM. During June 1998 and April 1999, the U.S. Geological Survey (USGS) conducted two research cruises in the northern Gulf of Mexico to acquire high-resolution seismic reflection data across the upper and middle continental slope as part of an investigation of the seismic character, distribution, and potential effects of naturally-occurring marine gas hydrates and related free gas within the gas hydrate stability zone. Over 1600 ... |
Info |
Locations of sediment cores collected from Montague Island, AK
This dataset includes locations of sediment cores collected from coastal environments on Montague Island, Alaska. The cores were collected with hand driven peat augers to assess environmental changes related to tectonic uplift caused by historic and prehistoric earthquakes. |
Info |
Locations of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the ... |
Info |
Locations of sediment samples collected in the Cape Ann - Salisbury Beach Massachusetts survey area (SEDIMENTSAMPLES - Shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
Long Island Sound Surficial Sediment Data (LISSEDDATA)
Many scientific questions and policy issues related to sediments in Long Island Sound require data of historical, regional and interdisciplinary scope. Existent data is often geographically clustered and its references are widely dispersed and not always accessible. Acquisition of new data is expensive and may duplicate previous efforts if a full interpretation of existent data has not occurred. Consequently, the body of existing data needs to be utilized to its maximum so that it can serve as a foundation, ... |
Info |
Long Island Sound Surficial Sediment Data (LISSEDDATA.SHP)
Many scientific questions and policy issues related to sediments in Long Island Sound require data of historical, regional and interdisciplinary scope. Existent data is often geographically clustered and its references are widely dispersed and not always accessible. Acquisition of new data is expensive and may duplicate previous efforts if a full interpretation of existent data has not occurred. Consequently, the body of existing data needs to be utilized to its maximum so that it can serve as a foundation, ... |
Info |
Long-Term Oceanographic Monitoring in Massachusetts Bay (1989-2006) for Assessment of the Transport and Fate of Sediments and Associated Contaminants
Long-term oceanographic observations made in western Massachusetts Bay at long-term site LT-A (42 degrees 22.6 minutes N., 70 degrees 47.0 minutes W.; nominal water depth 32 meters) from December 1989 through February 2006 and long-term site B LT-B (42 degrees 9.8 minutes N., 70 degrees 38.4 minutes W.; nominal water depth 22 meters) from October 1997 through February 2004 are presented here. The observations were collected as part of a U.S. Geological Survey (USGS) study designed to understand the ... |
Info |
Long-term shoreline change rates for Rincon, Puerto Rico 1936-2006 (lt_transects.shp)
The 8 km of shoreline from Punta Higüero to Punta Cadena in Rincón, Puerto Rico is experiencing long-term coastal erosion. This study documents historical shoreline changes at Rincón for the period 1936-2006. Thirteen historical shoreline positions were compiled from existing data, new orthophotography, and GPS field surveys. Shoreline vectors represent the high water line at the time of the survey. |
Info |
Looe Key, Florida, 1938-2004 Seafloor Elevation Stability Models, Maps, and Tables
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 1938 and 2004 at Looe Key coral reef near Big Pine Key, Florida (FL), within a 19.06 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Yates and others (2017a) derived from an elevation-change analysis between two elevation datasets acquired in 1938 and ... |
Info |
Looe Key, Florida, 2004-2016 Seafloor Elevation Stability Models, Maps, and Tables
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2004 and 2016 at Looe Key coral reef near Big Pine Key, Florida (FL), within a 16.37 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Yates and others (2019) derived from an elevation-change analysis between two elevation datasets acquired in 2004 and ... |
Info |
Looe Key, Florida, 2016-2017 Seafloor Elevation Stability Models, Maps, and Tables
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2016 and 2017 at Looe Key coral reef near Big Pine Key, Florida (FL), within a 19.74 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Yates and others (2019) derived from an elevation-change analysis between two elevation datasets acquired in 2016 and ... |
Info |
Lower Florida Keys-Seafloor elevation change in Maui, St. Croix, St. Thomas, and the Florida Keys
Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves and erosion but projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by measuring ... |
Info |
m197wo.m77t and m197wo.h77t: MGD77T data and header files for single-beam bathymetry data for field activity M-1-97-WO in Southwest Washington Inner Shelf from 07/07/1997 to 07/15/1997
Single-beam bathymetry data along with DGPS and GPS navigation data were collected as part of the U.S. Geological Survey cruise M-1-97-WO. The cruise was conducted in Southwest Washington Inner Shelf from July 7 to July 15, 1997. The chief scientists were Pat McCrory and Dave Twitchell from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to collect geophysical data to aid in characterizing seismic hazard of nearshore faults & coastal erosion hazards. The ... |
Info |
Maine Inner Continental Shelf Sediment Data (BARNHARDT shapefile)
Surficial geologic maps play and important role in understanding the present sea floor and the processes that shape it. Between 1984 and 1991, over 1,700 bottom sample stations were occupied in the northwestern Gulf of Maine. Although the data were originally collected for a variety of research projects, contracts, and graduate student theses, they were eventually compiled as part of a Maine Geological Survey and University of Maine program to map the inner continental shelf of this region. |
Info |
Major and trace element geochemistry of ferromanganese crusts from seamounts within the Tuvalu Exclusive Economic Zone
Ferromanganese crusts were collected via dredge from seamounts within the Tuvalu Exclusive Economic Zone in the Pacific Ocean during cruise RR1310 funded by the National Science Foundation aboard the R/V Roger Revelle in 2013. USGS scientists requested these ferromanganese crust samples from the Oregon State University Marine and Geology Repository where they had been archived. Ferromanganese crust samples were sent to USGS for subsampling and major and trace element geochemical analyses. Major and trace ... |
Info |
Major, minor, and trace element data for rock samples from Von Damm vent field, Mid-Cayman Rise
This portion of the data release presents major, minor and trace element data of rock samples collected from Von Damm vent field, Mid Cayman Rise, in the Caribbean Sea. These data were collected in 2020 (USGS Field Activity 2020-602-FA). |
Info |
March 2006 Mississippi and Alabama USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2006 USGS Mississippi ... |
Info |
Marine magnetic data collected offshore Oceanside, southern California during field activity 2017-686-FA from 2017-10-23 to 2017-10-31
This part of the data release contains marine magnetic data that were collected aboard the R/V Snavely in 2017 on U.S. Geological Survey cruise 2017-686-FA offshore Oceanside, southern California. The magnetic field data were collected to characterize the surface and subsurface properties of the study area, including unconsolidated sediment thickness and subsurface sediment horizons. |
Info |
Marine magnetic data collected offshore San Francisco, California, during field activity 2019-649-FA from 2019-10-11 to 2019-10-18
This part of the data release contains marine magnetic data that were collected aboard the R/V Bold Horizon in 2019 on U.S. Geological Survey Field Activity 2019-649-FA offshore San Francisco, California. |
Info |
Marine magnetic data from Point Sur to Piedras Blancas, central California, 2011
This dataset includes marine magnetic data collected by the U.S. Geological Survey (USGS) in 2011 during field activity B-05-11-CC between Point Sur and Piedras Blancas, central California. |
Info |
Marine magnetics data collected by the U.S. Geological Survey in U.S. Atlantic Seaboard in 2014 (Geographic, WGS84, point shapefile 2014-011-FA_mag.shp)
In summer 2014, the U.S. Geological Survey conducted a 21-day geophysical program in deep water along the Atlantic continental margin by using R/V Marcus G. Langseth (Field Activity Number 2014-011-FA). The purpose of the seismic program was to collect multichannel seismic reflection and refraction data to determine sediment thickness. These data enable the United States to delineate its Extended Continental Shelf (ECS) along the Atlantic margin. The same data can also be used to understand large ... |
Info |
Marine mineral geochemical data - Part One: Pacific Ocean USGS-affiliated historical data
This data release compiles element composition data for more than 600 deep-ocean mineral samples from more than 25 research cruises in the Pacific Ocean since 1979 that involved USGS researchers. Deep-ocean mineral sample types encompassed in this data release include ferromanganese crusts, manganese nodules, phosphorites, and hydrothermal minerals. This data release is comprised of both unpublished as well as previously published data and reports and includes analytical methods and instrument detection ... |
Info |
Marine sparker SEG-Y seismic data recorded aboard the R/V San Lorenzo using receive hydrophones during USGS field activity 2021-619-FA offshore Santa Cruz, California in April of 2021
Seismic data were recorded from the R/V San Lorenzo (RVSL; receive vessel) of a two-vessel marine sparker seismic survey conducted by the U.S. Geological Survey (USGS) in April of 2021 off the coast of Santa Cruz, California (USGS field activity 2021-619-FA). The R/V Parke Snavely (RVPS; source vessel) towed a marine sparker sound source along seven depth site transects ranging between 25 and 600 meters. The RVSL maintained a nearly stationary position at the midpoint of each transect and recorded sound ... |
Info |
Marine sparker source SEG-Y seismic data recorded aboard the R/V Parke Snavely during USGS field activity 2021-619-FA offshore Santa Cruz, California in April of 2021
Seismic data were recorded aboard the R/V Parke Snavely (RVPS; source vessel) during USGS field activity 2021-619-FA. Data were recorded with a broadband spherical reference Reson TC4034 hydrophone positioned directly below the SIG ELP790 or the Applied Acoustics Delta sparker source which were towed from the stern of the vessel. Source data were recorded as the R/V Parke Snavely made several passes along 7 different water depth transects and are presented in SEG-Y format. Shot point navigation are provided ... |
Info |
Marsh habitat change analysis for the Point Aux Chenes and Grand Bay Estuaries in Mississippi and Alabama from 1848 to 2022
Over time, as sea levels rise and land subsides, marsh transgression can occur. As shorelines erode and the marsh slowly transgresses landward into the upland, valuable coastal habitat simultaneously is lost and gained. If the shoreline erosion is faster than the rate of upland transgression, the result is a net loss in coastal wetlands. This dataset represents a marsh area change analysis for the Point Aux Chenes and Grand Bay estuaries in Mississippi and Alabama from 1848-1957/1958, 1848-2019/2022, and ... |
Info |
Marsh Shorelines of the Massachusetts Coast from 2013-14 Topographic Lidar Data
The Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the Massachusetts coast. Seventy-six maps were produced in 1997 depicting a statistical analysis of shoreline change on ocean-facing shorelines from the mid-1800s to 1978 using multiple data sources. In 2001, a 1994 shoreline was added. More recently, in cooperation with CZM, the U.S. Geological Survey (USGS) delineated a new shoreline for Massachusetts using color ... |
Info |
Massachusetts Mean (interpolated) Beach Slope Point Data
The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes for Massachusetts for data collected at various times between 2000 and 2013. |
Info |
Massachusetts raw (non-interpolated) Beach Slope Point Data
The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Northeast Atlantic Ocean for Massachusetts for data collected at various times between 2000 and 2013 |
Info |
Massachusetts Water Resources Administration Sediment Data for Boston Harbor and Massachusetts Bay acquired in 1993 - 1995 (MWRA shapefile)
The samples in this dataset were collected and analyzed under the direction of the Massachusetts Water Resources Administration. The data were generated to study the effects of the Boston sewage outflow. Data were previously incorporated into the USGS's Gulf of Maine Contaminated Sediments Database. |
Info |
Mass-wasting deposits within the GLORIA survey area, Gulf of Mexico (MASSWASTING.SHP)
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. |
Info |
Mass-wasting deposits within the SIS-1000 1999 USGS sidescan sonar survey of the Upper Continental Slope offshore of Louisiana (MASSWASTING.SHP)
Since 1982 the U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the growing ... |
Info |
maui_geo - Geologic attributes of the coastal zone of Maui, Hawaii
Geologic attributes of the coastal zone of Maui, Hawaii |
Info |
Maui, Hawaii-Seafloor elevation change in Maui, St. Croix, St. Thomas, and the Florida Keys
Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves and erosion but projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by measuring ... |
Info |
maui_slp - Coastal Slope along the coastal zone of Maui, Hawaii
Coastal Slope along the coastal zone of Maui, Hawaii |
Info |
MCMASTER60_PROJECT: Sediments of Narragansett Bay
Gravel, sand, silt, and clay contents were determined for samples from Narragansett Bay and the adjacent Rhode Island Shelf. In the Narragansett Bay system, clayey silt and sand-silt-clay are the most abundant sediments. Sand is abundant locally and on the inner shelf. In general, toward the lower passages of the Bay the sediments show a progressive change to coarser textures. |
Info |
Mean High Water Shorelines for the Outer Cape of Massachusetts from Nauset Inlet to Race Point (1998-2005)
This data release contains mean high water (MHW) shorelines for the Outer Cape of Cape Cod, Massachusetts, from Nauset Inlet to Race Point. From 1998-2005, the U.S. Geological Survey surveyed 45 kilometers of coastline 111 times using a ground-based system called Surveying Wide-Area Shorelines (SWASH). The SWASH system used a six-wheeled amphibious all-terrain vehicle as a platform for an array of Global Positioning System sensors. High-accuracy measurements of horizontal position, vertical position, and ... |
Info |
Measurements of zinc, oxygen, and pH, from sphalerite and ZnS oxidation in seawater
This data release presents the concentration of zinc, oxygen, pH, temperature, and the time point at which measurements were taken for experimental oxidation work regarding zinc and copper sulfide minerals. These data accompany the following publication: Gartman, A., Whisman, S.P., and Hein, J.R., 2020, Interactive oxidation of sphalerite and covellite in seawater: implications for seafloor massive sulfide deposits and mine waste: ACS Earth and Space Chemistry, https://doi.org/10.1021/acsearthspacechem ... |
Info |
Merged 2005, 2007, and 2010 high-resolution bathymetry data collected in Skagit Bay, Washington
These metadata describe the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) merged bathymetry digital terrain model comprised of the 2005, 2007, and 2010 bathymetry data collected in Skagit Bay Washington that is provided as a 1-m resolution TIFF image, as well as a 1-m resolution shaded-relief TIFF image. In 2004, 2005, 2007, and 2010 the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) collected bathymetry and acoustic backscatter data in ... |
Info |
Merged acoustic-backscactter imagery collected in 2005, 2007, and 2010, Skagit Bay, Washington
These metadata describe the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) merged acoustic-backscatter imagery that was collected in 2005, 2007, and 2010 in Skagit Bay Washington that is provided as a 5-m resolution TIFF image. In 2004, 2005, 2007, and 2010 the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) collected bathymetry and acoustic backscatter data in Skagit Bay, Washington using an interferometric bathymetric sidescan sonar system ... |
Info |
Merged multibeam bathymetry--Catalina Basin and northern Gulf of Santa Catalina, southern California
This part of the data release includes 10-m resolution merged multibeam-bathymetry data of Catalina Basin and northern Gulf of Santa Catalina. The data are presented as a TIFF file. In February 2016 the University of Washington in cooperation with the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC) collected multibeam bathymetry and acoustic backscatter data in Catalina Basin aboard the University of Washington's Research Vessel Thomas G. Thompson. Data were collected using ... |
Info |
Merged multibeam bathymetry - northern portion of the Southern California Continental Borderland
This part of the data release includes 25-m resolution merged multibeam-bathymetry data of the northern portion of the Southern California Continental Borderland. The data are presented as a TIFF file. In February 2016 the University of Washington in cooperation with the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC) collected multibeam bathymetry and acoustic backscatter data in Catalina Basin aboard the University of Washington's Research Vessel Thomas G. Thompson. Data ... |
Info |
Metal and other element partitioning in southwest Puerto Rico ultramafic soil, Rio Loco sediment, and Guanica Bay sediment
Five-stage sequential extractions were performed on ultramafic soil from Bosque Susua and Guanica Dry Forest, stream sediment from Rios Loco and Yauco, and nearshore sediment from Guanica Bay in southwest Puerto Rico. Sequential extractions showed partitioning of geologically enriched metals and other elements among five phases: 1) adsorbed and calcium-bound, 2) iron-, manganese-oxyhydroxide-bound, 3) crystalline iron-oxide-bound, 4) sulfide-bound, and 5) residual. Total element contents are also reported. ... |
Info |
Meteorological data from Pea Island National Wildlife Refuge, North Carolina, 9/13/2021 to 10/24/2021
Meteorological data were collected as part of the DUring Nearshore Event eXperiment (DUNEX) on Pea Island National Wildlife Refuge in North Carolina from 9/13/2021 to 10/24/2021. The DUNEX project is a collaborative, multi-agency experiment designed to provide comprehensive measurements of storm-induced processes on coastal habitats. The overarching goals of this study are to understand oceanographic processes and their contribution to coastal morphological changes. These data will be used to improve storm ... |
Info |
Methane and carbon dioxide concentration data, environmental data, and calculations used to determine sea-air flux on the northern Greenland margin
Determining how much methane and carbon dioxide cross the sea-air interface is critical when assessing marine greenhouse gas fluxes. This assessment is particularly important on Arctic Ocean continental margins, where rapid climate change is thawing glacial ice and permafrost; reducing sea ice cover; and changing water temperatures, salinities, nutrient loads, and ocean currents. This dataset was collected in the Sherard Osborn Fjord and adjacent areas of the Nares Strait and Lincoln Sea on the northern ... |
Info |
MGL1109backsgeo.asc: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Esri gridascii format, geographic coordinate system
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-backscatter data collected in the Gulf of Alaska during U.S. Geological Survey (USGS) cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109backsgeo.sd: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Fledermaus digital terrain format, geographic coordinate system
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-backscatter data collected in the Gulf of Alaska during U.S. Geological Survey (USGS) cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109backsgeo.xyb: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in XYB (longitude, latitude, backscatter) format, geographic coordinate system
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-backscatter data collected in the Gulf of Alaska during U.S. Geological Survey (USGS) cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109backsutm.asc: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Esri gridascii format, UTM 6 coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-backscatter data collected in the Gulf of Alaska during U.S. Geological Survey (USGS) cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109backsutm.sd: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Fledermaus digital terrain format, UTM 6 coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-backscatter data collected in the Gulf of Alaska during U.S. Geological Survey (USGS) cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109backutm.tif: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in GeoTIFF format, UTM 6 coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-backscatter data collected in the Gulf of Alaska during U.S. Geological Survey (USGS) cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109backutm.xyb: Multibeam backscatter data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in x_utm, y_utm, and backscatter (decibel) format, UTM 6 coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-backscatter data collected in the Gulf of Alaska during U.S. Geological Survey (USGS) cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109bathygeo.asc: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Esri gridascii format, geographic coordinates.
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109bathygeo.sd: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Fledermaus digital terrain format, geographic coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109bathygeo.tif: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in GeoTIFF format, geographic coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109bathygeo.xyz: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in longitude, latitude, depth format, geographic coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109bathyutm.asc: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Esri gridascii, UTM 6 coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109bathyutm.bag: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Esri bathymetric attributed grid, UTM 6 coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109bathyutm.sd: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in Fledermaus digital terrain format, UTM 6 coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109bathyutm.tif: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gridded data in GeoTIFF format, UTM 6 coordinates
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109centerdepth.shp: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, along-track center-beam depths extracted from 100-meter gridded data in shapefile format, geographic coordinates
This shapefile contains center-beam depths for approximately 5804 trackline kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey (USGS) cruise MGL1109 aboard the R/V Marcus G. Langseth. The depth values were extracted from gridded data which were reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109centerdepth.txt: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, along-track center-beam depths extracted from 100-meter gridded data in plain text format, geographic coordinates
This text file contains center-beam depths for approximately 5804 trackline kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey (USGS) cruise MGL1109 aboard the R/V Marcus G. Langseth. The depth values were extracted from gridded data which were reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1109shadeutm.tif: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, 100-meter gray-shaded relief
This raster dataset represents approximately 69,060 square kilometers of Simrad EM122 multibeam-bathymetry data collected in the Gulf of Alaska during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1109 aboard the R/V Marcus G. Langseth. The data have been reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1111backsgeo.asc: Multibeam backscatter data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Esri gridascii format, geographic coordinate system
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111backsgeo.sd: Multibeam backscatter data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Fledermaus digital terrain format, geographic coordinate system
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111backsgeo.xyb: Multibeam backscatter data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in longitude, latitude, backscatter (decibel) format, geographic coordinate system
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111backsutm.asc: Multibeam backscatter data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Esri gridascii export format, UTM zone 60 coordinates
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111backsutm.sd: Multibeam backscatter data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Fledermaus digital terrain format, UTM zone 60 coordinates
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111backsutm.tif: Multibeam backscatter data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in GeoTIFF format, UTM zone 60 coordinates
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111backsutm.xyb: Multibeam backscatter data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in x, y, and backscatter (decibel) format, UTM zone 60 coordinates
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111bathygeo.asc: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Esri gridascii format, geographic (latitude, longitude) coordinates
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111bathygeo.sd: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Fledermaus digital terrain format, geographic (latitude, longitude) coordinates
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111bathygeo.tif: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in GeoTIFF format, geographic (latitude, longitude) coordinates
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111bathygeo.xyz: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in longitude, latitude, depth (meters) format, geographic (latitude, longitude) coordinates
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111bathyutm.asc: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Esri gridascii export format, UTM coordinate system
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111bathyutm.bag: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in bathymetric attributed grid format, UTM coordinate system
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111bathyutm.sd: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in Fledermaus digital terrain format, UTM coordinate system
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111bathyutm.tif: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded data in GeoTIFF format, UTM coordinate system
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
MGL1111centerdepth.shp: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, along-track center-beam depths extracted from 100-meter gridded data in shapefile format, geographic coordinates
This shapefile contains center-beam depths for approximately 5727 trackline kilometers of Simrad EM122 multibeam-bathymetry data collected in the Bering Sea during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1111 aboard the R/V Marcus G. Langseth. The depth values were extracted from gridded data which were reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
MGL1111shadeutm.tif: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, 100-meter gridded shaded bathymetric relief in GeoTIFF format
This raster dataset represents approximately 49,581 square kilometers of Simrad EM122 multibeam backscatter-intensity data collected in the Bering Sea during U.S. Geological Survey (USGS) cruise MGL1111 aboard the R/V Marcus G. Langseth. Calibrated backscatter-intensity time-series data were adjusted for range-angle, beam pattern, and power-gain distortions. |
Info |
Microbial Processes Contributing to the Clogging of Aquifer Storage and Recovery (ASR) Wells in South Florida
This metadata record describes data collected from laboratory experiments designed to characterize the microbial processes that contribute to clogging (i.e., bioclogging) of wells used for recharge (i.e., injection) of fresh surface water into specific aquifer zones (Upper Floridan Aquifer [UFA] and Avon Park Permeable Zone [APPZ]) as part of water storage technology of aquifer storage and recovery (ASR). Solid rock core samples were collected from three wells (ASRC38S, ASRL63S and ASRC59; abbreviated to ... |
Info |
Mineralogy, rare earth elements, and strontium isotopic composition of phosphorites and phosphatized rocks from the Rio Grande Rise, south Atlantic Ocean
Phosphorites and phosphatized rocks from the summit of the Rio Grande Rise (RGR) in the south Atlantic Ocean were collected via dredge during the oceanographic research cruise RGR1 to the western RGR. The location (latitude, longitude, depth), mineralogy, concentrations of phosphorus and rare earth elements, and 87Sr/86Sr ratios of phosphorites and phosphatized FeMn crusts, ironstones, and carbonates from 10 dredge sites are presented here. These data were used to determine the presence of carbonate ... |
Info |
Minimal offshore extent of ice-bearing (subsea) permafrost on the U.S. Beaufort Sea margin
The present-day distribution of subsea permafrost beneath high-latitude continental shelves has implications for sea level rise and climate change since the Last Glacial Maximum (~20,000 years ago). Because permafrost can be spatially associated with gas hydrate (which may be thermodynamically stable within the several hundred meters above and below the base of permafrost), the contemporary distribution of subsea permafrost also has implications for the persistence of permafrost-associated gas hydrate ... |
Info |
Minisparker seismic-reflection data acquired offshore San Francisco and Pacifica during USGS field activity S-16-10-NC
Single-channel minisparker seismic-reflection data were collected by the U.S. Geological Survey in August 2010, offshore San Mateo County, California. Data were collected aboard the R/V Snavely during field activity S-16-10-NC. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer and recorded with a Triton SB-Logger. |
Info |
Minisparker seismic-reflection data collected southwest of Montague Island and southwest of Chenega, Alaska during field activity 2014-622-FA
High-resolution single channel minisparker seismic-reflection data were collected by the U.S. Geological Survey and the Alaska Department of Fish and Game in May 2014 in southern Prince William Sound southwest of Chenega and from southwest of Montague Island, Alaska. Data were collected aboard the Alaska Department of Fish and Game vessel, R/V Solstice, during field activity 2014-622-FA, using a 500 Joule SIG 2-mille minisparker sound source and a single channel streamer and recorded with a Triton SB-Logger ... |
Info |
Minisparker seismic-reflection data from field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03
High-resolution single-channel minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006 offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and recorded with a Triton SB-Logger. |
Info |
Minisparker seismic-reflection data of field activity F-02-07-NC collected offshore San Mateo County, California, from 2007-03-22 to 2007-04-06
High-resolution single-channel minisparker seismic-reflection data were collected by the U.S. Geological Survey in March and April 2007 from San Francisco to San Gregorio, offshore San Mateo County, California. Data were collected aboard the R/V Fulmar, during field activity F-02-07-NC. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and recorded with a Triton SB-Logger. |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - 2005/06/19 through 2005/11/20 Deterministic Scenario
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - 2015/08/27 through 2015/08/29 Deterministic Scenario
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - 2015/12/09 through 2015/12/11 Deterministic Scenario
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Existing Condition 10-Year Simulation with 0.5-meter of Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Existing Condition 10-Year Simulation Without Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Existing Condition 2010 Simulation With 0.5-meter of Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Existing Condition 2010 Simulation Without Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Initial Existing Conditions Grid
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Initial Project Conditions Grid
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - With-Project Condition 10-Year Simulation With 0.5-meter of Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - With-Project Condition 10-Year Simulation Without Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - With-Project Condition 2010 Simulation With 0.5-meter of Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - With-Project Condition 2010 Simulation Without Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Modeled and Observed Weekly Mean Wave Height for Validation of a Wave Exposure Model of Grand Bay, Mississippi
Coastal marshes are highly dynamic and ecologically important ecosystems that are subject to pervasive and often harmful disturbances, including shoreline erosion. Shoreline erosion can result in an overall loss of coastal marsh, particularly in estuaries with moderate- or high-wave energy. Not only can waves be important physical drivers of shoreline change, they can also influence shore-proximal vertical accretion through sediment delivery. For these reason, estimates of wave energy can provide a ... |
Info |
Modeled extreme total water levels along the U.S. west coast
This dataset contains information on the probabilities of storm-induced erosion (collision, inundation and overwash) for each 100-meter (m) section of the United States Pacific coast for return period storm scenarios. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the hydrodynamic forcing. Storm-induced water levels, due to both surge and waves, are compared to coastal ... |
Info |
Model input and output files for modeling surface gravity waves on a schematized ancient lake on Mars
This portion of the data release presents a wave model application developed to simulate wind generated surface gravity waves on an ancient lake on Mars. The phase-averaged wave model, SWAN, was applied within the Delft3D modeling system (Deltares, 2018) with reduced gravity and a range of atmospheric densities and wind speeds to simulate potential conditions that could generate wind waves on Mars. The data release includes model input files for simulations with three different atmospheric densities, ... |
Info |
Model input files for the lower Nooksack River and delta, western Washington State
This data set consists of physics-based Delft3D-Flexible Mesh hydrodynamic model input files that are used to simulate compound flood exposure of the lower Nooksack River and delta of western Washington State under existing and future conditions of anticipated climate and land-use change. The model enables assessment of the changing flood exposure associated with the cumulative impacts of expected sea-level rise, greater tidal inundation, more frequent storm surge effects, and higher winter stream floods ... |
Info |
molo_geo - Geologic attributes of the coastal zone of Molokai, Hawaii
Geologic attributes of the coastal zone of Molokai, Hawaii |
Info |
molo_slp - Coastal Slope along the coastal zone of Molokai, Hawaii
Coastal Slope along the coastal zone of Molokai, Hawaii |
Info |
MONT95C - Bathymetry contours of the southern Monterey Bay area between Moss Landing and Monterey, California
Derived contours at 10-m intervals are from data collected by the USGS with a multibeam (Simrad EM1000) sidescan sonar system in the southern Monterey Bay between Moss Landing and Monterey, California in 1995 (USGS Field Activity P1-95-MB). This is one of a collection of digital files of a geographic information system of spatially referenced data related to the USGS Coastal and Marine Geology Program Monterey Bay National Marine Sanctuary Project (see this and other older Monterey Bay USGS works archived ... |
Info |
Monthly bedload estimates, Elwha River, Washington, October 2015 to September 2016
Bedload sediment transport was calculated on the Elwha River, Washington to measure the amount of sediment transported along the riverbed during the 2016 water year. Bedload was measured using the Elwha bedload impact plate system (Hilldale and others, 2015). Physical bedload sampling by the U.S. Bureau of Reclamation for system calibration took place during November, 2012; March, May, and June 2013; and April 2014 at the Diversion Weir gauge (Magirl and others, 2015). Early in water year 2016 (year 5) the ... |
Info |
Morphology of the Gulf of Mexico within GLORIA survey area (MORPHOLOGY.SHP)
Since 1982 the U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the growing ... |
Info |
MOSAIC1 - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
MOSAIC2 - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
MOSAIC3 - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
MOSAIC4 - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
MOSAIC5 - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
MOSAIC6 - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
MOSAIC7 - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
MOSAIC8 - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
MOSAIC9 - Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (UTM Zone 16N GeoTIFF)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
MS_AL_Benthic_Foram_CENSUS_metadata: Benthic foraminiferal data from the eastern Mississippi Sound salt marshes and estuaries
Microfossil (benthic foraminifera) and coordinate/elevation data were obtained from sediments collected in the coastal zones of Mississippi and Alabama, including marsh and estuarine environments of eastern Mississippi Sound and Mobile Bay, in order to develop a census for coastal environments and to aid in paleoenvironmental reconstruction. These data provide a baseline dataset for use in future wetland and estuarine change studies and assessments, both descriptive and predictive types. The data presented ... |
Info |
MS_AL_Cores_Foram_CENSUS_metadata: Benthic foraminiferal data from sedimentary cores collected in the Grand Bay (Mississippi) and Dauphin Island (Alabama) salt marshes
Microfossil (benthic foraminifera) data from coastal areas were collected from state and federally managed lands within the Grand Bay National Estuarine Research Reserve and Grand Bay National Wildlife Refuge, Grand Bay, Mississippi/Alabama; federally managed lands of Bon Secour National Wildlife Refuge on Cedar Island and Little Dauphin Island, Alabama; and municipally managed land around Dauphin Island, Alabama. Samples were analyzed and quantified for foraminiferal census in order to document changes to ... |
Info |
MS_AL_Cores_XYZ_metadata: Benthic foraminiferal data from sedimentary cores collected in the Grand Bay (Mississippi) and Dauphin Island (Alabama) salt marshes
Microfossil (benthic foraminifera) data from coastal areas were collected from state and federally managed lands within the Grand Bay National Estuarine Research Reserve and Grand Bay National Wildlife Refuge, Grand Bay, Mississippi/Alabama; federally managed lands of Bon Secour National Wildlife Refuge on Cedar Island and Little Dauphin Island, Alabama; and municipally managed land around Dauphin Island, Alabama. Samples were analyzed and quantified for foraminiferal census in order to document changes to ... |
Info |
MS_AL_XYZ_metadata: Benthic foraminiferal data from the eastern Mississippi Sound salt marshes and estuaries
Microfossil (benthic foraminifera) and coordinate/elevation data were obtained from sediments collected in the coastal zones of Mississippi and Alabama, including marsh and estuarine environments of eastern Mississippi Sound and Mobile Bay, in order to develop a census for coastal environments and to aid in paleoenvironmental reconstruction. These data provide a baseline dataset for use in future wetland and estuarine change studies and assessments, both descriptive and predictive types. The data presented ... |
Info |
Multibeam acoustic-backscatter data collected in 2015 near Cross Sound, southeast Alaska, during field activity 2015-629-FA
These metadata describe acoustic-backscatter collected during a 2015 multibeam echosounder survey near Cross Sound, southeast Alaska. Data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game (ADFG) aboard the ADFG R/V Solstice during USGS field activity 2015-629-FA. The acoustic-backscatter data are provided as a GeoTIFF. |
Info |
Multibeam acoustic-backscatter data collected in 2016 for Lake Crescent, Olympic National Park, Washington
In February 2016 the U.S. Geological Survey, Pacific Coastal and Marine Science Center in cooperation with North Carolina State University and the National Park Service collected multibeam bathymetry and acoustic backscatter data in Lake Crescent located in Olympic National Park, Washington. Data were collected using a Reson 7111 multibeam echosounder pole-mounted to the 36-foot USGS R/V Parke Snavely. These metadata describe the multibeam acoustic-backscatter data file that is included in "LakeCrescent ... |
Info |
Multibeam acoustic-backscatter data collected in 2016 in Catalina Basin, southern California
This part of the data release includes 10-m resolution multibeam acoustic-backscatter data collected in 2016 in Catalina Basin, southern California. The data are presented as a TIFF file. In February 2016 the University of Washington in cooperation with the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC) collected multibeam bathymetry and acoustic backscatter data in Catalina Basin aboard the University of Washington's Research Vessel Thomas G. Thompson. Data were collected ... |
Info |
Multibeam acoustic-backscatter data collected in 2017 and 2018 of Noyes Submarine Canyon and vicinity, southeast Alaska
These metadata describe acoustic-backscatter data collected during 2017 and 2018 multibeam echosounder surveys of Noyes Submarine Canyon and vicinity, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. The acoustic-backscatter data are provided as a GeoTIFF image. |
Info |
Multibeam acoustic-backscatter data collected offshore of south-central California in support of the Bureau of Ocean Energy Management Cal DIG I offshore alternative energy project
Multibeam acoustic-backscatter data were collected offshore of Morro Bay, California, from 2016 to 2019. The data were collected during five separate multi-agency surveys for the U.S. Geological Survey (USGS)/Bureau of Ocean Energy Management (BOEM) California Deepwater Investigations and Groundtruthing I (Cal DIG I) project, under a collaboration with the National Oceanic and Atmospheric Administration (NOAA), using Simrad 700 series hull-mounted multibeam echosounders. Data in 2017 and 2018 were acquired ... |
Info |
Multibeam backscatter data collected during USGS Field Activity 2021-004-FA, using a dual-head Teledyne SeaBat T20-P multibeam echo sounder (8-bit GeoTIFF, UTM Zone 19N, WGS84, 1-m resolution)
The U.S. Geological Survey (USGS) Woods Hole Coastal and Marine Science Center (WHCMSC) completed a bathymetric and shallow seismic-reflection survey during the period of June 9, 2021 to June 24, 2021 in water depths from 2 m to 30 m for a portion of the outer Cape Cod nearshore environment between Marconi and Nauset Beaches. The products from this survey will help to support white shark research on their shallow-water behavior in the dynamic nearshore environment at Cape Cod National Seashore (CACO). CACO ... |
Info |
Multibeam backscatter data collected in Cape Cod Bay, Massachusetts during USGS Field Activity 2019-002-FA, using a dual-head Reson T20-P multibeam echo sounder (8-bit GeoTIFF, UTM Zone 19N, WGS84, 1-m resolution)
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterize the surface and shallow subsurface geologic framework. Geophysical data collected include swath bathymetry, ... |
Info |
Multibeam backscatter data collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA, using a dual-head Reson T20-P multibeam echo sounder
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg ... |
Info |
Multibeam backscatter data collected in Nantucket Sound Massachusetts in the vicinity of Horseshoe Shoal, during USGS Field Activity 2022-001-FA using a Teledyne SeaBat Integrated Dual-Head (IDH) T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 19N, WGS 84, 1-m resolution)
In June 2022, the U.S. Geological Survey, in collaboration with the Massachusetts Office of Coastal Zone Management, collected high-resolution geophysical data, in Nantucket Sound to understand the regional geology in the vicinity of Horseshoe Shoal. This effort is part of a long-term collaboration between the USGS and the Commonwealth of Massachusetts to map the State’s waters, support research on the Quaternary evolution of coastal Massachusetts, resolve the influence of sea-level change and sediment ... |
Info |
Multibeam backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 8-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid)
Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern ... |
Info |
Multibeam backscatter data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 16N, NAD 83, 2-m resolution)
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town ... |
Info |
Multibeam backscatter data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 16N, NAD 83, 1-m resolution)
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of ... |
Info |
Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution)
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the ... |
Info |
Multibeam bathymetric data collected during USGS field activity 2021-004-FA, using a dual-head Teledyne SeaBat T20-P multibeam echo sounder (32-bit GeoTIFF, UTM Zone 19N, NAD 83, NAVD88 Vertical Datum, 2-m resolution)
The U.S. Geological Survey (USGS) Woods Hole Coastal and Marine Science Center (WHCMSC) completed a bathymetric and shallow seismic-reflection survey during the period of June 9, 2021 to June 24, 2021 in water depths from 2 m to 30 m for a portion of the outer Cape Cod nearshore environment between Marconi and Nauset Beaches. The products from this survey will help to support white shark research on their shallow-water behavior in the dynamic nearshore environment at Cape Cod National Seashore (CACO). CACO ... |
Info |
Multibeam bathymetric data collected in Cape Cod Bay, Massachusetts during USGS Field Activity 2019-002-FA, using a dual-head Reson T20-P multibeam echo sounder (32-bit GeoTIFF, UTM Zone 19N, NAD 83, MLLW Vertical Datum, 5-m resolution)
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterize the surface and shallow subsurface geologic framework. Geophysical data collected include swath bathymetry, ... |
Info |
Multibeam bathymetric data collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA, using a dual-head Reson T20-P multibeam echo sounder (32-bit GeoTIFF, UTM Zone 18N, NAD 83, NAVD 88 Vertical Datum, 4-m resolution)
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg ... |
Info |
Multibeam bathymetric data collected in Nantucket Sound Massachusetts in the vicinity of Horseshoe Shoal, during USGS Field Activity 2022-001-FA using a Teledyne SeaBat Integrated Dual-Head (IDH) T20-P multibeam echosounder (32-bit GeoTIFF, UTM Zone 19N, NAD 83, MLLW Datum, 2-m resolution)
In June 2022, the U.S. Geological Survey, in collaboration with the Massachusetts Office of Coastal Zone Management, collected high-resolution geophysical data, in Nantucket Sound to understand the regional geology in the vicinity of Horseshoe Shoal. This effort is part of a long-term collaboration between the USGS and the Commonwealth of Massachusetts to map the State’s waters, support research on the Quaternary evolution of coastal Massachusetts, resolve the influence of sea-level change and sediment ... |
Info |
Multibeam bathymetric data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 32-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid)
Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern ... |
Info |
Multibeam bathymetric data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA using a dual-head Reson T20-P multibeam echosounder (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum, 2-m resolution)
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town ... |
Info |
Multibeam bathymetric data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using a dual-head Reson T20-P multibeam echosounder (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum, 1-m resolution)
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of ... |
Info |
Multibeam bathymetric data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA using a dual-head Reson T20-P multibeam echosounder (32-bit GeoTIFF, UTM Zone 12N, NAD 83, NAVD 88 Vertical Datum, 2-m resolution).
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the ... |
Info |
Multibeam bathymetric trackline data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA using a dual-head Reson T20-P multibeam echosounder (Esri polyline shapefile, Geographic, WGS 84).
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town ... |
Info |
Multibeam Bathymetry 2 meter/pixel of Boston Harbor and Approaches (bh_2mmbbath)
These data are high-resolution bathymetric measurements of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km² of sidescan sonar and bathymetric data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed and gridded by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS). |
Info |
Multibeam bathymetry and acoustic backscatter data from the Alaskan region, Extended Continental Shelf Project, 2011 field season: Gulf of Alaska and Bering Sea
This publication releases swath bathymetry and backscatter datasets derived from multibeam bathymetric data acquired by the U.S. Geological Survey (USGS) on the R/V Marcus G. Langseth legs MGL1108 (transit) and MGL1109 in the Gulf of Alaska, and MGL1111 in the Bering Sea. These data were acquired with a Kongsberg Simrad EM-122 multibeam echosounder and Seafloor Information System (SIS) acquisition software. The MGL1108 data were combined with the MGL1109 data during processing and are presented as MGL1109 ... |
Info |
Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, along-track center-beam depths extracted from 100-meter gridded data in plain text format, geographic coordinates.
This shapefile contains center-beam depths for approximately 5727 trackline kilometers of Simrad EM122 multibeam-bathymetry data collected in the Bering Sea during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1111 aboard the R/V Marcus G. Langseth. The depth values were extracted from gridded data which were reduced for position, elevation, orientation, water-column sound-speed, and refraction effects. |
Info |
Multibeam bathymetry data collected in 2015 near Cross Sound, southeast Alaska, during field activity 2015-629-FA
These metadata describe bathymetry collected during a 2015 multibeam echosounder survey near Cross Sound, southeast Alaska. Data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game (ADFG) aboard the ADFG R/V Solstice during USGS field activity 2015-629-FA. The bathymetry data are published here as a 32-bit GeoTIFF image. |
Info |
Multibeam bathymetry data collected in 2016 for Lake Crescent in Olympic National Park, Washington
In February 2016 the U.S. Geological Survey, Pacific Coastal and Marine Science Center in cooperation with North Carolina State University and the National Park Service collected multibeam bathymetry and acoustic-backscatter data in Lake Crescent located in Olympic National Park, Washington. Data were collected using a Reson 7111 multibeam echosounder pole-mounted to the 36-foot USGS R/V Parke Snavely. These metadata describe the multibeam bathymetry raster data file that is included in "LakeCrescent_bathy ... |
Info |
Multibeam Bathymetry Data Collected in 2016 from Grand Bay Alabama/Mississippi: Adjusted processed elevation point data (x,y,z)
A reconnaissance multibeam bathymetry survey was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Grand Bay Alabama/Mississippi on May 12, 2016 as an assessment of the shallow water capabilities of the Teledyne Reson SeaBat T50-P multibeam echosounder, and as an attempt to map the eroding marsh edges at locations of interest around the bay. This dataset, Grand_Bay_2016_MBB_Adjusted_xyz.zip, includes the resulting processed elevation point data (x,y,z ... |
Info |
Multibeam Bathymetry Data Collected in 2016 from Grand Bay Alabama/Mississippi: Trackline navigation
A reconnaissance multibeam bathymetry survey was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Grand Bay Alabama/Mississippi on May 12, 2016 as an assessment of the shallow water capabilities of the Teledyne Reson SeaBat T50-P multibeam echosounder, and as an attempt to map the eroding marsh edges at locations of interest around the bay. This dataset, Grand_Bay_2016_MBB_Tracklines.zip, includes the trackline vector file derived from the ... |
Info |
Multibeam Bathymetry Data Collected in 2016 from Grand Bay Alabama/Mississippi: Unadjusted processed elevation point data (x,y,z)
A reconnaissance multibeam bathymetry survey was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Grand Bay Alabama/Mississippi (AL/MS) on May 12, 2016 as an assessment of the shallow water capabilities of the Teledyne Reson SeaBat T50-P multibeam echosounder, and as an attempt to map the eroding marsh edges at locations of interest around the bay. This dataset, Grand_Bay_2016_MBB_Unadjusted_xyz.zip, includes the resulting [unadjusted] processed ... |
Info |
Multibeam bathymetry data collected in 2016 in Catalina Basin, southern California
This part of the data release includes 10-m resolution multibeam-bathymetry data collected in 2016 in Catalina Basin, southern California. The data are presented as a TIFF image. In February 2016 the University of Washington in cooperation with the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC) collected multibeam bathymetry and acoustic backscatter data in Catalina Basin aboard the University of Washington's Research Vessel Thomas G. Thompson. Data were collected using a ... |
Info |
Multibeam bathymetry data collected in 2017 and 2018 of Noyes Submarine Canyon and vicinity, southeast Alaska
These metadata describe bathymetry data collected during 2017 and 2018 multibeam echosounder surveys of Noyes Submarine Canyon and vicinity, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. |
Info |
Multibeam Bathymetry Data Collected in 2018 from Grand Bay and Point Aux Chenes Bay Alabama/Mississippi: Processed elevation point data (x,y,z)
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Grand Bay Alabama/Mississippi (AL/MS) October 22-23, 2018. This dataset, Grand_Bay_2018_MBB_xyz.zip, includes the processed point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. |
Info |
Multibeam Bathymetry Data Collected in 2018 Offshore of Cedar Key, Florida
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) offshore of Cedar Key, Florida (FL) during two legs, November 27-30, and December 10-13, 2018. This dataset, Cedar_Key_MBB_2018_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. |
Info |
Multibeam Bathymetry Data Collected in 2019 from Grand Bay and Point Aux Chenes Bay Alabama/Mississippi: Processed Elevation Point Data (x,y,z)
An Ellipsoidally Referenced Survey (ERS) using a Teledyne Reson SeaBat T50-P multibeam echosounder was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Grand Bay Alabama/Mississippi (AL/MS) May 7-10, 2019. This dataset, Grand_Bay_2019_MBES_xyz.zip, includes the processed point data (x,y,z), as derived from a 1-meter (m) bathymetric grid from two separate sensor configurations, which were acquired independently. One configuration utilized a tilted ... |
Info |
Multibeam Bathymetry Data Collected in December 2017, February and March 2018 at Looe Key, the Florida Keys
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) at Looe Key, the Florida Keys, during three separate survey legs: December 14-16, 2017, February 2-9, 2018 and March 9-11, 2018. This dataset, Looe_Key_2017_2018_MBB_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric ... |
Info |
Multibeam bathymetry data collected in four surveys offshore of south-central California in support of the Bureau of Ocean Energy Management Cal DIG I offshore alternative energy project
Multibeam acoustic-bathymetry data were collected offshore of Morro Bay, California, from 2016 to 2019. The data were collected during five separate multi-agency surveys for the U.S. Geological Survey (USGS)/Bureau of Ocean Energy Management (BOEM) California Deepwater Investigations and Groundtruthing I (Cal DIG I) project, under a collaboration with the National Oceanic and Atmospheric Administration (NOAA), using Simrad 700 series hull-mounted multibeam echosounders. Data in 2017 and 2018 were acquired ... |
Info |
Multibeam Bathymetry Data Collected in March 2018 at Crocker Reef, the Florida Keys
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) at Crocker Reef, the Florida Keys March 8-15, 2018. This dataset, Crocker_2018_MBB_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. |
Info |
Multibeam Bathymetry Data Collected in October and December 2017 at Crocker Reef, the Florida Keys
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) at Crocker Reef, the Florida Keys October 10-28, and December 5-8, 2017. This dataset, Crocker_2017_MBB_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. |
Info |
Multibeam bathymetry data of USGS field activity 2016-666-FA collected in the Santa Barbara Basin in September and October of 2016
These metadata describe bathymetry data collected during an October 2016 multibeam-echosounder survey of the northern portion of the Santa Barbara Channel, California. Data were collected and processed by the the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-666-FA. The bathymetry data are provided as a GeoTIFF image. |
Info |
Multibeam echo sounder - GeoTIFF grids for processed Reson 7160 seafloor bathymetry data collected during USGS field activities 2017-001-FA and 2017-002-FA.
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and ... |
Info |
Multibeam echo sounder - GeoTIFF images for processed Reson 7160 seafloor backscatter data collected during USGS field activities 2017-001-FA and 2017-002-FA.
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and ... |
Info |
Multibeam echo sounder - navigation tracklines for Reson 7160 data collected during USGS field activities 2017-001-FA and 2017-002-FA.
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and ... |
Info |
Multibeam Echosounder, Reson T-20P bathymetry overview (10-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Multibeam Echosounder, Reson T-20P deep site backscatter (4-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (8-bit GeoTIFF, UTM Zone 16N, NAD 83)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Multibeam Echosounder, Reson T-20P deep site bathymetry (4-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Multibeam Echosounder, Reson T-20P MC20 site backscatter (2-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (8-bit GeoTIFF, UTM Zone 16N, NAD 83)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Multibeam Echosounder, Reson T-20P MC20 site bathymetry (2-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Multibeam Echosounder, Reson T-20P Southwest Pass site backscatter (4-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (8-bit GeoTIFF, UTM Zone 16N, NAD 83)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Multibeam Echosounder, Reson T-20P Southwest Pass site bathymetry (8-m), USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (32-bit GeoTIFF, UTM Zone 16N, NAD 83, NAVD 88 Vertical Datum)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Multibeam echo sounder, Reson T-20P tracklines collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA (Esri polyline shapefile, GCS WGS 84)
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg ... |
Info |
Multibeam Echosounder, Reson T-20P tracklines, collected within Lake Powell UT-AZ during USGS Field Activity 2017-049-FA (Esri polyline shapefile, GCS WGS 84)
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the ... |
Info |
Multibeam Echosounder, Reson T-20P tracklines, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (Esri polyline shapefile, GCS WGS 84)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Multibeam sonar tracklines collected during USGS field activity 2021-004-FA, using a dual-head Teledyne SeaBat T20-P multibeam echo sounder (Esri polyline shapefile, GCS WGS 84)
The U.S. Geological Survey (USGS) Woods Hole Coastal and Marine Science Center (WHCMSC) completed a bathymetric and shallow seismic-reflection survey during the period of June 9, 2021 to June 24, 2021 in water depths from 2 m to 30 m for a portion of the outer Cape Cod nearshore environment between Marconi and Nauset Beaches. The products from this survey will help to support white shark research on their shallow-water behavior in the dynamic nearshore environment at Cape Cod National Seashore (CACO). CACO ... |
Info |
Multibeam sonar tracklines collected in Cape Cod Bay, Massachusetts with a Reson T-20P during USGS Field Activity 2019-002-FA (Esri polyline shapefile, GCS WGS 84)
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterize the surface and shallow subsurface geologic framework. Geophysical data collected include swath bathymetry, ... |
Info |
Multibeam trackline data collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2021-005-FA using a dual-head Reson T20-P multibeam echosounder (Esri polyline shapefile, Geographic, WGS 84)
In August 2021, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, collected high-resolution geophysical data, sediment samples, and bottom imagery to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of ... |
Info |
Multichannel boomer data of USGS field activity 2017-612-FA collected in Lake Washington, Washington in February of 2017
High-resolution multichannel boomer seismic-reflection data were collected by the U.S. Geological Survey and the University of Washington in February of 2017 east of Seattle in Lake Washington, Washington. Data were collected aboard University of Washington’s R/V Clifford A. Barnes during USGS field activity 2017-612-FA using an Applied Acoustics triple plate S-Boom sound source and recorded on a 24 channel Geometrics digital hydrophone streamer. Sub-bottom acoustic penetration spans several hundreds of ... |
Info |
Multichannel minisparker and boomer seismic-reflection data from USGS field activity G-01-13-GA collected in Port Valdez, Alaska, in September 2013
Multichannel minisparker and boomer seismic-reflection data were collected by the U.S. Geological Survey in September of 2013 in Port Valdez, Alaska. Data were collected aboard the USGS R/V Alaskan Gyre during field activity G-01-13-GA, using a 500-Joule SIG 2-mille minisparker or an Applied Acoustics triple plated S-Boomer sound source and a 24-channel Goemetrics hydrophone streamer. Sub-bottom acoustic penetration spans several hundreds of meters and is variable by location. |
Info |
Multichannel minisparker data of USGS field activity 2017-612-FA collected in Puget Sound, Washington in February of 2017
High-resolution multichannel minisparker seismic-reflection data were collected by the U.S. Geological Survey and the University of Washington in February of 2017 west of Seattle in Puget Sound and in Lake Washington, Washington. Data were collected aboard University of Washington’s R/V Clifford A. Barnes during USGS field activity 2017-612-FA using a 500 Joule SIG 2-mille minisparker sound source and recorded on a 48 channel Geometrics digital hydrophone streamer. Sub-bottom acoustic penetration spans ... |
Info |
Multichannel minisparker seismic reflection data collected during USGS field activity 2021-614-FA along the Palos Verdes Fault Zone
High-resolution multichannel minisparker seismic reflection (MCS) data were collected by the U.S. Geological Survey in May of 2021 along the Palos Verdes Fault Zone in San Pedro Bay and San Pedro Channel. MCS data were acquired coincident with chirp sub-bottom data. |
Info |
Multichannel minisparker seismic-reflection data collected offshore Glacier Bay National Park during USGS field activity 2015-629-FA
Multichannel seismic reflection data were collected by the U.S. Geological Survey in May of 2015 outside of Palma Bay, Alaska. Seismic data were acquired coincidentally with high resolution bathymetry (Dartnell and others, 2022). |
Info |
Multichannel minisparker seismic-reflection data collected offshore Northern California during USGS field activity 2019-643-FA
High-resolution multichannel seismic (MCS) data were collected by the U.S. Geological Survey in 2019 offshore Humboldt County of northern California to expand data coverage along the southern Cascadia Margin. |
Info |
Multichannel minisparker seismic-reflection data of field activity 2015-617-FA; Monterey Bay, offshore central California from 2015-02-23 to 2015-03-06
This data release contains approximately 190 line-kilometers of processed, high-resolution multichannel seismic-reflection (MCS) profiles that were collected aboard the R/V Snavely in 2015 on U.S. Geological Survey cruise 2015-617-FA in Monterey Bay, offshore central California. The majority of MCS profiles collected are oriented north-south across the Monterey Canyon head to address marine geohazards and submarine canyon evolution. The MCS profiles were acquired using a 700-Joule minisparker source and a ... |
Info |
Multichannel minisparker seismic-reflection data of USGS field activity 2016-616-FA collected in the Catalina Basin offshore southern California in February 2016
This data release contains 25 multichannel minisparker seismic reflection (MCS) profiles that were collected in February of 2016 from the Catalina Basin offshore southern California by the U.S. Geological Survey Pacific and Coastal Marine Science Center in cooperation with the University of Washington. Data were collected aboard the University of Washington’s R/V Thomas G. Thompson on USGS cruise 2016-616-FA. MCS profiles were collected to image the Catalina and San Clemente fault systems as well as the ... |
Info |
Multichannel minisparker seismic-reflection data of USGS field activity 2016-666-FA collected in the Santa Barbara Basin in September and October of 2016
High-resolution multichannel minkisparker seismic-reflection (MCS) profiles were collected by the U.S. Geological Survey in September and October of 2016 from the northern portion of the Santa Barbara Basin offshore southern California. Data were collected aboard the USGS R/V Parke Snavely and NOAA R/V Shearwater during field activity 2016-666-FA using a SIG 2-mille minisparker and recorded using 48- or 24-channel Geometrics digital hydrophone streamer. Sub-bottom acoustic penetration spans several hundreds ... |
Info |
Multichannel minisparker seismic-reflection data of USGS field activity 2018-645-FA collected in the Santa Barbara Channel in July of 2018
High-resolution multichannel minisparker seismic-reflection data were collected by the U.S. Geological Survey in July of 2018 between Point Conception and Coal Oil Point in the Santa Barbara Channel, California. Data were collected aboard the USGS R/V Parke Snavely during field activity 2018-645-FA, using SIG 2-mille minisparker and recorded using an 8-channel Geometrics digital hydrophone streamer. Sub-bottom acoustic penetration spans several hundreds of meters and is variable by location. |
Info |
Multichannel seismic-reflection and navigation data collected offshore central California, during field activity 2019-651-FA
Multichannel seismic-reflection data and associated navigation files were collected offshore central California in the vicinity of Morro Bay. These data were collected aboard the M/V Bold Horizon in October 2019 for use in regional hazard assessments relating to the Hosgri Fault. |
Info |
Multichannel seismic-reflection and navigation data collected using an Applied Acoustics S-Boom and a Geometrics GeoEel digital 32-channel streamer during USGS field activity 2019-002-FA (point and polyline shapefiles, CSV text, PNG Images, and SEG-Y data, GCS WGS 84).
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterize the surface and shallow subsurface geologic framework. Geophysical data collected include swath bathymetry, ... |
Info |
Multichannel Seismic-Reflection and Navigation Data Collected Using Sercel GI Guns and Geometrics GeoEel Digital Streamers During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA
In summer 2018, the U.S. Geological Survey partnered with the U.S Department of Energy and the Bureau of Ocean Energy Management to conduct the Mid-Atlantic Resources Imaging Experiment (MATRIX) as part of the U.S. Geological Survey Gas Hydrates Project. The field program objectives were to acquire high-resolution 2-dimensional multichannel seismic-reflection and split-beam echosounder data along the U.S Atlantic margin between North Carolina and New Jersey to determine the distribution of methane gas ... |
Info |
Multichannel seismic-reflection and navigation data collected using SIG ELC1200 and Applied Acoustics Delta sparkers and Geometrics GeoEel digital streamers during USGS field activity 2020-014-FA, Southwest of Puerto Rico, March 2020
In March 2020, the U.S. Geological Survey and the University of Puerto Rico Mayagüez (UPRM) Department of Marine Sciences conducted a marine seismic-reflection experiment focused on observing geophysical evidence of submarine faulting and mass wasting related to the southwestern Puerto Rico seismic sequence of 2019–20. The seismic sequence culminated with a magnitude 6.4 earthquake centered beneath Guayanilla Canyon on January 7, 2020 and caused shoreline subsidence, rockfalls, and considerable damage to ... |
Info |
Multichannel seismic-reflection data acquired off the coast of southern California - Part A 1997, 1998, 1999, and 2000
Multichannel seismic-reflection (MCS) data were collected in the California Continental Borderland as part of southern California Earthquake Hazards Task. Five data acquisition cruises conducted over a six-year span collected MCS data from offshore Santa Barbara, California south to the Exclusive Economic Zone boundary with Mexico. The primary mission was to map late Quaternary deformation as well as identify and characterize fault zones that have potential to impact high population areas of southern ... |
Info |
Multichannel sparker and minisparker seismic-reflection data of USGS field activity 2014-645-FA collected in the outer Santa Barbara Channel, California, between 2014-11-12 to 2014-11-25 (ver. 2.0, March 2020)
This data release contains 35 multichannel sparker and 24 multichannel minisparker seismic reflection (MCS) profiles that were collected in November of 2014 from the Catalina and Santa Cruz Basins offshore southern California by the U.S. Geological Survey Pacific and Coastal Marine Science Center. Data were collected aboard the University of California’s R/V Robert Gordon Sproul on USGS cruise 2014-645-FA. MCS profiles were collected to assess earthquake and submarine landslide hazards offshore southern ... |
Info |
Multichannel sparker seismic reflection data collected during USGS field activity 2018-658-FA between Cape Blanco and Cape Mendocino in October of 2018
This data release contains processed high-resolution multichannel sparker seismic-reflection (MCS) data that were collected aboard Humboldt State University’s R/V Coral Sea in October of 2018 on U.S. Geological Survey cruise 2018-658-FA on the shelf and slope between Cape Blanco, Oregon, and Cape Mendocino, California. MCS data were collected to characterize quaternary deformation and sediment dynamics along the southern Cascadia margin. MCS data were collected coincidentally with chirp sub-bottom data. |
Info |
Multichannel sparker seismic reflection data collected offshore southeast Alaska during USGS Field Activity 2017-621-FA
High-resolution multichannel seismic reflection data were collected by the U.S. Geological Survey in July and August 2017 offshore southeast Alaska to expand data coverage along the Queen Charlotte Fault system. |
Info |
Multichannel sparker seismic reflection data of USGS field activity 2018-658-FA collected between Cape Blanco and Cape Mendocino from 2018-10-04 to 2018-10-18
This data release contains processed high-resolution multichannel sparker seismic-reflection (MCS) data that were collected aboard Humboldt State University’s R/V Coral Sea in October of 2018 on U.S. Geological Survey cruise 2018-658-FA on the shelf and slope between Cape Blanco, Oregon, and Cape Mendocino, California. MCS data were collected to characterize quaternary deformation and sediment dynamics along the southern Cascadia margin. |
Info |
Multi-sensor core logger (MSCL) data of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the ... |
Info |
Multi-species Coral Sr/Ca Based Sea-Surface Temperature (SST) Reconstruction Data Using Orbicella faveolata and Siderastrea siderea from Dry Tortugas National Park, FL
This data release includes new sub annual and mean annual Sr/Ca records from two species of massive coral, Orbicella faveolata (coral B3) and Siderastrea siderea (coral CG2), from the Dry Tortugas National Park, FL (DTNP). We combine these new records with published Sr/Ca data from three additional S. siderea coral (DeLong et al., 2014) to generate a 278-year long multi-species stacked Sr/Ca-SST record from DRTO. |
Info |
Nahant_NH_sedcover: Sediment Texture Units of the Sea Floor from Nahant to Salisbury, Massachusetts (polygon shapefile, Geographic, WGS84)
These data are qualitatively derived interpretive polygon shapefiles defining sediment type and distribution, and physiographic zones of the sea floor from Nahant to Salisbury, Massachusetts. Many of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Army Corps of Engineers (USACE). ... |
Info |
Nahant to Gloucester, 1m resolution Sidescan Sonar Mosaic (SS_MOS1M.TIF)
These data are high-resolution acoustic backscatter measurements of the seafloor offshore of Massachusetts, from Nahant to Gloucester. Approximately 127 km2 of the inner shelf were mapped in the nearshore region between the 10m and 40-m isobath. |
Info |
Nahant to Gloucester, Massachusets Depth to Bedrock (bedrock_depth)
These data are high-resolution seismic reflection profile data of the seafloor offshore of Massachusetts, from Nahant to Gloucester. Approximately 1,175 kms of seismic reflection profile data were collected using a Knudsen 320b chirp system Data were processed using SIOSEIS (Scripps Institute of Oceanography) and Seismic Unix (Colorado School of Mines) to produce segy files and jpg images of the profiles. Data were then imported into Landmark SeisWorks, an interactive computer system where horizons were ... |
Info |
Nahant to Gloucester, Massachusetts Bathymetric Slope in degrees (slopedeg_fm3)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program. Woods Hole Science Center. Project data were collected during two separate surveys in the Fall of 2003 (RAFA03007) and the Spring of 2004 (RAFA04002). Bathymetric data were collected with a SEA/Submetrix 2000 series interferometric 234 kHz sonar. The sonar was pole-mounted on the R/V Rafael. Survey line spacing was 100m |
Info |
Nahant to Gloucester, Massachusetts Maximum Likelihood Bottom Classification (mlclass5)
These data are high-resolution maximum likelihood classification of the seafloor offshore of Massachusetts, from Nahant to Gloucester. Approximately 127 km² of the inner shelf were mapped in the nearshore region between the 10m and 40-m isobath. |
Info |
Nahant to Gloucester, Massachusetts Swath Bathymetry of the South Essex Survey Area (se_5mbath)
These data are high-resolution bathymetric soundings of the seafloor offshore of Massachusetts, from Nahant to Gloucester. Approximately 127 km² of the inner shelf were mapped in the nearshore region between the 10m and 40-m isobath. |
Info |
NANA1M.TIF - Anacapa Island Reserve sidescan sonar backscatter image in nearshore Benthic Habitat mapping Project S. California map Series. (UTM 10N, NAD83)
The sidescan sonar image of the nearshore seafloor (0 to 100 m water depths) of the Big Sycamore reserve area was mosaicked from data collected in 1998. A Klein 2000 sidescan system was used for geophysical surveying. A Triton Elics Isis brand side-scan data recording system was used on the cruise. The 1998 survey was navigated with a Leica Differential Global Positioning System (DGPS) which provided a ship position with accuracy of 1-5 m in DGPS mode. At times during the cruise differential signal was ... |
Info |
NANP1M.TIF - North Anacapa Passage sidescan sonar backscatter image in nearshore Benthic Habitat mapping Project S. California map Series. (UTM 10N, NAD83)
The sidescan sonar image of the nearshore seafloor (0 to 100 m water depths) of the North Anacapa Passage area was mosaicked from data collected in 2000. A Klein 2000 sidescan system was used for geophysical surveying. A Triton Elics Isis brand side-scan data recording system was used on the cruise. The 1998 survey was navigated with a Leica Differential Global Positioning System (DGPS) which provided a ship position with accuracy of 1-5 m in DGPS mode. At times during the cruise differential signal was ... |
Info |
NANPHAB -- Benthic Habitat polygons for North Anacapa Passage (UTM 10N, NAD83)
Benthic habitat polygon coverages have been created for marine reserve locations surrounding the Santa Barbara Basin. Diver, ROV and submersible video transects, bathymetry data, sedimentary samples, and sonar mapping, have been integrated to describe the geological, biological, and oceanographic aspects of habitat. Anacapa Reserve, is part of the Marine Ecological Reserves Research Program (MERRP). The U.S. Geological Survey (USGS), in a cooperative project with Sea Grant-MERRP and investigators at ... |
Info |
National Assessment of Hurricane-Induced Coastal Erosion Hazards: 2021 Update
This dataset contains information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-kilometer (km) section of the United States [Gulf of Mexico and Atlantic] coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due ... |
Info |
National Ocean Service (NOS) Cartographic Codes for Bottom Character in the Gulf of Maine region (NOSGOM shapefile)
These data were collected by the National Ocean Service (NOS, formerly the U.S. Coast and Geodetic Survey) for the purpose of charting the coastal waters and navigable waterways of the United States. Data collected prior to 1965 were digitized from the final survey plots. All other data were digitized in the field during the surveys. These data were supplied by the National Geophysical Data Center (NGDC). This data set contains fields that are only a subset of those fields available in the NOS ... |
Info |
Navigation and Bathymetry Points of Ship Position During Continuous Resistivity Profile Data Collection in the Potomac River/Chesapeake Bay on Sept. 6, 2006 on USGS Cruise 06018 (RESGPSPNTS_JD249.SHP)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM03
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11CEV01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, ... |
Info |
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11CEV02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17 ... |
Info |
Navigation at 10 second interval of swath bathymetry collected by the U.S. Geological Survey off the southern shore of Martha's Vineyard, 2007 (ESRI POINT SHAPEFILE, BATHY_10SEC.SHP)
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Navigation, Bathymetry and Temperature Point at the Ship Position During Continuous Resistivity Profile Data Collection in the Potomac River/Chesapeake Bay on Sept. 8, 2006 on USGS Cruise 06018 (RESGPSPNTS_JD251.SHP)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Navigation, Bathymetry and Temperature Points at the Ship Position During Continuous Resistivity Profile Data Collection in the Potomac River/Chesapeake Bay on Sept. 7, 2006 on USGS Cruise 06018 (RESGPSPNTS_JD250.SHP)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Navigation data collected by the U.S. Geological Survey on Stellwagen Bank during six surveys aboard the R/V Auk, May 2016 to April 2019
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Navigation data collected by the U.S. Geological Survey on Stellwagen Bank during three surveys aboard the R/V Auk, September 2020 to August 2021
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2013-044-FA, aboard the R/V Auk, November 5, 15, and 21, 2013
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-015-FA, aboard the R/V Auk, May 22-23 and 29-30, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-055-FA, aboard the R/V Auk, September 23 and 24, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-066-FA, aboard the R/V Auk, November 10, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-070-FA-FA, aboard the R/V Auk, December 12, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2015-017-FA, aboard the R/V Auk, May 18-19, 29, and June 3, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2015-074-FA, aboard the R/V Auk, December 1, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2016-004-FA, aboard the R/V Auk, January 28, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2016-038-FA, aboard the R/V Auk, Sept. 16 and 19, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-009-FA, aboard the R/V Auk, Jan 30, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-030-FA, aboard the R/V Auk, May 18-23, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-044-FA, aboard the R/V Auk, September 12-14, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data collected on Stellwagen Bank during U.S. Geological Survey field activity 2019-008-FA, aboard the R/V Auk, July 30, 31, and August 1, 2019
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Navigation data for marine geophysical data collected between Point Sal and Refugio State Beach (southern California) during field activity 2014-632-FA from 07/17/2014 to 08/02/2014
This dataset includes navigation data for marine geophysical data, collected by the U.S. Geological Survey (USGS) in 2014, between Point Sal and Refugio State Beach in southern California. |
Info |
Navigation data from Research Vessels Weatherbird II and Bellows collected within West Florida Shelf during July and August 2013
The United States Geological Survey (USGS) is studying the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises on the West Florida Shelf and northern Gulf of Mexico regions aboard the research vessel (R/V) Weatherbird II or Bellows, ships of opportunity led by Dr. Kendra Daly, of the University of South Florida (USF) in July and August, ... |
Info |
Navigation data recovered from 9 track tape (1988-008-FA-LN-001-01)
Navigation data recovered from 9 track tape |
Info |
Navigation lines for R/V ASTERIAS 81-2 (AST81-2) (81_2NAVT)
This GIS layer contains the shiptrack navigation collected aboard the R/V ASTERIAS during a 1981 geophysical curise to Block Island Sound and easternmost Long Island Sound. |
Info |
Navigation Lines for R/V ASTERIAS 82-3 (AST82-3) (82_3NAVT)
This GIS layer contains the shiptrack navigation lines collected aboard the RV ASTERIAS during a 1982 geophysical cruise to eastern Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
Navigation Lines for R/V ASTERIAS 83-2 (AST83-2) (83_2NAVT)
This GIS layer contains the shiptrack navigation lines collected aboard the RV ASTERIAS during a 1983 geophysical cruise to east-central Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
Navigation Lines for R/V ASTERIAS 85-8 (AST85-8)(85_8NAVT)
This GIS layer contains the shiptrack navigation lines collected aboard the RV ASTERIAS during a 1985 geophysical cruise to western Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
Navigation Lines for R/V ASTERIAS 90-1 (AST90-1) (90_1NAVT)
This GIS layer contains the shiptrack navigation lines collected aboard the RV ASTERIAS during a 1990 geophysical cruise to Fishers Island Sound and eastern Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
Navigation Lines for R/V UCONN 84-1 (UCONN84-1) (84_1NAVT)
This GIS layer contains the shiptrack navigation lines collected aboard the RV UCONN during a 1984 geophysical cruise to west-central Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
Navigation Points for CERC Cores (CERCNAV)
This GIS layer contains the station navigation for the U.S. Army Corps of Engineers Coastal Engineering Research Center (CERC) cores collected in Long Island Sound. These cores were originally collected in 1967 as part of the Inner Continental Shelf Sediment and Structure (ICONS) program to appraise sand resources. |
Info |
Navigation Points for R/V ASTERIAS 83-2 (AST83-2) (83_2NAVP)
This GIS layer contains the shiptrack navigation points collected aboard the RV ASTERIAS during a 1983 geophysical cruise to east-central Long Island Sound. A boomer seismic system was used to collect the subbottom data. |
Info |
Navigation tracklines Collected During U.S. Geological Survey Cruise 03032 (National Oceanic and Atmospheric Administration Cruise RB0305) 28 August to 4 September, 2003 (nav2003aug.shp, polyline shapefile, geographic, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Navigation tracklines from a 2015 multibeam survey near Cross Sound, southeast Alaska, during field activity 2015-629-FA
These metadata describe navigation tracklines from a 2015 multibeam echosounder survey near Cross Sound, southeast Alaska. Data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game (ADFG) aboard the ADFG R/V Solstice during USGS field activity 2015-629-FA. The trackline data are provided as a GIS shapefile. |
Info |
Navigation Tracklines of Atwater Valley Multichannel Seismics Survey Collected During USGS Gyre Cruise G1-03-GM (03001) - G1CDP_NAV_AV_GEO
This point shapefile contains navigation of the shot points for the multichannel seismic survey that was conducted in the Atwater Valley area of the Gulf of Mexico during USGS cruise G1-03-GM aboard the R/V Gyre in the Gulf of Mexico in May, 2003. The purpose of this cruise was to collect multichannel seismic data in support of USGS and Department of Energy gas hydrate studies. About 253 km of data were collected along 35 short lines in and around lease block Atwater Valley 14 on the floor of the ... |
Info |
Navigation Tracklines of the Puerto Rico Trench Cruise 02051 (NOAA 0208) September 24 to September 30, 2002 (nav2002)
The Puerto Rico trench is a tectonic plate boundary where the North American plate slides by and descends under the Caribbean plate. Although much of the trench lies within the U.S. EEZ, surprisingly few surveys have been conducted there during the past 25 years. This data set shows the tracklines (navigation path) of the U.S. Geological Survey science cruise that was conducted in the year 2002. |
Info |
Navigation Tracklines of the Puerto Rico Trench Cruise 03008 (NOAA 0303) February 18 to March 7, 2003 (nav2003)
The Puerto Rico trench is a tectonic plate boundary where the North American plate slides by and descends under the Caribbean plate. Although much of the trench lies within the U.S. EEZ, surprisingly few surveys have been conducted there during the past 25 years. This data set shows the tracklines (navigation path) of the U.S. Geological Survey science cruise that was conducted in the year 2003. |
Info |
Navigation Tracklines of the Puerto Rico Trench U.S. Geological Survey Cruise 02051 (National Oceanic and Atmospheric Administration 0208) September 24 to September 30, 2002 (nav2002.shp, polyline shapefile, geographic, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Navigation Tracklines of the Puerto Rico Trench U.S. Geological Survey Cruise 03008 (National Oceanic and Atmospheric Administration 0303) February 18 to March 7, 2003 (nav2003.shp, polyline shapefile, geographic, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Nearshore bathymetry data from the Elwha River delta, Washington, August 2019
This portion of the USGS data release presents bathymetric data collected during surveys performed on the Elwha River delta, Washington in 2019 (USGS Field Activity Number 2019-633-FA). Bathymetric data were collected using personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. |
Info |
Nearshore bathymetry data from the Elwha River delta, Washington, August 2022
This portion of the USGS data release presents bathymetric data collected during surveys performed on the Elwha River delta, Washington in 2022 (USGS Field Activity Number 2022-638-FA). Bathymetric data were collected using personal watercraft (PWCs) and a kayak equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. |
Info |
Nearshore bathymetry data from the Elwha River delta, Washington, July 2018, collected from kayak
This part of the data release presents bathymetry data from the Elwha River delta collected in July 2018 (USGS Field Activity Number 2018-648-FA) using a kayak. The kayak was equipped with a single-beam echosounder and a survey-grade global navigation satellite system (GNSS) receiver. |
Info |
Nearshore bathymetry data from the Elwha River delta, Washington, July 2018, collected from personal watercraft
This portion of the USGS data release presents bathymetric data collected during surveys performed on the Elwha River delta, Washington in 2018 (USGS Field Activity Number 2018-648-FA). Bathymetric data were collected using personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. |
Info |
Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2019
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon in 2019 (USGS Field Activity Number 2019-632-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of an Odom Echotrac CV-100 single-beam echosounder and 200 kHz transducer with a 9-degree beam angle. Raw ... |
Info |
Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2020
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2020 (USGS Field Activity Number 2020-622-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of an Odom Echotrac CV-100 single-beam echosounder and 200 kHz transducer with a 9-degree beam angle. Raw ... |
Info |
Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2021
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2021 (USGS Field Activity Number 2021-632-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of an Odom Echotrac CV-100 single-beam echosounder and 200 kHz transducer with a 9-degree beam angle. Raw ... |
Info |
Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2022
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell and mouth of the Columbia River, Washington and Oregon, in 2022 (USGS Field Activity Number 2022-641-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of either an Odom Echotrac CV-100 or CEE Hydrosystems Ceescope single-beam ... |
Info |
Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2023
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell and mouth of the Columbia River, Washington and Oregon, in 2023 (USGS Field Activity Number 2023-644-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of either an Odom Echotrac CV-100 or CEE Hydrosystems Ceescope single-beam ... |
Info |
Nearshore groundwater seepage and geochemical data measured in 2015 at Guinea Creek, Rehoboth Bay, Delaware
Assessment of biogeochemical processes and transformations at the aquifer-estuary interface and measurement of the chemical flux from submarine groundwater discharge (SGD) zones to coastal water bodies are critical for evaluating ecosystem service, geochemical budgets, and eutrophication status. The U.S. Geological Survey and the University of Delaware measured rates of SGD and concentrations of dissolved constituents, including nitrogen species, from recirculating ultrasonic and manual seepage meters, and ... |
Info |
Nearshore Multibeam Bathymetry Data: Madeira Beach, Florida, February 2017
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) nearshore Madeira Beach, Florida February 13-17, 2017. This dataset, Madeira_Beach_2017_MBES_1m_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid. |
Info |
Nearshore parametric wave setup future projections (2020-2050) for the North and South Carolina coasts
This dataset presents alongshore wave setup timeseries for the North and South Carolina coastlines. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to cross-shore transects spaced at ... |
Info |
Nearshore parametric wave setup future projections (2020-2050) for the U.S. Atlantic coast
This dataset presents alongshore wave setup timeseries for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to ... |
Info |
Nearshore parametric wave setup hindcast data (1979-2019) for the North and South Carolina coasts
This dataset presents alongshore wave setup timeseries for the North and South Carolina coastlines. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to cross-shore transects spaced at ... |
Info |
Nearshore parametric wave setup hindcast data (1979-2019) for the U.S. Atlantic coast
This dataset presents alongshore wave setup timeseries for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to ... |
Info |
Nearshore Single-Beam Bathymetry Data: Madeira Beach, Florida, February 2017
In February 2017, the United States Geological Survey Saint Petersburg Coastal and Marine Science Center (USGS SPCMSC) conducted multibeam and single-beam bathymetric surveys of the nearshore waters off Madeira Beach, Florida. These data were collected as part of a regional study designed to better understand coastal processes on barrier islands and sandy beaches. Results from this study will be incorporated with observations from other regional studies in order to validate operational water level and ... |
Info |
Nearshore total water level (TWL) proxies (2018-2100) for Northern California
Nearshore proxies for total water level (TWL) developed for Coastal Storm Model (CoSMoS) work in Northern California 3.2 are presented. Deterministic dynamical modeling of future climate conditions and associated hazards, such as flooding, can be computationally-expensive if century-long time-series of waves, sea level variations, and overland flow patterns are simulated. To focus such modeling on storm events of interest, local impacts over long time periods and large geographical areas are estimated. ... |
Info |
Nearshore water level, tide, and non-tidal residual future projections (2016-2050) for the North and South Carolina coasts
A dataset of modeled nearshore water levels (WLs) was developed for the North and South Carolina coastlines. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields. Water level outputs were extracted from the global grid at approximately 20 km resolution along the southeast Atlantic coastline. These data were then statistically downscaled using a ... |
Info |
Nearshore water level, tide, and non-tidal residual future projections (2016-2050) for the U.S. Atlantic coast
A dataset of modeled nearshore water levels (WLs) was developed for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields. Water level outputs were extracted from the global grid at approximately 20 km resolution along the Atlantic coastline. These data were then ... |
Info |
Nearshore water level, tide, and non-tidal residual hindcasts (1979-2016) for the North and South Carolina coasts
A dataset of modeled nearshore water levels (WLs) was developed for the North and South Carolina coastlines. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields -. Water level outputs were extracted from the global grid at approximately 20 km resolution along the coastlines. These data were then statistically downscaled using a signal-specific ... |
Info |
Nearshore water level, tide, and non-tidal residual hindcasts (1979-2016) for the U.S. Atlantic coast
A dataset of modeled nearshore water levels (WLs) was developed for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Water levels, defined for this dataset as the linear sum of tides and non-tidal residuals (NTR), were produced by Muis and others (2016) using a global tide and surge model (GTSM) forced by global atmospheric fields -. Water level outputs were extracted from the global grid at approximately 20 km resolution along the coastlines. These data were then statistically ... |
Info |
Near-surface measurements of Conductivity-Temperature-Depth (CTD) data, Makua, Kauai, USA, August 2016
Transects of near-surface seawater properties were collected over the fringing reef off Makua, HI, on the north shore of Kauai using a Conductivity-Temperature-Depth (CTD) logger, either hand-carried or mounted to a kayak. The instrument returns temperature, salinity as a function of depth, and latitude/longitude. |
Info |
Neritic sediments of the Merrimack Embayment (ANAN71 shapefile)
The coastal dunes, beaches, and inner neritic zone of the Merrimack Embayment constitute a petrologic province. In addition to heavy mineral analyses, grain size statistics were generated on most of the samples. Neritic and beach sediments can be differentiated using scatter plots of statistics, but statistical parameters are ineffective in differentiating between river and neritic sediments. |
Info |
NIBATHG - ArcInfo GRID format of the 2001 multibeam echo-sounder data collected in the Nisqually Delta, Puget Sound, Washington from Field Activity: R-1-01-WA
ArcInfo GRID format bathymetry data generated from the 2001 multibeam sonar survey the major deltas of southern Puget Sound, WA., including Nisqually, Puyallup, and Duwamish Deltas. This is meatadata for the Nisqually Delta multibeam bathymetry data. |
Info |
NODC Lithologic Descriptions (DEC41_GOM shapefile)
This is an original data file created by the Marine Geology and Geophysics group of NODC from 1970-1975, abstracted from published and unpublished material contributed to NODC in 1975, after which no updates were added. |
Info |
Normalized Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia- Fall 2014
Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ... |
Info |
Normalized Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia-Spring 2014
Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ... |
Info |
Northeast Monitoring Program Sediment Descriptions (REID82 shapefile)
The data in this set are part of the "Ocean Pulse" benthic studies that were conducted on the U.S. northeast shelf by the National Marine Fisheries Service. This data set represents only those data collected as part of this program during 1981-1982 and off New England. Those stations occupied in the New York Bight are not included. Although chemical analyses (organic carbon and total Kjeldahl nitrogen) were also conducted, only textural descriptions are included here. |
Info |
Northern California 3.2 projections of coastal cliff retreat due to 21st century sea-level
This dataset contains projections of coastal cliff retreat and associated uncertainty across Northern California for future scenarios of sea-level rise (SLR) to include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, and 500 centimeters (cm) of SLR by the year 2100 and cover coastline from the Golden Gate Bridge to the California-Oregon state border. Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical models and field observations ... |
Info |
Northern California cross-shore transects for CoSMoS 3.2
Cross-shore transects (CSTs) developed for Coastal Storm Model (CoSMoS) work in Northern California 3.2 are presented. 3,528 CSTs are numbered consecutively from 8067 at Golden Gate Bridge to 11,594 at the California/Oregon state border. Each of the profiles extend from the approximate -15 m isobath to at least 10 m above NAVD88 (truncated in cases where a lagoon or other waterway exists on the landward end of the profile), and are spaced approximately 100-250 m apart. |
Info |
nos_5mint: 5-meter bathymetry grid produced from 23 multibeam hydrographic surveys collected off the Delmarva Peninsula by the National Oceanic and Atmospheric Administration's National Ocean Service between 2006 and 2011 (Esri binary grid, UTM Zone 18N, WGS 84)
Between 2006 and 2011 Science Applications International Corporation (SAIC), under contract by the National Oceanic and Atmospheric Administration's (NOAA) National Ocean Service (NOS), collected twenty-three hydrographic surveys totaling over 4100 square-kilometers of Reson multibeam bathymetric and Klein sidescan-sonar data for the purposes of updating nautical charts. Data extended from the entrance of Delaware Bay south to Parramore Island in water depths from about 3 to 35 meters below mean lower low ... |
Info |
NOS_5m_INT_HS.tif: 5-meter hillshaded-relief image produced from 23 multibeam hydrographic surveys collected off the Delmarva Peninsula by the National Oceanic and Atmospheric Administration's National Ocean Service between 2006 and 2011 (GeoTIFF, UTM Zone 18N, WGS 84)
Between 2006 and 2011 Science Applications International Corporation (SAIC), under contract by the National Oceanic and Atmospheric Administration's (NOAA) National Ocean Service (NOS), collected twenty-three hydrographic surveys totaling over 4100 square-kilometers of Reson multibeam bathymetric and Klein sidescan-sonar data for the purposes of updating nautical charts. Data extended from the entrance of Delaware Bay south to Parramore Island in water depths from about 3 to 35 meters below mean lower low ... |
Info |
NOSBATC - bathymetric contour data for the Monterey Bay region from Point Ano Nuevo to Point Sur, California based on NOAA/NOS data (UTM)
This dataset contains bathymetric contours for the greater Monterey Bay area between Point Ano Nuevo to the north and Point Sur to the south. Contours are provided at 10-m intervals to a depth of 200 m and 100-m intervals to maximum depth. The data from which the contours were derived were hydrographic survey points published by NOAA NOS in 1998. This is one of a collection of digital files of a geographic information system of spatially referenced data related to the USGS Coastal and Marine Geology Program ... |
Info |
o100sc.m77t and o100sc.h77t: MGD77T data and header file for single-beam bathymetry for field activity O-1-00-SC in San Pedro Bay, Santa Monica, California from 04/09/2000 to 04/14/2000
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise O-1-00-SC. The cruise was conducted in San Pedro Bay, Santa Monica, California from April 9 to April 14, 2000. The chief scientists were Brian Edwards and Homa Lee from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to study pollution transport and accumulation in Santa Monica Bay. The geophysical source is unknown. These data are reformatted ... |
Info |
o199sc.m77t and o199sc.h77t: MGD77T data and header file for single-beam bathymetry for field activity O-1-99-SC in Southern California from 06/05/1999 to 06/17/1999
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise O-1-99-SC. The cruise was conducted in Southern California from June 5 to June 17, 1999. The chief scientist was Bill Normark from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to study pollution transport and accumulation in Santa Monica Bay. The geophysical source was an ODEC 12 kilohertz (kHz) echosounder. These data are reformatted from ... |
Info |
o399mb.m77t and o399mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity O-3-99-MB in Point Sur, Monterey Canyon, California from 06/25/1999 to 06/29/1999
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise O-3-99-MB. The cruise was conducted in Point Sur, Monterey Canyon, California from June 25 to June 29, 1999. The chief scientists were Homa Lee from the USGS Coastal and Marine Geology office in Menlo Park, CA and Charlie Paull from the Monterey Bay Aquarium Research Institute. The overall purpose of this study was to provide samples to use in collaborative studies of sedimentology and ... |
Info |
oahu_geo - Geologic attributes of the coastal zone of Oahu, Hawaii
Geologic attributes of the coastal zone of Oahu, Hawaii |
Info |
oahu_slp - Coastal Slope along the coastal zone of Oahu, Hawaii
Coastal Slope along the coastal zone of Oahu, Hawaii |
Info |
Oceanographic conductivity, temperature and depth (CTD) profile data device location for joint cruise U.S. Geological Survey 02051 - National Oceanic and Atmospheric Administration RB0208 in the Puerto Rico Trench region in Sept. 2002 (ctd_2002.shp, point shapefile, geographic, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Oceanographic conductivity, temperature and depth (CTD) profile data device sampling location for joint cruise U.S. Geological Survey 03008 - National Oceanic and Atmospheric Administration RB0303 in the Puerto Rico Trench region in February and March, 2003 (ctd_2003.shp, point shapefile, geographic, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Oceanographic CTD Data Device Location for Joint USGS Cruise 03008 and NOAA RB0303
This data set shows the location where a CTD (Conductivity -Temperature - Depth) device was used. CTD were determined while in the Caribbean Sea. The point location attributes are longitude, latitude, and date of placement in the water; this information was acquired during the U.S. Geological Survey Science Cruise 03008 in collaboration with National Oceanic and Atmospheric Administration Research Cruise RB0303 from 18 February to 7 March 2003, Leg II of III. (Leg I and III: 20020924 to 20020930 and ... |
Info |
Oceanographic Data from Winter and Spring Circulation and Sediment Transport Studies in the Hudson Shelf Valley collected in December-April (1999/2000) and April-June 2006
The U.S. Geological Survey (USGS) conducted field experiments to understand the transport of sediments and associated contaminants in the Hudson Shelf Valley, offshore of New York. The valley is a sink and potential conduit for the movement of sediments and associated contaminants across the shelf. A winter experiment (1999-2000) investigated the role of winter storms in transporting sediments in the valley. A spring experiment (2006) explored transport during the period of spring runoff from the Hudson ... |
Info |
Oceanographic Observations made adjacent to the Chandeleur Islands, Louisiana, July-November, 2010
A program to measure waves, water levels, and currents near the Chandeleur Islands, Louisiana and adjacent berm construction site was conducted by the U.S. Geological Survey (USGS) during Summer and Autumn 2010. The Chandeleur Islands have been the subject of ongoing USGS studies of coastal erosion and land loss. The berm was being constructed by the State of Louisiana in response to the Deepwater Horizon oil spill. The oceanographic measurements accompany USGS observations of geomorphic response to storms ... |
Info |
Oceanographic Observations made near Diamond Shoals, North Carolina, as part of the Carolinas Coastal Change Processes Project; January-May 2009
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program in Woods Hole, Massachusetts, is leading an effort to understand the regional sediment dynamics along the coastline of North and South Carolina. As part of the mulit-disciplinary Carolinas Coastal Change Processes Project, we are examining the interactions between oceanographic forcing, geologic conditions, and the resulting changes to topography in the inner shelf, nearshore, and subaerial beach regions. This dataset presents data from an ... |
Info |
Oceanographic temperature profiling device sampling location for joint cruise U.S. Geological Survey 02051 - National Oceanic and Atmospheric Administration RB0208 in the Puerto Rico Trench region in Sept. 2002 (xbt_2002.shp, point shapefile, geographic, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Oceanographic temperature profiling device sampling location for joint cruise U.S. Geological Survey 03008 - National Oceanic and Atmospheric Administration RB0303 in the Puerto Rico Trench region in February and March, 2003 (xbt2003.shp, point shapefile, geographic, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Oceanographic temperature profiling device sampling location for joint cruise U.S. Geological Survey 03032 - National Oceanic and Atmospheric Administration RB0305 in the Puerto Rico Trench region in August 2003 (xbt_aug2003.shp, point shapefile, geographic, WGS84 and original text files)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Oceanographic time-series measurements collected in Bellingham Bay, Washington, USA, 2019 to 2021
Bottom-landing and floating platforms with instrumentation to measure currents, waves, water level, optical turbidity, water temperature, and conductivity were deployed at four locations in Bellingham Bay, Washington, USA. Platforms were deployed in three separate periods: July 30, 2019–November 14, 2019, November 19, 2019–February 5, 2020, and January 22, 2021–April 13, 2021. These data were collected to support studies of sediment delivery, transport, deposition, and resuspension in this Pacific ... |
Info |
Oceanographic XBT Data Device Location for Joint USGS Cruise 03008 and NOAA RB0303
"The Expendable Bathythermograph (XBT) has been used by oceanographers for many years to obtain information on the temperature structure of the ocean to depths of up to 1500 meters. The XBT... is a probe which is dropped from a ship and measures the temperature as it falls through the water. Two very small wires transmit the temperature data to the ship where it is recorded for later analysis. The probe is designed to fall at a constant rate, so that the depth of the probe can be inferred from the time ... |
Info |
Offshore baseline generated to calculate bluff change rates for the north coast of Barter Island, Alaska
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate bluff-change rates. |
Info |
Offshore baseline generated to calculate shoreline change rates near Barter Island, Alaska
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the shorelines near Barter Island, Alaska for the time period 1947 to 2020. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate shoreline-change rates. |
Info |
Offshore baselines for Assateague Island, Maryland and Virginia (projected, UTM Zone 18 (NAD83))
Assessing the physical change to shorelines and wetlands is critical in determining the resiliency of wetland systems that protect adjacent habitat and communities. The wetland and back-barrier shorelines of Assateague Island, located in Maryland and Virginia, changed as a result of wave action and storm surge that occurred during Hurricane Sandy, which made landfall on October 29, 2012. The impact of Hurricane Sandy will be assessed and placed in its historical context to understand the future ... |
Info |
Offshore Baselines for the Undeveloped Areas of New Jersey's Barrier Islands (projected, UTM Zone 18N (NAD83))
Assessing the physical change to shorelines and wetlands is critical in determining the resiliency of wetland systems that protect adjacent habitat and communities. The wetland and back-barrier shorelines of New Jersey changed as a result of wave action and storm surge that occurred during Hurricane Sandy, which made landfall on October 29, 2012. The impact of Hurricane Sandy will be assessed and placed in its historical context to understand the future vulnerability of wetland systems. Making these ... |
Info |
Offshore sediment thickness data in California State Waters between Refugio and Hueneme Canyon, California (sbsedthkpt).
As part of the USGS's California State Waters Mapping Project, sediment thickness for the seafloor within the 3-nautical mile limit between Gaviota and Hueneme Canyon was extracted from seismic-reflection data collected in 2007 (USGS activity (Z-3-07-SC) and 2008 (S-7-08-SC). Sediment thickness ranges from 0 to 65 m with a mean of 12 m and a standard deviation of 15 m. |
Info |
Olowalu chronology and geochemistry time-series, West Maui
Chronology and time-series geochemistry data of a coral core collected from Olowalu, West Maui, Hawaii. The chronology is based on density banding, radiocarbon bomb-curve, and uranium thorium dating techniques. The geochemistry time-series data contains major and minor elements over the length of the coral life span, as measured from laser ablation inductively coupled mass spectrometry (LA-ICP-MS). |
Info |
One meter acoustic backscatter mosaic acquired using a Klein 3000 sidescan sonar offshore of Massachusetts within northern Cape Cod Bay (CCB_KLEIN_BS_1M.TIF GeoTIFF Image, UTM Zone 19N).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
One meter acoustic backscatter mosaic of data acquired using a Klein 3000 sidescan sonar offshore of Massachusetts within Vineyard Sound by the U.S. Geological Survey in 2009, 2010, and 2011 (VS_BACKSCATTER_1m.TIF, GeoTIFF image, UTM Zone 19N WGS84 ).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ... |
Info |
One meter backscatter mosaic acquired by the U.S. Geological Survey with the 117- kHz SEA Ltd. SWATHplus interferometric sonar offshore of Massachusetts within northern Cape Cod Bay (CCB_SWATH_BS_1M GeoTIFF IMAGE, UTM19 N).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
One meter mosaic of acoustic backscatter data acquired using an EdgeTech 4200 and Klein 3000 sidescan sonar within Barnegat Bay New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (GeoTIFF image, UTM 18N, WGS 84)
In 2011, the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection began a multidisciplinary research project to better understand the water quality in Barnegat Bay, New Jersey. This back-barrier estuary is flushed by only three inlets and is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen stress, macro algae, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it ... |
Info |
One meter mosaic of acoustic backscatter data acquired using an EdgeTech 4200 sidescan sonar within Little Egg Harbor (Barnegat Bay) New Jersey by the U.S. Geological Survey in 2013 (GeoTIFF image, UTM 18N, WGS 84)
In 2011, the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection began a multidisciplinary research project to better understand the water quality in Barnegat Bay, New Jersey. This back-barrier estuary is flushed by only three inlets and is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen stress, macro algae, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it ... |
Info |
One meter mosaic of acoustic backscatter data acquired using a SWATHplus-H interferometric sonar in Barnegat and Little Egg Inlets, New Jersey by the U.S. Geological Survey in 2012, and 2013 (GeoTIFF image, UTM 18N, WGS 84)
In 2011, the US Geological Survey in partnership with the New Jersey Department of Environmental Protection began a multidisciplinary research project to better understand the water quality in Barnegat Bay, New Jersey. This back-barrier estuary is flushed by only three inlets and is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen stress, macro algae, stinging nettles, and brown tide. The scale of the estuary and the scope of the problems within it necessitate a ... |
Info |
One-Minute Navigation Shapefile of Seismic-Reflection Data Collected in Eastern Rhode Island Sound in 1975 (A75_6_1MINNAV_SORT.SHP)
During 1975, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in eastern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
One-Minute Navigation Shapefile of Seismic-Reflection Data Collected in Southern Rhode Island Sound in 1980 (A80_6_1MINNAV_SORT.SHP)
During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in southern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 3 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
One-Minute Navigation Shapefile of Seismic-Reflection Data Collected in Western Rhode Island Sound (N80_1_1MINNAV_SORT.SHP)
During 1980, a seismic-reflection survey utilizing Uniboom seismics was conducted by the U.S. Geological Survey (USGS) in western Rhode Island Sound aboard the Research Vessel Neecho. This cruise consisted of 2 legs totalling 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. As a result of recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from ... |
Info |
One-Minute Shot Point Navigation for Seismic-Reflection Data Collected in 1975 from Eastern Rhode Island Sound; Formatted for Use With Landmark (A75_6_SHOTNAV.TXT)
During 1975, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in eastern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
One-Minute Shot Point Navigation for Seismic-Reflection Data from Southern Rhode Island Sound Collected in 1980; Formatted for Use With Landmark (A80_6_SHOTNAV.TXT)
During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in southern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 3 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
One-Minute Shotpoint Navigation for Seismic-Reflection Data from Western Rhode Island Sound Formatted for Use With Landmark (N80_1_SHOTNAV.TXT)
During 1980, a seismic-reflection survey utilizing Uniboom seismics was conducted by the U.S. Geological Survey (USGS) in western Rhode Island Sound aboard the Research Vessel Neecho. This cruise consisted of 2 legs totalling 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. As a result of recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from ... |
Info |
Organic geochemistry data of bulk sediments from the Escanaba Trough, off the coast of Northern California, USA, from May-June 2022.
Organic carbon groupings representing different labilities were extracted from sediments collected in the Escanaba Trough from May and June 2022. Organic carbon groups included the total lipid extract and acid insoluble material. These groupings were analyzed for percent total organic carbon (TOC), total nitrogen (TN), stable carbon isotope ratios (d13C), stable nitrogen isotope ratios (d15N) and radiocarbon values (D14C). Percent TOC and TN data was used to calculate the contribution of each organic carbon ... |
Info |
Organic geochemistry data of bulk sediments from the Escanaba Trough, off the coast of Northern California, USA, from May-June 2022.
Bulk organic geochemistry data were determined on one to five cm subsamples of sediment push cores collected from the Escanaba Trough during May to June 2022. These data include percent total organic carbon (percent TOC ), total nitrogen (percent TN), carbon to nitrogen ratios (C/N), stable carbon isotope ratios (d13C), stable nitrogen isotope ratios (d15N), radiocarbon values (D14C), and grain size (mean phi). Location information (for example , latitude, longitude, and depth) is also reported. |
Info |
Orthoimagery of the coast of Alaska from Icy Cape to Cape Prince of Wales, 2016
This part of the data release presents orthoimagery spanning the ocean shoreline of Alaska from Icy Cape to Cape Prince of Wales. Aerial images were collected, and data were processed, by Fairbanks Fodar (https://www.fairbanksfodar.com) in Fairbanks, Alaska, for the U.S. Geological Survey. The aerial images, from which the orthoimages were created, were collected in 2016 between August 29 and September 4 and extend from the shoreline to 400-4000 meters inland. The aerial images were collected with precise ... |
Info |
Orthomosaic imagery for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents a high-resolution orthomosaic image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The orthomosaic has a resolution of 2 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed ... |
Info |
Orthomosaic imagery for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents a high-resolution orthomosaic images of the intertidal zone at Post Point, Bellingham Bay, WA. The orthomosaics were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. The orthomosaics are presented with two resolutions: one image, covering the entire survey area, has a resolution of 2 centimeters per pixel; the other image which was derived from a lower-altitude flight, covers an inset ... |
Info |
Orthomosaic imagery for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents a high-resolution orthomosaic images of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA. The orthomosaics have a resolution of 1.3 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. The raw imagery used to create the orthomosaics was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was ... |
Info |
Orthomosaic imagery for the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents a high-resolution orthomosaic image of the intertidal zone at West Whidbey Island, WA. The orthomosaic has a resolution of 2 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed ... |
Info |
Orthomosaic imagery for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a high-resolution orthomosaic image of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta. The orthomosaic has a resolution of 3 centimeters per-pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The raw imagery used to create the orthomosaic image was acquired using two UAS fitted with Ricoh GR II digital cameras with ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, 2019-06-03
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with 8-bit ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, expanded AOI, 2019-06-03
This portion of the data release presents an RGB orthomosaic image of an expanded area surrounding Whiskeytown Lake derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. The orthomosaic is available in a high-resolution 14-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud-optimized GeoTIFF format, with ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2018-12-02
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2019-11-12
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. The orthomosaic is available in a high-resolution 6-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Orthomosaic imagery for Whiskeytown Lake and surrounding area, northern California, 2020-11-10
This portion of the data release presents an RGB orthomosaic image of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. The orthomosaic is available in a high-resolution 5-centimeter (cm) version, as well as a medium-resolution 25 cm version. The high-resolution version is divided into two tiles (east and west) to reduce file download sizes. All imagery is provided in a three-band cloud optimized GeoTIFF format, with 8-bit ... |
Info |
Orthomosaic imagery from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a high-resolution orthomosaic image of the coral reef off Waiakane, Molokai, Hawaii. The orthomosaic has a resolution of 2.5 centimeters (cm) per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 24 June 2018. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre ... |
Info |
Orthomosaic imagery from the UAS survey of the debris flow at South Fork Campground, Sequoia National Park, CA
This portion of the data release presents a high-resolution orthomosaic image of the debris flow at South Fork Campground in Sequoia National Park. The orthomosaic has a resolution of 3 centimeters per pixel and was derived from structure-from-motion (SfM) photogrammetry using aerial imagery acquired during an uncrewed aerial systems (UAS) survey on 30 April 2024, conducted under authorization from the National Park Service. The raw imagery was acquired with a Ricoh GR II digital camera featuring a global ... |
Info |
Orthomosaic imagery of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents a high-resolution orthomosaic image of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The orthomosaic has a resolution of 2.5 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. ... |
Info |
Orthomosaic images from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents high-resolution orthomosaic images of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The orthomosaics have resolutions of 5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tide surveys on 7 and 8 August 2017. The raw imagery used to create the orthomosaics was acquired with a UAS fitted with a Ricoh ... |
Info |
Orthomosaic images from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents high-resolution orthomosaic images of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The orthomosaics have resolutions of 5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) during low tide surveys on 22 and 23 July 2021. The raw imagery used to create the orthomosaics was acquired with a UAS fitted with a Ricoh ... |
Info |
Orthomosaic images from UAS surveys of the upper reservoir delta at Jenkinson Lake, El Dorado County, California
This portion of the data release presents high-resolution orthomosaic images of the Jenkinson Lake upper reservoir delta in El Dorado County, California. The orthomosaics have resolutions of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected during surveys with unoccupied aerial systems (UAS). The surveys were on 2021-10-13, 2021-11-04, 2022-10-25, and 2023-11-13, and were generally timed to coincide with low water level in the reservoir to ... |
Info |
Orthomosaic images of the Whale's Tail Marsh region, South San Francisco Bay, CA
This portion of the data release presents orthomosaic images of the Whale's Tail Marsh region of South San Francisco Bay, CA. The orthomosaics have resolutions of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of repeat aerial imagery collected from fixed-wing aircraft. The raw imagery used to create these elevation models was acquired from an approximate altitude of 427 meters (1,400 feet) above ground level (AGL), using a Hasselblad A6D-100c camera fitted with an HC ... |
Info |
Orthomosaic representing Head of the Meadow Beach, Truro from images collected during field activity 2021-014-FA on February 4, 2021
These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In February 2021, U.S. Geological Survey and ... |
Info |
Orthomosaic representing Head of the Meadow Beach, Truro on March 10, 2022
These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods ... |
Info |
Orthomosaic representing Marconi Beach, Wellfleet from images acquired during field activity 2021-022-FA on March 17, 2021
The data in this publication map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide regional context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2021-022-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ... |
Info |
Orthomosaic representing Marconi Beach, Wellfleet, MA March 11, 2022
The data in this release map the beach and nearshore environment at Marconi Beach in Wellfleet, MA and provide updated environmental context for the 2021 CoastCam installation that looks out at the coast shared by beachgoers, shorebirds, seals, and sharks. This is related to the field activity 2022-014-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region that falls within the field of view of CoastCam CACO-02, which are two video cameras aimed at the ... |
Info |
Orthomosaics of Pea Island National Wildlife Refuge DUNEX Site, North Carolina in September and October 2021
The data in this part of the release are orthomosaics that characterize the beach at the USGS DUring Nearshore Event eXperiment (DUNEX) site on Pea Island National Wildlife Refuge, NC. During September and October 2021, USGS and Woods Hole Oceanographic Institute (WHOI) scientists conducted multiple field surveys to collect a topobathy elevation time series. Images of the beach for use in structure from motion were taken with a camera attached to a helium filled balloon-kite (Helikite). Agisoft Metashape (v ... |
Info |
p192mb.m77t and p192mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity P-1-92-MB in Monterey Bay from 03/20/1992 to 03/22/1992
Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise P-1-92-MB. The cruise was conducted in Monterey Bay from March 20 to March 22, 1992. The chief scientist was Gary Greene from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study and the geophysical source are unknown. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank ... |
Info |
p192sc.m77t and p192sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity P-1-92-SC in Santa Monica Basin, Southern California from 01/30/1992 to 02/04/1992
Single-beam bathymetry data along with Loran-C and GPS navigation data was collected as part of the U.S. Geological Survey cruise P-1-92-SC. The cruise was conducted in Santa Monica Basin, Southern California from January 30 to February 4, 1992. The chief scientist was Bill Normark from the USGS Coastal and Marine Geology office in Menlo Park, CA and Dave Piper from the Geological Survey of Canada (GSC). The purpose of this cruise was to define the growth pattern of Navy Fan (offshore from San Diego in the ... |
Info |
p194ar.m77t and p194ar.h77t: MGD77T data and header files for single-beam bathymetry data for field activity P-1-94-AR in Arctic Ocean from 07/25/1994 to 08/30/1994
Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise P-1-94-AR. The cruise was conducted in Monterey Bay from July 25 to August 30, 1994. The chief scientist was Art Grantz from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study was to study climatic history of the western Arctic Ocean basin. The geophysical source is unknown. These data are reformatted from space-delimited ASCII text files located ... |
Info |
PAC_CLC: Calculated seabed data for the continental margin of the U.S. Pacific Coast (California, Oregon, Washington) from usSEABED (pac_clc.txt)
This data layer (PAC_CLC.txt) is one of five point coverages of known sediment samples, inspections, and probes from the usSEABED data collection for the U.S Pacific continental margin integrated using the software system dbSEABED. This data layer represents the calculated (CLC) output of the dbSEABED mining software. Data in this file extend variables determined through the data extraction (EXT) and data parsing (PRS) processes of dbSEABED, calculated using empirical relations or known functions. The CLC ... |
Info |
PAC_EXT - Extracted seabed data for the continental margin of the U.S. Pacific Coast (California, Oregon, Washington) from usSEABED (pac_ext.txt)
This data layer (PAC_EXT.txt) is one of five point coverages of known sediment samples, inspections, and probes from the usSEABED data collection for the U.S. Pacific continental margin integrated using the software system dbSEABED. This data layer represents the extracted (EXT) output of the dbSEABED mining software and contains data items which were extracted from the data resources files and generally represent lab-based analytical data. The EXT data are usually considered the most rigorous data ... |
Info |
PAC_FAC: Seabed facies data (combined components) for the continental margin of the U.S. Pacific Coast (California, Oregon, Washington) from usSEABED (pac_fac.txt)
The facies data layer (PAC_FAC.txt) is one of five point coverages of known sediment samples, inspections, and probes from the usSEABED data collection for the U.S. Pacific margin, integrated using the software system dbSEABED. The facies data layer (PAC_FAC.txt) represents concatenated information about components (minerals and rock type), genesis (igneous, metamorphic, carbonate, terrigenous), and other appropriate groupings of information about the sea floor. These data are parsed from written ... |
Info |
PAC_PRS - Parsed seabed data for the continental margin of the U.S. Pacific Coast (California, Oregon, Washington) from usSEABED (pac_prs.txt)
This data layer (PAC_PRS.txt) is one of five point coverages of known sediment samples, inspections, and probes from the usSEABED data collection for the U.S. Pacific continental margin integrated using the dbSEABED software system. This data layer represents the parsed (PRS) output of the dbSEABED mining software. It contains the numeric results parsed from text-based descriptions held in the data resource files (DRF). Because it relies on descriptions, the PRS data are less precise than the extracted data ... |
Info |
Paleoshorelines--Monterey Canyon and Vicinity Map Area, California
This part of DS 781 presents data for the paleoshorelines for the geologic and geomorphic map of Monterey Canyon and Vicinity, California. The vector data file is included in "Paleoshorelines_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ofr20161072. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H ... |
Info |
Parent and alkylated polycyclic aromatic hydrocarbons (PAHs) and per- and polyfluoroalkyl substances (PFAS) in north San Francisco Bay, Napa River, and Sonoma Creek in 2018 and 2019
Sediment grain-size distributions, stable carbon isotope ratios (d13C), total carbon to total nitrogen ratios (C:N), short-lived radionuclides (Beryllium-7, Cesium-137, and Lead-210), concentrations of 76 parent and alkylated polycyclic aromatic hydrocarbons (PAHs) and concentrations of 33 per- and polyfluoroalkyl substances (PFAS) were measured in the northern reach of San Francisco Bay (San Pablo and Suisun Bays), and in stream beds of the lower reaches of Napa River and Sonoma Creek, 5 months and 20 ... |
Info |
Parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in watershed soil and reef sediment at Olowalu, Maui, 2022
Seventy six parent and alkylated polycyclic aromatic compounds, including polycyclic aromatic hydrocarbons (PAHs), were quantified in watershed and reef sediment from Olowalu, Maui, in February 2022 to explore urban and wildfire effects. Sample locations and total organic carbon contents (OC) are available in the accompanying file OlowaluWatershedReef2022_compositions.csv. |
Info |
PCCT demonstration of flow rate versus pressure gradient measurements for determining permeability in fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP ... |
Info |
PCCT measurements of stress and strain during direct shear tests of fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP ... |
Info |
PCCT measurements of the consolidation characteristics, constrained modulus and compressional wave velocity for fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP ... |
Info |
PCMSC PlaneCam – Field data from periodic and event-response surveys of the U.S. West Coast.
This is an ongoing collection of aerial oblique and near-nadir images, ancillary data, and derivatives, from aerial surveys of coastal and near-coastal environments with a crewed light aircraft using the "PCMSC PlaneCam," a mounted fixed-lens DSLR camera with an attached consumer-grade GPS for time-keeping and approximate position, and a Global Navigation Satellite System (GNSS) for precise positioning. Data are collected and produced primarily for coastal monitoring using structure-from-motion ... |
Info |
PDF format log books of data collection in Lake Mead in 1999
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
PDF format log books of data collection in Lake Mead in 2000
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
PDF format log books of data collection in Lake Mead in 2001
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Peak marine sparker amplitude data from calibrated source and receive hydrophones collected in April 2021 offshore Santa Cruz, California (USGS field activity 2021-619-FA), and pressure vs. offset plots
Peak amplitude values recorded at source and receive hydrophones during a two-vessel marine sparker seismic survey conducted by the U.S. Geological Survey (USGS) in April of 2021 off the coast of Santa Cruz, California (USGS field activity 2021-619-FA) are presented. On the source vessel (R/V Parke Snavely; RVPS), near-field data were recorded using a broadband spherical reference Reson TC4034 hydrophone positioned 1-meter below the sparker source (either a SIG ELP790 or an Applied Acoustics Delta sparker) ... |
Info |
Peat Thickness Measurements from Grand Bay, Mississippi and Alabama
Location and elevation data were collected along with peat auger cores during six U.S. Geological Survey (USGS) field activities from 2013-2018 in and around Grand Bay, Mississippi (MS) and Alabama (AL) and used in models described by Smith and others (2024). Peat auger cores were described, photographed, and the thickness of the peat unit was measured with a measuring tape. Following collection, the distance from the core location to various geomorphic boundaries (e.g., upland, marsh shoreline, water edge, ... |
Info |
Photographs and locations of bottom still imagery collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-049-FA (JPEG images, point shapefile, and CSV file)
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg ... |
Info |
Photographs of push cores from Loki's Castle and Favne vent fields, Mohns Ridge
This portion of the data release presents linescan images (photographs) from push cores collected from Loki's Castle and Favne vent fields, on the Mohns Ridge, in the Norwegian Sea. These data were Rcollected in 2018 and 2019 (USGS Field Activity 2018-691-DD and 2019-624-FA). Images were obtained from seventeen push cores at 50-micron (200 pixel per cm) resolution. Color images in 16-bit TIFF format are provided for each core segment, along with proprietary metadata files containing image scaling ... |
Info |
Photographs of vibracores collected offshore Oceanside to San Diego, southern California, during field activity 2018-638-FA from 2018-05-22 to 2018-05-26
This section of the data release contains photographs of 41 vibracores that were collected aboard the R/V Bold Horizon in 2018 on U.S. Geological Survey Field Activity 2018-638-FA offshore Oceanside to San Diego, southern California. |
Info |
Photographs of vibracores collected offshore San Francisco, California, during field activity 2019-649-FA from 2019-10-11 to 2019-10-18
This section of the data release contains photographs of 34 vibracores that were collected aboard the R/V Bold Horizon in 2019 on U.S. Geological Survey Field Activity 2019-649-FA offshore San Francisco, California. Continuous line-scan photographs were created in the lab to assess sand and gravel resources in Federal and State waters for potential use in future beach nourishment projects along stretches of the coast where critical erosion hotspots have been identified. |
Info |
Photographs of vibracores from Searsville Lake, Jasper Ridge Biological Preserve, Stanford, California
This portion of the data release presents linescan images (photographs) from vibracores collected from Searsville Lake, a reservoir in Jasper Ridge Biological Preserve, Stanford, California in October 2018 (USGS Field Activity 2018-682-FA). Images were obtained from two vibracores (JRBP2018-VC01A and JRBP2018-VC01B) at 50-micron (200 pixel per cm) resolution. Color images in 16-bit TIFF format are provided for each core segment, along with proprietary metadata files containing image scaling information. |
Info |
Photomicrograph Images of Sediment Samples Collected at Crocker Reef, Florida, 2013-2014
Understanding the processes that govern whether a coral reef is accreting (growing) or dissolving are fundamental to questions of reef health and resiliency. A total of 52 surficial sediment samples were collected within a 1-km x 1-km area around Crocker Reef in the Florida Keys, USA, between 2013 and 2014. Samples 1-35 were collected in July 2013 and samples 36-52 were collected in July 2014. The samples were processed using conventional, published techniques (see process step section) to yield grain size ... |
Info |
Photoscans of cores collected in Ozette Lake, Washington, between 2019 and 2021
Seismic-reflection data and cores were collected in Ozette Lake, Washington, from 2019 to 2021. These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
Physical Properties of Sediment Collected during India's National Gas Hydrate Program NGHP-02 Expedition in the Krishna-Godavari Basin Offshore Eastern India, 2015
During the spring and summer of 2015, the U.S. Geological Survey participated in India’s National Gas Hydrate Program NGHP-02 expedition in the Krishna-Godavari Basin offshore eastern India. The expedition included conventional and pressure coring of sediment, samples of which were transferred to the U.S. Geological Survey in Woods Hole, MA for post-cruise testing. This data release contains measurement results for physical properties measured on recovered core material, including measurements on gas ... |
Info |
Physiographic Shell Zones of the Sea Floor of Buzzards Bay, Massachusetts (BuzzardsBay_ShellZones, polygon shapefile, Geographic WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
Physiographic Zones of the Sea Floor for Vineyard and western Nantucket Sounds, Massachusetts (polygon shapefile, Geographic, WGS84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ... |
Info |
Physiographic Zones of the Sea Floor from Nahant to Northern Cape Cod Bay, Massachusetts (NAH_CCB_Pzones polygon shapefile, Geographic WGS 84)
These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ... |
Info |
Physiographic Zones of the Sea Floor from Nahant to Salisbury, Massachusetts (polygon shapefile, Geographic WGS 84, Nahant_NH_Pzones)
These data are qualitatively derived interpretive polygon shapefiles defining sediment type and distribution, and physiographic zones of the sea floor from Nahant to Salisbury, Massachusetts. Many of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Army Corps of Engineers (USACE). ... |
Info |
Physiographic Zones of the Sea Floor of Buzzards Bay, Massachusetts (BuzzardsBay_Pzones, polygon shapefile, Geographic WGS 84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
Physiographic Zones of the Sea Floor offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This ... |
Info |
PNG format images of EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Baltimore Canyon, mid-Atlantic margin
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
PNG format images of EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Norfolk Canyon, mid-Atlantic margin
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
PNG format images of EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Washington Canyon, mid-Atlantic Margin
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
PNG formatted images for multi-channel streamer seismic-reflection profiles collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
PNG formatted images of EdgeTech 424 seismic-reflection profiles collected by the U.S. Geological Survey in Barnegat Bay, NJ in 2011, 2012, and 2013
Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events, ... |
Info |
PNG formatted images of EdgeTech SB-424 seismic-reflection profiles collected by the U.S. Geological Survey -Woods Hole Coastal and Marine Science Center offshore of the Elizabeth Islands, MA, 2010.
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
PNG formatted images of EdgeTech SB-512i chirp seismic-reflection data collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
PNG formatted images of Edgetech SB-512i chirp seismic-reflection profiles collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA, 2014
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
PNG formatted images of EdgeTech SB-512i chirp seismic-reflection profiles collected by the U.S. Geological Survey in 2009, 2010, and 2011 offshore of Massachusetts within Vineyard Sound.
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ... |
Info |
PNG formatted images of EdgeTech SB-512i seismic-reflection profiles collected by the U.S. Geological Survey - St. Petersburg Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010.
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
PNG formatted images of EdgeTech SB-512i seismic-reflection profiles collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010.
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
PNG formatted images of Knudsen 3202 chirp seismic-reflection profiles collected by the USGS within Buzzards Bay and sand shoals of Vineyard Sound, MA, 2011
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
PNG formatted images of mulitchannel boomer seismic-reflection profiles collected by the U.S. Geological Survey in Vineyard Sound and Buzzards Bay, MA, 2010.
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
PNG formatted images of mulitchannel boomer seismic-reflection profiles collected by the U.S. Geological Survey in Vineyard Sound, MA, 2011.
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
PNG formatted images of Multi-channel streamer seismic-reflection profiles collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA, 2014
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
PNG Images of chirp sub-bottom profiler data collected by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (PNG Image Format)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island. For more information about the WHCMSC Field Activity, see https:/ ... |
Info |
PNG images of each chirp seismic profile collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
PNG images of each chirp seismic profile collected south of Martha's Vineyard and north of Nantucket by the U.S. Geological Survey during field activity 2013-003-FA offshore of Massachusetts in 2013
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish ... |
Info |
PNG images of Edgetech SB-512i seismic-reflection data collected in 2014 by the U.S. Geological Survey offshore of Fire Island, NY (PNG Format)
The U.S. Geological Survey (USGS) conducted a geophysical and sampling survey in October 2014 that focused on a series of shoreface-attached ridges offshore of western Fire Island, NY. Seismic-reflection data, surficial grab samples and bottom photographs and video were collected along the lower shoreface and inner continental shelf. The purpose of this survey was to assess the impact of Hurricane Sandy on this coastal region. These data were compared to seismic-reflection and surficial sediment data ... |
Info |
Point shapefile (100 shot interval) of navigation for chirp seismic data collected in the Indian River Bay, Delaware, on April 13, 2010, on U.S. Geological Survey Field Activity 2010-006-FA (IR_100SHOT_SORT.SHP, Geographic, WGS 84)
A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around ... |
Info |
Point Shapefile of 1000 Interval Seismic Shotpoint Navigation for Autonomous Surface Vessel IRIS Chirp Seismic Data in Apalachicola Bay Collected on U.S. Geological Survey Cruise 06001 (ASV_1000SHOT_SORT.SHP, Geographic, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
Point Shapefile of 100 Shot Interval Point Navigation For Seismic Data Collected in the Potomac River/Chesapeake Bay from Sept. 6, 2006 to Sept. 8, 2006 on USGS Cruise 06018 (SHOT100SORT_GEOG.SHP)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Point Shapefile of 500 Shot Interval Point Navigation For Seismic Data Collected in the Potomac River/Chesapeake Bay from Sept. 6, 2006 to Sept. 8, 2006 on USGS Cruise 06018 (SHOT500SORT_GEOG.SHP)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Point Shapefile of All the Unique Seismic Shot Point Navigation Collected in the Potomac River/Chesapeake Bay from Sept. 6, 2006 to Sept. 8, 2006 on USGS Cruise 06018 (ALLSHOTS_GEOG.SHP)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Point Shapefile of Interpreted Base of Mud Isopach Based on Seismic-Reflection Profiles Collected in Apalachicola Bay in 2006 from U.S. Geological Survey Cruise 06001 (BASEMUD_GEOG.SHP, Geographic, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
Point Shapefile of Interpreted Lowstand Horizon Based on Seismic-Reflection Profiles Collected in Apalachicola Bay in 2006 from U.S. Geological Survey Cruise 06001 (LOWSTAND_GEOG.SHP, Geographic, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
Point Shapefile of Locations of Ferromanganese Crusts in the World Ocean Compiled by the USGS in Open-File Report 89-020 (ussamp_sta_ofr89-020.shp: excludes NGDC Sample Locations)
Ferromanganese crusts in the world's oceans may serve as potential sources of metals, such as cobalt and magnesium, valuable to civilian and military industry; these are metals that the United States would otherwise be dependent on foreign sources. Unlike abyssal ferromanganese nodules, which form in areas of low disturbance and high sediment accumulation, ferromanganese crusts have been found to contain three to five times more cobalt than abyssal ferromanganese nodules and can be found on harder, steeper ... |
Info |
Point shapefile of navigation, water depth, and water temperature at ship positions during continuous resistivity profiling data collection in Greenwich Bay, Rhode Island, May 14 and 15, 2009, on U.S. Geological Survey Field Activity 2009-021-FA (Geographic, WGS84)
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Point Shapefile of NGDC Locations of Ferromanganese Crusts in the World Ocean Compiled by the USGS in Open-File Report 89-020 (ngdc_ofr89-020.shp)
Ferromanganese crusts in the world's oceans may serve as potential sources of metals, such as cobalt and magnesium, valuable to civilian and military industry; these are metals that the United States would otherwise be dependent on foreign sources. Unlike abyssal ferromanganese nodules, which form in areas of low disturbance and high sediment accumulation, ferromanganese crusts have been found to contain three to five times more cobalt than abyssal ferromanganese nodules and can be found on harder, steeper ... |
Info |
Point shapefile of processed continuous resistivity profiling data below the sediment water interface collected in Greenwich Bay, Rhode Island, on May 14, 2009, on U.S. Geological Survey Field Activity 2009-021-FA (Geographic, WGS84)
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Point shapefile of processed continuous resistivity profiling data below the sediment water interface collected in Greenwich Bay, Rhode Island, on May 15, 2009, on U.S. Geological Survey Field Activity 2009-021-FA (Geographic, WGS84)
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Point shapefile of quadrangle 6 station locations in Stellwagen Bank National Marine Sanctuary offshore of Boston, Massachusetts where video, photographs and sediment samples were collected by the U.S. Geological Survey from 1993-2004 - includes sediment sample analyses and interpreted geologic substrate (Geographic, NAD 83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, ... |
Info |
Point Shapefile of the Interpreted Flooding Surface Isopach Based on Seismic-Reflection Profiles Collected in Apalachicola Bay in 2006 from U.S. Geological Survey Cruise 06001 (FLOODISO_GEOG.SHP, Geographic, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
Point Shapefile of the Interpreted Seafloor Horizon Based on Seismic-Reflection Profiles Collected in Apalachicola Bay in 2006 from U.S. Geological Survey Cruise 06001 (SEAFLOOR_GEOG.SHP, Geographic, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
Point Shapefiles of Locations and Results of Ocean Bottom Ferromanganese Crusts Chemical Analyses Published in Appendix C of USGS Open-File Report 89-020
The chemical compositions and natural distribution of ferromanganese crusts have been a topic of interest to scientific research, as well as to industrial and military applications. These crusts form largely on hard substrates in marine environments largely free from heavy amounts of sedimentation. They are distinct from ferromanganese nodules that form in abyssal geographic locations, by their chemical composition, mineralogy, and source of metals. A database containing analytical data pertaining to ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assateague Island, MD & VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assawoman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Cape Hatteras, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Cape Lookout, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Cedar Island, VA, 2012–2013
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Cedar Island, VA, 2013–2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Coast Guard Beach, MA, 2013-2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Cobb Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2013–2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fire Island, NY, 2010–2011
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fire Island, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fire Island, NY, 2014–2015
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fisherman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Metompkin Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Myrtle Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parker River, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parramore Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rhode Island National Wildlife Refuge, RI, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rockaway Peninsula, NY, 2010–2011
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rockaway Peninsula, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rockaway Peninsula, NY, 2013–2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Ship Shoal Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Smith Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Wreck Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
Polygon shapefile of data sources used to create a bathymetric terrain model of multibeam sonar data collected between 2005 and 2018 along the Queen Charlotte Fault System in the eastern Gulf of Alaska from Cross Sound, Alaska to Queen Charlotte Sound, Canada. (Esri polygon shapefile, UTM 8 WGS 84)
This data publication is a compilation of six different multibeam surveys covering the previously unmapped Queen Charlotte Fault offshore southeast Alaska and Haida Gwaii, Canada. These data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, Natural Resources Canada, and the National Oceanic and Atmospheric Administration. The six source surveys from different multibeam sonars are combined into one terrain model with a 30-meter resolution. A complementary ... |
Info |
Polygon shapefile of data sources used to create a composite multibeam bathymetry surface of the central Cascadia Margin offshore Oregon
Data from various sources, including 2018 and 2019 multibeam bathymetry data collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) were combined to create a composite 30-m resolution multibeam bathymetry surface of central Cascadia Margin offshore Oregon. These metadata describe the polygon shapefile that outlines and identifies each publicly available bathymetric dataset. The data are available as a polygon shapefile. |
Info |
Polygon shapefile of data sources used to create a composite multibeam bathymetry surface of the southern Cascadia Margin offshore Oregon and northern California
This polygon shapefile describes the data sources used to create a composite 30-m resolution multibeam bathymetry surface of southern Cascadia Margin offshore Oregon and northern California. |
Info |
Polygon shapefile of the interpretation of the seabed geologic substrates in quadrangle 6 of the Stellwagen Bank National Marine Sanctuary region offshore of Boston, Massachusetts based on data collected by the U.S. Geological Survey from 1993-2004 (Geographic, NAD 83)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, ... |
Info |
Polyline-M Shapefile of Navigation Tracklines for Autonomous Surface Vessel IRIS Chirp Seismic Data in Apalachicola Bay collected on U.S. Geological Survey Cruise 06001 (ASV_LINES_CALIBRATED.SHP, Geographic, WGS84)
Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ... |
Info |
Polyline shapefile of ship tracklines along which continuous resistivity profiling data were collected in Greenwich Bay, Rhode Island, May 14 and 15, 2009, on U.S. Geological Survey Field Activity 2009-021-FA (Geographic, WGS84)
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Portion of the 1-meter (m) contours in quadrangle 2 of the Stellwagen Bank Survey Area offshore of Boston, Massachusetts based on bathymetry data collected by the U.S. Geological Survey from 1994-1996
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 2, which is one of 18 similarly-sized quadrangles that comprise the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a ... |
Info |
Portion of the 1-meter (m) contours in quadrangle 5 of the Stellwagen Bank Survey Area offshore of Boston, Massachusetts based on bathymetry data collected by the U.S. Geological Survey from 1994-1996
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated ... |
Info |
Portsmouth Naval Yard Sediment Data (JOHNSTON94 shapefile)
The sediment data presented in this data layer were from an ecological study sited near the Portsmouth Naval Shipyard, Kittery, Maine. The analog data were originally converted into digital form for inclusion in a Gulf of Maine Contaminated Sediments Database. |
Info |
Post-Expedition Report for USGS T-3 Ice Island Heat Flow Measurements in the High Arctic Ocean, 1963-1973
In February 1963, the U.S. Geological Survey (USGS) began a study of heat flow in the Arctic Ocean Basin and acquired data at 356 sites in Canada Basin and Nautilus Basin and on Alpha-Mendeleev Ridge by the end of the project in 1973. The USGS heat flow and associated piston coring operations were conducted from a scientific station on the freely drifting T-3 Ice island (also known as Fletcher's Ice Island). The Naval Arctic Research Laboratory (NARL) had established T-3 as a drifting research station in ... |
Info |
Post-Hurricane Florence Aerial Imagery: Cape Fear to Duck, North Carolina, October 6-8, 2018
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic change, and for understanding coastal vulnerability and ... |
Info |
Post-Hurricane Florence Digital Elevation Models of coastal North Carolina
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data ... |
Info |
Post-Hurricane Florence RGB averaged orthoimagery of coastal North Carolina
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data ... |
Info |
Post-Hurricane Gustav coastal oblique aerial photographs collected from the Chandeleur Islands, Louisiana, to Isles Dernieres Barrier Islands Refuge, Louisiana, September 4, 2008
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On September 4, 2008, the USGS conducted an oblique aerial photographic survey from the Chandeleur Islands, Louisiana, to Isles Dernieres Barrier Islands Refuge, Louisiana, aboard a Beechcraft Super King Air 200 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted ... |
Info |
Post-Hurricane Matthew coastal oblique aerial photographs collected from Port St. Lucie, Florida, to Kitty Hawk, North Carolina, October 13–15, 2016
The U.S. Geological Survey (USGS) conducts baseline and storm-response photography missions to document and understand the changes in the vulnerability of the Nation's coasts to extreme storms. On October 13–15, 2016, the USGS conducted an oblique aerial photographic survey from Port St. Lucie, Florida, to Kitty Hawk, North Carolina, aboard a Cessna 182 aircraft at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was conducted to collect data for assessing incremental changes ... |
Info |
Post-stack migrated SEG-Y multi-channel seismic data collected by the U.S. Geological Survey in U.S. Atlantic Seaboard in 2014
In summer 2014, the U.S. Geological Survey conducted a 21-day geophysical program in deep water along the Atlantic continental margin by using R/V Marcus G. Langseth (Field Activity Number 2014-011-FA). The purpose of the seismic program was to collect multichannel seismic reflection and refraction data to determine sediment thickness. These data enable the United States to delineate its Extended Continental Shelf (ECS) along the Atlantic margin. The same data can also be used to understand large ... |
Info |
PR_250M_AEA_NAD27.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar composite mosaic (ACEA, 250 m, Clarke1866)
From 4 November to 3 December 1985 the U.S. Geological Survey (USGS) conducted a single cruise to map the entire sea-floor of the Exclusive Economic Zone (EEZ) of Puerto Rico and the U.S. Virgin Islands. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 9 digital mosaics ... |
Info |
Precision Airborne Camera (PAC) System - Field data from periodic and event-response surveys of the U.S. Atlantic and Gulf Coasts
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods. These products are valuable for measuring topographic and landscape change, and for understanding coastal vulnerability and response to ... |
Info |
Preliminary global database of known and inferred gas hydrate locations
For more than 25 years, the U.S. Geological Survey Gas Hydrates Project has compiled and maintained an internal database of locations where the existence of gas hydrate has been confirmed or inferred in research studies. The existence of gas hydrate was considered confirmed when gas hydrate was recovered by researchers or videotaped from a vehicle (such as a submersible or remotely operated vehicle) near the sea floor. The existence of gas hydrate was considered inferred when seismic data, borehole logs, or ... |
Info |
Pressure time series measurements collected at Madeira Beach, Florida
Pressure loggers were deployed at two sites at Madeira Beach, Florida: MB1, located 30.9 kilometers (km) offshore at 21.0-meters (m) depth (27.71652, -83.09532) from October 2021 to October 2023; and MB2, located 1.9 kilometers from the shoreline at 5.6-m depth (27.78897, -82.81229) from March 2021 to September 2023. This data release also includes a single pressure logger deployment at site MB3, located 23 meters northwest of MB2 (27.78910, -82.81248) at 5.7-m depth from May 2021 to August 2021. |
Info |
Processed continuous resistivity profiling data collected in Greenwich Bay, Rhode Island, on May 14, 2009, on U.S. Geological Survey Field Activity 2009-021-FA
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Processed continuous resistivity profiling data collected in Greenwich Bay, Rhode Island, on May 15, 2009, on U.S. Geological Survey Field Activity 2009-021-FA
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the American Samoa’s most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated American Samoan Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to ... |
Info |
Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands (ver. 1.1, September 2024)
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Hawaiian Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves ... |
Info |
Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated Mariana Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 ... |
Info |
Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of American Samoa's most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution ... |
Info |
Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian Islands of Oahu, Molokai, Kauai, Maui, and Big Island. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 ... |
Info |
Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of the most populated Mariana Islands of Guam and Saipan. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along these islands' ... |
Info |
Projected coastal flooding inundation depths for 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa (ver. 1.1, February 2025)
This data release provides flood depth GeoTIFFs based on sea-level rise (SLR) for the coast of the most populated American Samoa s most populated islands of Tutuila, Ofu-Olosega, and Ta'u. Digital elevation models were used to extract SLR flooded areas at 10-m2 resolution along the coastlines for 0.00 m, +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected coastal flooding inundation depths for 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands (ver. 1.1, February 2025)
This data release provides flood depth GeoTIFFs based on potential future sea-level rise (SLR)for the coast of the most populated Hawaiian Islands of O'ahu, Moloka'i, Kaua'i, Maui, and Big Island. Digital elevation models were used to extract SLR flooded areas at 10-m2 resolution along the coastlines for 0.00 m, +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected coastal flooding inundation depths for 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Mariana Islands (ver. 1.1, February 2025)
This data release provides flood depth GeoTIFFs based on sea-level rise for the coast of the most populated Mariana Islands of Guam and Saipan in the Common Wealth of Northern Mariana Islands (CNMI). Digital elevation models were used to extract sea-level rise flooded areas at 10-m2 resolution along the coastlines for 0.00 m, +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios. |
Info |
Projected flood water depths on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands
Projected future wave-driven flooding depths on Roi-Namur Island on Kwajalein Atoll in the Republic of the Marshall Islands for a range of climate-change scenarios. This study utilized field data to calibrate oceanographic and hydrogeologic models, which were then used with climate-change and sea-level rise projections to explore the effects of sea-level rise and wave-driven flooding on atoll islands and their freshwater resources. The overall objective of this effort, due to the large uncertainty in ... |
Info |
Projected groundwater emergence and shoaling along the North and South Carolina coasts
Groundwater emergence and shoaling extents are derived from water table depth GeoTIFFs, which are calculated as steady-state groundwater model heads subtracted from high-resolution topographic digital elevation model (DEM) land surface elevations. Results are provided as shapefiles of water table depth in specific depth ranges. |
Info |
Projected groundwater emergence and shoaling along the Virginia, Georgia, and Florida coasts
Groundwater emergence and shoaling extents are derived from water table depth GeoTIFFs, which are calculated as steady-state groundwater model heads subtracted from high-resolution topographic digital elevation model (DEM) land surface elevations. Results are provided as shapefiles of water table depth in specific depth ranges. Similar modeled data for North Carolina and South Carolina are available from Barnard and others, 2023 at https://doi.org/10.5066/P9W91314. |
Info |
Projected groundwater emergence and shoaling for coastal California using present-day and future sea-level rise scenarios
Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ... |
Info |
Projected groundwater emergence and shoaling in coastal areas around Puget Sound, Washington
Groundwater emergence and shoaling extents are derived from water table depth GeoTIFFs, which are calculated as steady-state groundwater model heads subtracted from high-resolution topographic digital elevation model (DEM) land surface elevations. Results are provided as shapefiles of water table depth in specific depth ranges. |
Info |
Projected groundwater head along the North and South Carolina coasts
Seamless unconfined groundwater heads for U.S. coastal North and South Carolina groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for both current and future sea ... |
Info |
Projected groundwater head along the Virginia, Georgia, and Florida coasts
Seamless unconfined groundwater heads for U.S. coastal Virginia, Georgia, and Florida (Atlantic and Gulf coast south of Sarasota) groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of ... |
Info |
Projected groundwater head for coastal California using present-day and future sea-level rise scenarios
Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ... |
Info |
Projected groundwater head in coastal areas around Puget Sound, Washington
Seamless unconfined groundwater heads for coastal groundwater systems around Puget Sound (Washington State) were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was defined primarily by watershed boundaries. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for both current and future sea-level rise (SLR) scenarios (0, 0.25, 0.5, 1, 1.5, 2, 2 ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-100 Years From 2011 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-100 Years From 2011 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-25 Years From 2011 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-25 Years From 2011 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-50 Years From 2011 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-50 Years From 2011 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-75 Years From 2011 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-75 Years From 2011 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—100 Years From 2014 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—100 Years From 2014 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida-25 Years From 2014 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—25 Years From 2014 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—50 Years From 2014 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—50 Years From 2014 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—75 Years From 2014 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—75 Years From 2014 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-100 Years From 2001 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-100 Years From 2001 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-25 Years From 2001 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-25 Years From 2001 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-50 Years From 2001 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-50 Years From 2001 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-75 Years From 2001 Based on Historical Rates of Mean Elevation Change
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ... |
Info |
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-75 Years From 2001 Based on Historical Rates of Mean Erosion
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ... |
Info |
Projected Seafloor Elevation Change and Relative Sea Level Rise Along the Florida Reef Tract from Miami to Boca Chica Key 25, 50, 75, and 100 Years from 2016
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes along the Florida Reef Tract (FRT) from Miami to Boca Chica Key, Florida. Changes in seafloor elevation were calculated from the 1930s to 2016 using digitized hydrographic sheet sounding data and light detection and ranging (lidar)-derived digital elevation models (DEMs) acquired by the National Oceanic and Atmospheric Administration (NOAA) in 2016 and 2017. Most of the ... |
Info |
Projected Seafloor Elevation Change and Relative Sea Level Rise Near St. Croix, U.S. Virgin Islands 25, 50, 75, and 100 Years from 2014
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes near Buck Island and St. Croix, U.S. Virgin Islands. Changes in seafloor elevation were calculated using historical bathymetric point data from the 1980s (see Yates and others, 2017a) and light detection and ranging (lidar)-derived data acquired in 2014 (NOAA, 2015) using methods outlined in Yates and others (2017b). An elevation change analysis between the 1980s and 2014 ... |
Info |
Projected Seafloor Elevation Change and Relative Sea Level Rise Near St. Thomas, U.S. Virgin Islands 25, 50, 75, and 100 Years from 2014
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes near St. Thomas, U.S. Virgin Islands. Changes in seafloor elevation were calculated using historical bathymetric point data from the 1960s and 1970s (see Yates and others, 2017a) and light detection and ranging (lidar)-derived elevation data acquired in 2014 (NOAA, 2015) using methods outlined in Yates and others (2017b). An elevation change analysis between the historical ... |
Info |
Projected Seafloor Elevation Change and Relative Sea Level Rise Surrounding Maui, Hawaii 25, 50, 75, and 100 Years from 1999
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes surrounding Maui, Hawaii. Changes in seafloor elevation were calculated using historical bathymetric point data from the 1960s (see Yates and others, 2017a) and light detection and ranging (lidar)-derived data acquired in 1999 (NOAA, 2013) using methods outlined in Yate and others (2017b). An elevation change analysis between the 1960s and 1999 data was performed to quantify ... |
Info |
Projected sea-level rise flooding inundation extents for 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter in the Mariana Islands (ver. 1.1, February 2025)
This data release provides flooding extent polygons based on potential future sea-level rise (SLR) rise water levels for the coast of the most populated Mariana Islands of Guam and Saipan in the Common Wealth of Northern Mariana Islands (CNMI). Digital elevation models were used to predict SLR flooding extents for 0.00 m, +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR rise scenarios. |
Info |
Projected sea-level rise flooding inundation extents for 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa (ver. 1.1, February 2025)
This data release provides flooding extent polygons based on sea-level rise (SLR) water levels for the coast of American Samoa's most populated islands of Tutuila, Ofu-Olosega, and Ta'u. Digital elevation models were used to predict SLR flooding extents for 0.00 m, +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected sea-level rise flooding inundation extents for 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in the Hawaiian Islands (ver. 1.1, February 2025)
This data release provides flooding extent polygons based on potential future sea-level rise (SLR) water levels for the coast of the most populated Hawaiian Islands of O'ahu, Moloka'i, Kaua'i, Maui, and Big Island. Digital elevation models were used to extract SLR flooded areas along the coastlines at 10-m2 resolution and converted to polygon shapefiles of the extents for 0.00 m, +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m SLR scenarios. |
Info |
Projected water table depths along the North and South Carolina coasts
To predict water table depths, seamless groundwater heads for unconfined coastal North and South Carolina groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for ... |
Info |
Projected water table depths along the Virginia, Georgia, and Florida coasts
To predict water table depths, seamless groundwater heads for unconfined coastal Virginia, Georgia, and Florida (Atlantic and Gulf coast south of Sarasota) groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (land surface less than approximately 10 m above mean sea level) areas. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic ... |
Info |
Projected water table depths for coastal California using present-day and future sea-level rise scenarios
Seamless unconfined groundwater heads for coastal California groundwater systems were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was limited primarily to low-elevation (i.e. land surface less than approximately 10 m above mean sea level) areas. In areas where coastal elevations increase rapidly (e.g., bluff stretches), the model boundary was set approximately 1 kilometer inland of the present-day shoreline. Steady-state MODFLOW groundwater flow models were ... |
Info |
Projected water table depths in coastal areas around Puget Sound, Washington
To predict water table depths, seamless unconfined groundwater heads for coastal groundwater systems around Puget Sound (Washington State) were modeled with homogeneous, steady-state MODFLOW simulations. The geographic extent examined was defined primarily by watershed boundaries. Steady-state MODFLOW groundwater flow models were used to obtain detailed (50-meter-scale) predictions over large geographic scales (100s of kilometers) of groundwater heads for both current and future sea-level rise (SLR) ... |
Info |
Projections of coastal flood depths for the U.S. Atlantic coast
Projected depths from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for the U.S. Atlantic coast for three states (Florida, Georgia, and Virginia). Projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corp of Engineers. The resulting data are depths of projected flood hazards along the U.S. Atlantic ... |
Info |
Projections of coastal flood depths for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood depths associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood depths along the Whatcom ... |
Info |
Projections of coastal flood durations for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood duration associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood duration along the ... |
Info |
Projections of coastal flood extents for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood extents associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of shapefile files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood extents along the Whatcom ... |
Info |
Projections of coastal flood hazards and flood potential for North Carolina and South Carolina
Projected impacts by compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. Accompanying uncertainty for each SLR and storm scenario, indicating total uncertainty from model processes and contributing datasets, are illustrated in maximum and minimum flood potential. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the ... |
Info |
Projections of coastal flood hazards and flood potential for the U.S. Atlantic coast
Projected impacts by compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for the U.S. Atlantic coast for three states (Florida, Georgia, and southern Virginia). Accompanying uncertainty for each SLR and storm scenario, indicating total uncertainty from model processes and contributing datasets, are illustrated in maximum and minimum flood potential. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output ... |
Info |
Projections of coastal flood velocities for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood velocities associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood velocities along the ... |
Info |
Projections of coastal flood water elevations for the U.S. Atlantic coast
Projected water elevations from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for the U.S. Atlantic coast for three states (Florida, Georgia, and Virginia). Projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corps of Engineers. The resulting data are water elevations of projected flood hazards ... |
Info |
Projections of coastal flood water levels for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood levels associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood levels along the Whatcom ... |
Info |
Projections of coastal water depths for North Carolina and South Carolina
Projected water depths from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corp of Engineers. The resulting data are depths of projected flood hazards along the ... |
Info |
Projections of coastal water elevations for North Carolina and South Carolina
Projected water elevations from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corps of Engineers. The resulting data are elevations of projected flood hazards ... |
Info |
Projections of compound floodwater depths for the lower Nooksack River and delta, western Washington State
Computed flood depths associated with the combined influence of sea level position, tides, storm surge, and streamflow under existing conditions and projected future higher sea level and peak stream runoff are provided for the lower (Reach 1) of the Nooksack River and delta in Whatcom County, western Washington State. The flood-depth projection data are provided in a series of raster geotiff files. Flood-depth projections were computed using a system of numerical models that accounted for projected changes ... |
Info |
Projections of wave heights for Whatcom County, Northwest Washington State coast (2015-2100)
Projected wave heights associated with compound coastal flood hazards for existing and future sea-level rise (SLR) and storm scenarios are shown for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting data are water levels of projected flood hazards along the Whatcom County coast due to sea level rise and ... |
Info |
Prospective regions for marine minerals on the Alaska Outer Continental Shelf
This shapefile is of prospective regional outlines of where marine minerals may occur on the Alaska Outer Continental Shelf (OCS). Polygons were hand digitized based on a U.S. Geological Survey (USGS) data review that considers the state of knowledge regarding marine mineral occurrences within the Alaska OCS. This data release is a companion to the USGS Professional Paper, Gartman and others, 2022. |
Info |
PR_Q01.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. The study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough ... |
Info |
PR_Q02.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q03.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q04.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q05.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q06.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q07.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q08.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PR_Q09.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 9) (ACEA, 50 m, Clarke1866)
The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked ... |
Info |
PUBATHG - ArcInfo GRID format of the 2001 multibeam echo-sounder data collected in the Puyallup River delta, Puget Sound (Tacoma), Washington from Field Activity: R-1-01-WA
ArcInfo GRID format bathymetry data generated from the 2001 multibeam sonar survey the major deltas of southern Puget Sound (Tacoma), WA., including Nisqually, Puyallup, and Duwamish Deltas. This is metadata for the Puyallup Delta multibeam bathymetry data. |
Info |
Pulley Ridge Swath Bathymetry Grid - filtered (ALLPR_FILCROP.GRD, UTM 17N, NAD83)
Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in the southeastern Gulf of Mexico about 250 km west of Cape Sable, Florida. This barrier island chain formed during the initial stage of the Holocene marine transgression. These islands were then submerged and left abandoned near the outer edge of the Florida Platform. The southern portion of Pulley Ridge hosts zooxanthellate scleractinian corals, ... |
Info |
Pulley Ridge Swath Bathymetry Image - TIFF format, UTM Zone 17 (ALLPR_FILCRPIMG.TIF)
Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in the southeastern Gulf of Mexico about 250 km west of Cape Sable, Florida. This barrier island chain formed during the initial stage of the Holocene marine transgression. These islands were then submerged and left abandoned near the outer edge of the Florida Platform. The southern portion of Pulley Ridge hosts zooxanthellate scleractinian corals, ... |
Info |
Quaternary faults offshore of California
A comprehensive map of Quaternary faults has been generated for offshore of California. The Quaternary fault map includes mapped geometries and attribute information for offshore fault systems located in California State and Federal waters. The polyline shapefile has been compiled from previously published mapping where relatively dense, high-resolution marine geophysical data exist. The data are also available in kml format and are accompanied by a pdf containing citations for the compiled source data. In ... |
Info |
Quaternary sediment thickness within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI GRID, QTHICK)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Radiocarbon age data from vibracores collected in Ozette Lake, Washington, in 2019
Seismic reflection data and cores were collected in Ozette Lake, Washington, in 2019. Radiocarbon samples were taken from cores in select locations. These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
Radiocarbon age dating of biological material from cores collected off British Columbia, Canada and southeastern Alaska, U.S. along the Queen Charlotte-Fairweather fault zone
Results of radiocarbon age dating of planktic foraminifera, benthic foraminifera, and pelecypod shell fragments collected from piston cores, trigger weight cores, and IKU grab samples obtained in 2015 and 2017 offshore British Columbia, Canada and southeastern Alaska, U.S. along the Queen Charlotte-Fairweather fault zone. |
Info |
Radiocarbon age dating of biological material from cores collected off central California in 1999, 2006, and 2019
Results of radiocarbon age dating of planktic and benthic foraminifera collected from cores obtained in 1999, 2006, and 2019 offshore central California in the vicinity of Morro Bay. |
Info |
Radiocarbon dating of deep-sea black corals collected off the southeastern United States
Results of radiocarbon dating of deep-sea (500 m to 700 m) black corals are presented. These corals were collected off the southeastern United States as part of the Southeastern United States Deep-Sea Corals (SEADESC) Initiative. |
Info |
Radiocarbon measurements from core 721-1 obtained in 2002 off San Francisquito Creek in South San Francisco Bay
This data release provides radiocarbon measurements from a core obtained off San Francisquito Creek in South San Francisco Bay. |
Info |
Radiochemistry Data from Sediment Cores Collected in March 2012 Along the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Numbers 12BIM01)
Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center collected a set of sediment cores from the back-barrier environments along the Chandeleur Islands, Louisiana, in March 2012. The sampling efforts were part of a larger USGS study to evaluate effects on the geomorphology of the Chandeleur Islands following the construction of an artificial sand berm to reduce oil transport onto federally managed lands. The objective of this study was to evaluate the response ... |
Info |
Radiogenic heat content for selected cores recovered during T-3 Ice Island heat flow operations in the Arctic Ocean, 1963-74 (ver. 1.1, December 2022)
The T-3 (Fletcher's) Ice Island in the Arctic Ocean was the site of a scientific research station re-established by the Naval Arctic Research Laboratory starting in 1962. Starting in 1963, the USGS acquired marine heat flow data and coincident sediment cores at sites in Canada Basin, Nautilus Basin, Mendeleev Ridge, and Alpha Ridge as the ice island drifted in the Amerasian Basin. Radiogenic heat content in sediments can be an important contributor to measured heat flow. The USGS therefore measured ... |
Info |
Radiometric ages and descriptive data for Holocene corals from southeast Florida
This data release compiles descriptive information (location, water depth, etc.) and radiometric ages from corals collected through the Southeast Florida Continental Reef Tract (SFCRT; Figure 1). The database includes data from studies published between 1977 and 2015 as well as previously unpublished data. The samples were originally collected using coral-reef coring or other geologic sampling methods. Many of the samples are presently stored in the U.S. Geological Survey (USGS) Core Archive at the St. ... |
Info |
Radiometric Ages and Descriptive Data for Late Holocene Acropora spp. Corals From Dry Tortugas National Park
This data release compiles radiometric data, photographs, and descriptive collection information (location, elevation, etc.) for late Holocene sub-fossil Acropora palmata and A. cervicornis coral samples collected from the coral reefs of Dry Tortugas National Park, Florida (DRTO) from 2015 to 2023. The samples were collected under scientific research permits from the U.S. National Park Service and all samples are currently recorded in the U.S. Geological Survey St. Petersburg Coastal and Marine Science ... |
Info |
Radium and Radon Radioisotope Activity Data from Samples Collected Between May 2019 and September 2020 Along the West Florida Shelf (Amberjack and Green Banana Blue Holes)
Relict karstic features or sinkholes, often referred to as blue holes, are common features along continental shelves that are underlain by carbonate rich sediments and/or rocks. Several of these features occur along the west-Florida shelf within the Gulf of Mexico, including the two mentioned in Vargas and others (2022): Amberjack Hole and Green Banana Sink (hereafter referred to as Green Banana). Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) ... |
Info |
Radon-222 and Water Column Data Related to Submarine Groundwater Discharge Along the Western Margin of Indian River Lagoon, Florida—September 2016 to July 2017 (ver. 2.0, March 2018)
Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States, stretching 200 kilometers (km) along the Atlantic coast of central Florida. The width of the lagoon varies between 0.5-9.0 km and is characterized by shallow, brackish waters with significant human development along both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, working in collaboration with the St. Johns River Water ... |
Info |
Radon-222 and Water Column Data Related to Submarine Groundwater Discharge Along the Western Margin of Indian River Lagoon, Florida—September 2017 and November 2017
Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States, extending 200 kilometers (km) along the Atlantic coast of central Florida. The lagoon is characterized by shallow, brackish waters with significant human development along both shores and a width that varies between 0.5-9.0 km. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, working in collaboration with the St. Johns River Water ... |
Info |
Radon-222 Time-Series Data Related to Submarine Groundwater Discharge Along the Western Margin of Indian River Lagoon, Florida
Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States, stretching 200 kilometers (km) along the Atlantic coast of central Florida. The width of the lagoon varies between 0.5–9.0 km and is characterized by shallow, brackish waters with significant human development along both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, working in collaboration with the St. Johns River Water ... |
Info |
Raman spectroscopy data for rock samples from Von Damm vent field, Mid-Cayman Rise
This portion of the data release presents Raman spectroscopy of rock samples collected from Von Damm vent field, Mid Cayman Rise, in the Caribbean Sea. These data were collected in 2020 (USGS Field Activity 2020-602-FA). Location information for the sample is included in each Attribute Definition of this metadata file. |
Info |
Raw and Normalized Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia- July 2014
Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ... |
Info |
Raw continuous resistivity profiling data collected in Greenwich Bay, Rhode Island, on May 14, 2009, on U.S. Geological Survey Field Activity 2009-021-FA
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Raw continuous resistivity profiling data collected in Greenwich Bay, Rhode Island, on May 15, 2009, on U.S. Geological Survey Field Activity 2009-021-FA
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Raw Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia- Fall 2014
Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ... |
Info |
Raw Foraminiferal Data for Chincoteague Bay and the Marshes of Assateague Island and the Adjacent Vicinity, Maryland and Virginia- Spring 2014
Foraminiferal samples were collected from Chincoteague Bay, Newport Bay, and Tom’s Cove as well as the marshes on the back-barrier side of Assateague Island and the Delmarva (Delaware-Maryland-Virginia) mainland by U.S. Geological Survey (USGS) researchers from the St. Petersburg Coastal and Marine Science Center in March, April (14CTB01), and October (14CTB02) 2014. Samples were also collected by the Woods Hole Coastal and Marine Science Center (WHCMSC) in July 2014 and shipped to the St. Petersburg ... |
Info |
Raw, high-resolution seismic-reflection data collected between Fort Bragg and Point Arena (northern California) during field activity C-1-10-NC from 08/09/2010 to 08/15/2010
This dataset includes raw, high-resolution seismic-reflection data jointly collected by the U.S. Geological Survey (USGS) and Oregon State University in 2010, between Fort Bragg and Point Arena in northern California. |
Info |
Raw, high-resolution seismic-reflection data collected between Point Sal and Refugio State Beach (southern California) during field activity 2014-632-FA from 07/17/2014 to 08/02/2014
This dataset includes raw, high-resolution seismic-reflection data, collected by the U.S. Geological Survey (USGS) in 2014, between Point Sal and Refugio State Beach in southern California. |
Info |
Raw, high-resolution seismic-reflection data collected between Punta Gorda and Fort Bragg (northern California) during field activity B-04-12-NC from 09/17/2012 to 09/25/2012
This dataset includes raw, high-resolution seismic-reflection data jointly collected by the U.S. Geological Survey (USGS) and Oregon State University in 2012, between Punta Gorda and Fort Bragg in northern California. |
Info |
Raw, high-resolution seismic-reflection data collected between Shelter Cove and Fort Bragg (northern California) during field activity B-5-10-NC from 09/20/2010 to 10/01/2010
This dataset includes raw, high-resolution seismic-reflection data jointly collected by the U.S. Geological Survey (USGS) and Oregon State University in 2010, between Shelter Cove and Fort Bragg in northern California. |
Info |
Raw HYPACK navigation logged during U.S. Geological Survey Field Activity 2010-006-FA in Indian River Bay, Delaware, in April 2010
A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around ... |
Info |
Raw HYPACK navigation logs (text) collected by the U.S. Geological Survey from Middle Ground, MA, 2007 (2007-039-FA_hypack)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Raw HYPACK navigation logs (text) collected by the U.S. Geological Survey from Middle Ground, MA, September 22, 2009 (2009-068-FA_hypack)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Raw HYPACK navigation logs (text) collected by the U.S. Geological Survey from Muskeget Channel, MA, 2010 (2010-072-FA_hypack)
These data were collected in a collaboration between the Woods Hole Oceanographic Institution and the U.S. Geological Survey (USGS). The primary objective of this program was to collect baseline bathymetry for Muskeget Channel, Massachusetts, and identify areas of morphologic change within and around the channel. Repeat surveys in select areas were collected one month apart to monitor change. These data were collected to support an assessment of the effect on sediment transport that a tidal instream energy ... |
Info |
Raw HYPACK navigation logs (text) collected by the U.S. Geological Survey from sand shoals of Vineyard Sound and the eastern Elizabeth Islands, MA, August 2011 (2011-013-FA_hypack)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Raw HYPACK navigation logs (text) collected by the U.S. Geological Survey in Vineyard Sound and Buzzards Bay, MA, July 2010 (2010-047-FA_hypack)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Raw HYPACK navigation logs (text) collected by the U.S. Geological Survey in Vineyard Sound, MA, January 5, 2011 (2010-100-FA_hypack)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Raw HYPACK navigation logs (text) collected by the U.S. Geological Survey - St. Petersburg Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Raw HYPACK navigation logs (text) collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Elizabeth Islands, MA, 2010
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Raw HYPACK navigation logs (text) collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Raw navigation files logged with HYPACK Survey software during a geophysical survey conducted by the USGS within Red Brook Harbor, MA, 2009
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
RAW sound velocity profile data from a Minos X collected from outer Cape Cod, Massachusetts during USGS Field Activity 2021-004-FA (PNG images, SVP text, and point shapefile, GCS WGS 84)
The U.S. Geological Survey (USGS) Woods Hole Coastal and Marine Science Center (WHCMSC) completed a bathymetric and shallow seismic-reflection survey during the period of June 9, 2021 to June 24, 2021 in water depths from 2 m to 30 m for a portion of the outer Cape Cod nearshore environment between Marconi and Nauset Beaches. The products from this survey will help to support white shark research on their shallow-water behavior in the dynamic nearshore environment at Cape Cod National Seashore (CACO). CACO ... |
Info |
Raw X-ray diffraction data of cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
RBR sensor pressure and tidal data for two sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from April 2019 through January 2020
To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ... |
Info |
RBR sensor wave data for two sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from April 2019 through January 2020
To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ... |
Info |
Recent Sediments of the Scotian Shelf acquired in 1962 (PEZZETTA shapefile)
A reconnaissance survey of that part of the Scotian Shelf extending from Halifax to Digby Nook was conducted during October, 1961, in order to determine the nature, distribution, and source areas of the bottom sediments. In general, the fine grained deposits of silt and clay (pelite) are found in the basins on the shelf as well as in the deeper water at the upper edge of the continental slope. Coarse grained deposits characterize topologically high areas and along the shelf margin. |
Info |
Reflection point navigation for Multi-channel streamer seismic-reflection profiles collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA, 2014
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
Reflection point navigation for multi-channel streamer seismic-reflection profiles collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (Esri point shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
Reformatted Hypack Navigation from Lake Mead - 2000
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Reformatted Hypack Navigation from Lake Mead - 2001
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Reformatted Hypack navigation from Lake Mohave - 2002
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and ... |
Info |
Reformatted Navigation from Lake Mead - 1999
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States ... |
Info |
Refraction-corrected bathymetric digital surface model (DSM) from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a bathymetric digital surface model (DSM) from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The DSM has a horizontal resolution of 10 centimeters per pixel and has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The DSM was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted ... |
Info |
Refraction-corrected bathymetric point cloud from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
This portion of the data release presents a bathymetric point cloud from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The point cloud has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The point cloud was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted with a circular polarizing filter. During the survey, a ... |
Info |
Region of Interests (ROI), Transects, and Reference Shorelines for Three Sites of Western Long Island, New York
This data release provides tidally corrected shoreline positions for three sites of western Long Island, NY (Rockaway Peninsula, Long Beach, and Jones Beach Island). GeoJSON files are derived from CoastSeg version 1.1.35 (Fitzpatrick and others, 2024) with settings derived from config files. These files contain the region of interests (ROIs), transects, and reference shorelines for each section. CoastSeg collects satellite images from Google Earth Engine to create shoreline data along with user-supplied ... |
Info |
Repeat high-resolution acoustic-backscatter datasets collected between 2014 and 2016 of a field of crescent-shaped rippled scour depressions in northern Monterey Bay, California
Between November 2014 and June 2016 the U.S. Geological Survey, Pacific Coastal and Marine Science Center (PCMSC) conducted eight repeat, high-resolution bathymetry and acoustic-backscatter surveys of a small patch of seafloor offshore Santa Cruz in northern Monterey Bay, California. PCMSC also collected oceanographic time-series data over the same two-year period. This metadata file describes the eight acoustic-backscatter datasets. |
Info |
Repeat high-resolution bathymetry datasets collected between 2014 and 2016 of a field of crescent-shaped rippled scour depressions in northern Monterey Bay, California
Between November 2014 and June 2016 the U.S. Geological Survey, Pacific Coastal and Marine Science Center (PCMSC) conducted eight repeat, high-resolution bathymetry and acoustic-backscatter surveys of a small patch of seafloor offshore Santa Cruz in northern Monterey Bay, California. PCMSC also collected oceanographic time-series data over the same two-year period. This metadata file describes the eight bathymetry datasets. |
Info |
Reprocessed legacy seismic-reflection data from USGS field activity B-1-72-SC collected offshore central California
Seismic-reflection data were collected offshore central California in 1972 aboard the USNS Bartlett (USGS Field Activity B-1-72-SC). In 2021 these legacy data were reprocessed to improve accuracy and geologic resolvability of California’s continental margin. |
Info |
Reprocessed legacy seismic-reflection data from USGS field activity B-1-72-SC collected offshore southern California
Seismic-reflection data were collected offshore southern California in 1972 aboard the USNS Bartlett (USGS Field Activity B-1-72-SC). In 2021 these legacy data were reprocessed to improve accuracy and geologic resolvability of California’s continental margin. |
Info |
Reprocessed multichannel seismic reflection data acquired offshore Southern California during USGS field activity L-4-90-SC
Multichannel seismic (MCS) data were collected by the U.S. Geological Survey (USGS) in 1990 in the California Continental Borderland (USGS field activity L490SC). In 2021 these data were reprocessed to improve accuracy and resolvability of geologic structures and fault systems of California’s continental margin. |
Info |
Reprocessed multichannel seismic reflection data acquired offshore Southern California during USGS field activity O-1-99-SC
Multichannel seismic (MCS) data were collected by the U.S. Geological Survey (USGS) in June of 1999 in the coastal zone and continental shelf between Los Angeles and San Diego, offshore California (USGS field activity O199SC). In 2021 these data were reprocessed to improve accuracy and resolvability of geologic structures and fault systems of California’s continental margin. |
Info |
Reprocessed multichannel seismic-reflection (MCS) data from USGS field activity T-1-96-SC collected in San Diego Bay, California in 1996
This data release presents reprocessed multichannel seismic-reflection (MCS) data that was originally collected in 1996 in partnership with the California Division of Mines and Geology and Caltrans as part of a seismic hazard assessment of the Coronado Bridge in San Diego Bay, California. The original survey collected 130 km of data with a 14-cubic inch sleeve-gun (airgun) source, a 24-channel streamer, and 3.125 m shot spacing. Reprocessed profiles show increased data resolution, with data recorded to 750 ... |
Info |
Reprocessed single channel sparker seismic reflection data offshore central California from USGS field activities S-6-08-SC and S-6-09-SC
The U.S. Geological Survey collected high-resolution single channel minisparker data between Point Sal and Piedras Blancas in 2008 and 2009 with support from the Pacific Gas and Electric (PG&E) CRADA and the USGS Coastal and Marine Geology program. Reprocessing of this data in 2018 improved vertical resolution of the stratigraphy and structural deformation of the original data and was funded by an additional CRADA with PG&E. |
Info |
RES2DINV format continuous resistivity profiling data collected in Greenwich Bay, Rhode Island, May 14 and 15, 2009, on U.S. Geological Survey Field Activity 2009-021-FA
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Results from isotope analysis of authigenic carbonates collected offshore the U.S. Mid- and South Atlantic
Geochemical analysis of carbonate rock samples collected from seep fields on the RB1903 and AT41 research expeditions in the U.S. Mid- and South Atlantic. Samples were collected as a fingerprint to past hydrocarbon seep activity, fluid source, and depositional environment. |
Info |
Revised 5 meter ArcRaster grid of bathymetry acquired using a SEA Ltd. SWATHplus-M interferometric sonar offshore of Massachusetts within Vineyard Sound by the U.S. Geological Survey in 2009, 2010, and 2011 (VS_BATH5M_V2, Esri BINARY GRID, UTM 19N, WGS84).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-08-30 to 2019-09-02, Pre-Hurricane Dorian
Orthoimages were created from aerial imagery collected between August 30 and September 2, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions prior to Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface before Hurricane Dorian and were created to document ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
RGB-averaged ortho products were created from aerial imagery collected between September 8 and 13, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-02-08 to 2020-02-09
RGB-averaged orthoimages were created from aerial imagery collected February 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, from 2020-05-08 to 2020-05-09
RGB-averaged orthoimages were created from aerial imagery collected May 08 and 09, 2020, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RGB-averaged orthoimages were created to document recovery ground conditions after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RGB-averaged orthoimages help researchers document inter-annual changes in shoreline position and coastal morphology in ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-10-11, one-month post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on October 11, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions one-month after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
RGB-averaged orthoimagery of coastal North Carolina, on 2019-11-26, two-months Post-Hurricane Dorian
RGB-averaged orthoimages were created from aerial imagery collected on November 26, 2019, along the North Carolina coast between the Virginia-North Carolina border vicinity and Cape Lookout, North Carolina. These RBG-averaged orthoimages were created to document ground conditions two-months after Hurricane Dorian, which made landfall on the North Carolina coast on September 6, 2019. The RBG-averaged orthoimages help researchers estimate the land surface after Hurricane Dorian and were created to document ... |
Info |
Ridge Crests within the inner shelf of Long Bay, South Carolina (RIDGE_CRESTS, Polyline shapefile)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
rm08_09_50gv2.tif
During the summers of 2008 and 2009 the USGS conducted bathymetric surveys from West Ship Island, Miss., to Dauphin Island, Ala., as part of the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. The survey area extended from the shoreline out to approximately 2 kilometers and included the adjacent passes. The bathymetry was primarily used to create a topo-bathymetric map and provide a base-level assessment of the seafloor following the 2005 hurricane season. Additionally, ... |
Info |
rm10cct03_mb_50m.tif: 50-m interpolated bathymetry grid of the entire survey from USGS Cruise 10cct03
In April of 2010, the U.S. Geological Survey (USGS) conducted a geophysical survey from the east end of West Ship Island, MSiss., extending to the middle of Dauphin Island, Ala. This survey had a dual purpose: (1) to interlink previously conducted nearshore geophysical surveys (shoreline to ~2 kilometers, km) with those of offshore surveys (~2 km to ~9 km) in the ares and (2) to extend the geophysical survey to include a portion of the Dauphin Island nearshore zone. The efforts were part of the USGS Gulf of ... |
Info |
R/V FARNELLA 90-4 cores
This ArcView GIS layer contains a summary of the locations, depths, and lengths of the cores collected aboard the R/V FARNELLA 90-4 cruise from 12 -26 April 1990. The cores were collected from the Gulf of Mexico, Mississippi Fan area. |
Info |
R/V GYRE cruise G1-99-GM (99002) multi channel seismic tracklines (GOM99LMCS.SHP)
This GIS data layer represents the tracklines along which multichannel seismic data were collected during USGS cruise G1-99-GM aboard the R/V GYRE. Seismic data were collected in the Gulf of Mexico along 1,268 km of tracklines on the upper and middle continental slope offshore of Texas and Louisiana to study the distribution and acoustic nature of gas hydrates in this region. |
Info |
R/V Parke Snavely (source vessel) navigation and survey geometry from USGS field activity 2021-619-FA collected in April of 2021 offshore Santa Cruz, CA
Navigation data were recorded for the R/V Parke Snavely (RVPS; source vessel) during USGS field activity 2021-619-FA in April of 2021 off the coast of Santa Cruz, California. Data were collected as the RVPS towed a marine sparker sound source along seven depth site transects in water depths ranging between 25 and 600 meters. The R/V San Lorenzo (RVSL; receive vessel) maintained a nearly stationary position at the midpoint along the seven depth site transects and recorded sound with a calibrated hydrophone. ... |
Info |
R/V RAFAEL navigation for swath bathymetry and sidescan-sonar collected during field activities 05001 and 06001, Apalachicola Bay and St. George Sound, Florida (SURVEYLINES)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
R/V San Lorenzo (receive vessel) navigation and survey geometry from USGS field activity 2021-619-FA collected in April of 2021 offshore Santa Cruz, CA
Navigation data were recorded for the R/V San Lorenzo (RVSL; receive vessel) during USGS field activity 2021-619-FA in April of 2021 off the coast of Santa Cruz, California. Data were collected as the RVSL maintained a nearly stationary position at the midpoint along seven depth site transects in water depths ranging between 25 and 600 meters while the R/V Parke Snavely (RVPS; source vessel) towed a sparker sound source along the transects. Navigation data and survey geometry information (offset distances ... |
Info |
s196wo.m77t and s196wo.h77t: MGD77T data and header file for single-beam bathymetry for field activity S-1-96-WO in Cascadia, Washington from 04/14/1996 to 06/06/1996
Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise S-1-96-WO. The cruise was conducted in Cascadia, Washington from April 14 to June 6, 1996. The chief scientists were Mike Fisher from the USGS Coastal and Marine Geology office in Menlo Park, CA and Ernest Flueh from GEOMAR in Germany. The purpose of this cruise was for seismic studies of earthquake hazards posed by the subduction zone off Washington and Oregon. These data are reformatted ... |
Info |
s378sc.m77t and s378sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity S-3-78-SC in Southern California from 05/24/1978 to 06/01/1978
Single-beam bathymetry data along with radar and Loran-C navigation data was collected as part of the U.S. Geological Survey cruise G-1-77-EG. The cruise was conducted in Southern California from May 24 to June 1, 1978. The chief scientists were Bill Normark and Gordon Hess from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was a 12 kilohertz (kHz) and 3.5 kHz system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine ... |
Info |
Salinity_all_frontal: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_all_frontal_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_all_tropical: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_all_tropical_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_GBI_frontal: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_GBI_frontal_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_GBI_tropical: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_GBI_tropical_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_na_frontal: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_na_frontal_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_na_tropical: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Salinity_na_tropical_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Sally_R0_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sally_R1_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sally_R2_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sally_R3_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sally_R4_elevation: Modeling the impacts of sand placement strategies on barrier island evolution in a semi-enclosed bay system: model input and results
Using version 5527 of the XBeach numerical model (Roelvink and others, 2009), barrier island morphological change was simulated at Little Dauphin Island, Alabama (AL) under different storm scenarios and restoration alternatives as described in Passeri and others (2025). The two-dimensional XBeach model can be applied to barrier islands to solve for time-dependent elevations (topography and bathymetry). The XBeach model setup requires the input of topographic and bathymetric elevations at each grid cell. ... |
Info |
Sample and video stations located in the Stellwagen Bank National Marine Sanctuary region (sbnmsallsta.shp)
This data set contains point locations for data stations in the Stellwagen Bank National Marine Sanctuary Region off Boston, Massachusetts, an area of approximately 1100 nautical square miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Stations represent the location of a sediment sample and ... |
Info |
Samples collected along transects off the Eastern United States in 1938 (STETSON38 shapefile)
This study was undertaken to provide information on the characteristics and distribution of surficial sediments off the eastern United States. Accordingly, long traverses were run across the continental shelf and in most case carrying over the shelf break. This data set includes data from those 9 traverses which were conducted north of Virginia. These data constitute the first systematic sampling of the U.S. Atlantic margin to show the effects of environmental factors (e.g. increasing distance from shore, ... |
Info |
Samples from the Georges Bank Canyons acquired in 1936 (STETSON36 shapefile)
Submarine canyons cut into the edge of the continental shelf and the continental slope along much of the U.S. Atlantic coast. Three canyons along the southern edge of Georges Bank (Lydonia, Oceanographer, Gilbert) were dredged and cored to study their modern sediments and the lithologies and ages of the rocks exposed on the canyon walls. As part of this study eleven cores were taken and the results of the textural analyses on the surficial sediments are contained in this data set. |
Info |
Sample still images in JPEG format of the sediment surface in the grab sampler, collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-009-FA, aboard the R/V Auk, Jan. 30, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Sample texture analysis of sediment samples collected in the East and West Flower Garden regions, northwestern Gulf of Mexico outer shelf (ferltxtr)
This sediment database contains location, description, and texture of samples taken during Cruise No. FERL01052 aboard the NOAA Ship Ferrel. These samples were taken on East and West Flower Garden Banks of the Flower Gardens Bank National Marine Sanctuary between May 28, 2002 and June 3, 2002. The information collected during this cruise is intended for a preliminary geologic interpretation of the surficial sediment distribution in order to determine sites for future sample collection. The ... |
Info |
SANA1M.TIF - South Anacapa Island sidescan sonar backscatter image in nearshore Benthic Habitat mapping Project S. California map Series. (UTM 10N, NAD83)
The sidescan sonar image of the nearshore seafloor (0 to 100 m water depths) of the South Anacapa area was mosaicked from data collected in 1999 and 2000. A Klein 2000 sidescan system was used for geophysical surveying. A Triton Elics Isis brand side-scan data recording system was used on the cruise. The survey was navigated with a Leica Differential Global Positioning System (DGPS) which provided a ship position with accuracy of 1-5 m in DGPS mode. At times during the cruise differential signal was ... |
Info |
SANAHAB -- Benthic Habitat polygons for South Anacapa Island (UTM 10N, NAD83)
Benthic habitat polygon coverages have been created for marine reserve locations surrounding the Santa Barbara Basin. Diver, ROV and submersible video transects, bathymetry data, sedimentary samples, and sonar mapping, have been integrated to describe the geological, biological, and oceanographic aspects of habitat. Anacapa Reserve, is part of the Marine Ecological Reserves Research Program (MERRP). The U.S. Geological Survey (USGS), in a cooperative project with Sea Grant-MERRP and investigators at ... |
Info |
sand_geo - Geologic attributes of the coastal zone of Sand Island (Oahu), Hawaii
Geologic attributes of the coastal zone of Sand Island (Oahu), Hawaii |
Info |
sand_slp - Coastal Slope along the coastal zone of Sand Island (Oahu), Hawaii
Coastal Slope along the coastal zone of Sand Island (Oahu), Hawaii |
Info |
SANP1M.TIF - South Anacapa Passage sidescan sonar backscatter image in nearshore Benthic Habitat mapping Project S. California map Series. (UTM 10N, NAD83)
The sidescan sonar image of the nearshore seafloor (0 to 100 m water depths) of the southern Anacapa Passage area was mosaicked from data collected in 1999 and 2000. A Klein 2000 sidescan system was used for geophysical surveying. A Triton Elics Isis brand side-scan data recording system was used on the cruise. The 2000 survey was navigated with a Leica Differential Global Positioning System (DGPS) which provided a ship position with accuracy of 1-5 m in DGPS mode. At times during the cruise differential ... |
Info |
SANPHAB -- Habitat polygons for South Anacapa Passage (UTM 10N, NAD83)
Benthic habitat polygon coverages have been created for marine reserve locations surrounding the Santa Barbara Basin. Diver, ROV and submersible video transects, bathymetry data, sedimentary samples, and sonar mapping, have been integrated to describe the geological, biological, and oceanographic aspects of habitat. Anacapa Reserve, is part of the Marine Ecological Reserves Research Program (MERRP). The U.S. Geological Survey (USGS), in a cooperative project with Sea Grant-MERRP and investigators at ... |
Info |
Santa_Rosa_Island_2021_SBES_xyz: Single-Beam Bathymetry Data Collected During USGS Field Activity Number 2021-322-FA Offshore of Santa Rosa Island, Florida
From June 2 through 9, 2021, the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and determine Holocene stratigraphy near Santa Rosa Island, Florida (FL). Santa_Rosa_Island_2021_SBES_xyz.zip is a xyz point file dataset of field activity number (FAN) 2021-322-FA single-beam bathymetry (SBB) data collected concurrently with subbottom data to provide a current seafloor ... |
Info |
SCAV2OBS -- Assorted visual observations of benthic habitat from ROV and SCUBA dives in the Channel Islands National Marine Sanctuary. (UTM 10N, NAD83)
Point based visual observations of benthic habitat from a variety of SCUBA and ROV dives. Unknown postitional accuracy. Some video data maintained by Russ Vetter, National Marine Fisheries Service, Southwest Fisheries Science Center. |
Info |
Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2008
Seabeach amaranth (Amaranthus pumilus) is a federally threatened plant species that was once prevalent on beaches of the U.S. mid-Atlantic coast. To re-establish a population at Assateague Island National Seashore (ASIS), seabeach amaranth cultivars were planted by ASIS natural resources staff for three growing seasons from 1999 to 2001 and have been monitored since 2001. Characteristics of favorable seabeach amaranth locations were assessed by sampling barrier island and habitat characteristics at sites ... |
Info |
Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010
Seabeach amaranth (Amaranthus pumilus) is a federally threatened plant species that was once prevalent on beaches of the U.S. mid-Atlantic coast. To re-establish a population at Assateague Island National Seashore (ASIS), seabeach amaranth cultivars were planted by ASIS natural resources staff for three growing seasons from 1999 to 2001 and have been monitored since 2001. Characteristics of favorable seabeach amaranth locations were assessed by sampling barrier island and habitat characteristics at sites ... |
Info |
Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2014
Seabeach amaranth (Amaranthus pumilus) is a federally threatened plant species that was once prevalent on beaches of the U.S. mid-Atlantic coast. To re-establish a population at Assateague Island National Seashore (ASIS), seabeach amaranth cultivars were planted by ASIS natural resources staff for three growing seasons from 1999 to 2001 and have been monitored since 2001. Characteristics of favorable seabeach amaranth locations were assessed by sampling barrier island and habitat characteristics at sites ... |
Info |
Seabed component and feature data for the continental margin of the U.S. Pacific Coast (California, Oregon, Washington) from usSEABED (pac_cmp.txt)
This data layer (PAC_CMP.txt) is one of five point coverages of known sediment samples, inspections, and probes from the usSEABED data collection for the U.S. Pacific continental margin integrated using the software system dbSEABED. This data file gives numeric data about selected components (for example, minerals, rock type, microfossils, and benthic biota) and sea floor features (for example, bioturbation, structure, and ripples) at a given site. Values in the attribute fields represent the membership to ... |
Info |
Seabed still images in JPEG format and image locations collected on Stellwagen Bank during U.S. Geological Survey field activity 2013-044-FA, aboard the R/V Auk, November 5, 15, and 21, 2013
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format and image locations collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-015-FA, aboard the R/V Auk, May 22-23 and 29-30, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format and image locations collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-066-FA, aboard the R/V Auk, November 10, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format and image locations collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-070-FA, aboard the R/V Auk, December 12, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format and image locations collected on Stellwagen Bank during U.S. Geological Survey field activity 2015-017-FA, aboard the R/V Auk, May 18-19, 29, and June 3, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format and image locations collected on Stellwagen Bank during U.S. Geological Survey field activity 2015-074-FA, aboard the R/V Auk, December 1, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format and image locations collected on Stellwagen Bank during U.S. Geological Survey field activity 2016-004-FA, aboard the R/V Auk, January 28, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format and image locations collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-030-FA, aboard the R/V Auk, May 18-23, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format and image locations collected on Stellwagen Bank during U.S. Geological Survey field activity 2019-008-FA, aboard the R/V Auk, July 30, 31, and August 1, 2019
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-055-FA, aboard the R/V Auk, September 23 and 24, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-009-FA, aboard the R/V Auk, Jan. 30, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-043-FA, aboard the R/V Auk, Aug. 22 and 23, 2017
This field activity is part of an effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000-scale) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The data collected in this study will aid research on the ecology of fish and invertebrate species that inhabit the region. On August 22 and 23, 2017, the U.S. Geological ... |
Info |
Seabed still images in JPEG format collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-044-FA, aboard the R/V Auk, September 12-14, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format collected on Stellwagen Bank on U.S. Geological Survey field activity 2015-062-FA, aboard the R/V Auk, Oct. 21 and 22 and Nov. 3 and 4 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Seabed still images in JPEG format with EXIF location information collected by the U.S. Geological Survey on Stellwagen Bank during six surveys aboard the R/V Auk, May 2016 to April 2019
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Seabed still images in JPEG format with EXIF location information collected by the U.S. Geological Survey on Stellwagen Bank during three surveys aboard the R/V Auk, September 2020 to August 2021
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Seabed still images in JPEG format with EXIF location information collected on Stellwagen Bank during U.S. Geological Survey field activity 2016-038-FA, aboard the R/V Auk, Sept. 16 and 19, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
SEABOSS Images from Block Island Sound Collected During U.S. Geological Survey (USGS) Cruise 2011-006-FA in JPEG Format
The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ... |
Info |
SEABOSS Images from the Cruise 2012-002-FA in Block Island Sound, in JPEG Format
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
SEABOSS Images from the Cruise 2012-002-FA in Block Island Sound, in JPEG Format
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Seafloor character, 2-m grid--Offshore of Coal Oil Point, California
This part of DS 781 presents 2-m resolution data for the seafloor-character map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "SeafloorCharacter_OffshoreCoalOilPoint_2m.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad ... |
Info |
Seafloor character, 2 m resolution--Monterey Canyon and Vicinity, California
This part of DS 781 presents the seafloor-character map of Monterey Canyon and Vicinity, California. The raster data file is included in "SeafloorCharacter_2m_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., Endris, C.A., and ... |
Info |
Seafloor character, 2 m resolution--Offshore of Aptos, California
This part of DS 781 presents data for the seafloor-character map Offshore of Aptos, California. Seafloor-character data are provided as two separate grids depending on resolution of the mapping system and processing method. This metadata file refers to the data included in "SeafloorCharacter_2m_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., ... |
Info |
Seafloor character, 5-m grid--Offshore of Coal Oil Point, California
This part of DS 781 presents 5-m resolution data for the seafloor-character map of the Offshore of Coal Oil Point map area, California. The raster data file is included in "SeafloorCharacter_OffshoreCoalOilPoint_5m.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Dieter, B.E., Conrad ... |
Info |
Seafloor character, 5 m resolution--Monterey Canyon and Vicinity, California
This part of DS 781 presents the seafloor-character map of Monterey Canyon and Vicinity, California. The raster data file is included in "SeafloorCharacter_5m_MontereyCanyon.zip," which is accessible from https://doi.org/10.3133/ds781. These data accompany the pamphlet and map sheets of Dartnell, P., Maier, K.L., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Hartwell, S.R., Cochrane, G.R., Ritchie, A.C., Finlayson, D.P., Kvitek, R.G., Sliter, R.W., Greene, H.G., Davenport, C.W., Endris, C.A., and ... |
Info |
Seafloor character, 5 m resolution--Offshore of Aptos, California
This part of DS 781 presents data for the seafloor-character map Offshore of Aptos, California. Seafloor-character data are provided as two separate grids depending on resolution of the mapping system and processing method. This metadata file refers to the data included in "SeafloorCharacter_5m_OffshoreAptos.zip," which is accessible from https://doi.org/10.5066/F7K35RQB. These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D, Dieter, B.E., ... |
Info |
Seafloor character--Drakes Bay and Vicinity, California
This part of DS 781 presents the seafloor-character map of the Drakes Bay and Vicinity map area, California (raster data file is included in "SeafloorCharacter_DrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/DrakesBay/data_catalog_DrakesBay.html). These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., ... |
Info |
Seafloor character--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the seafloor-character map of the Hueneme Canyon and Vicinity map area, California. The raster data file is included in "SeafloorCharacter_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., ... |
Info |
Seafloor character offshore of Arcata, California
This seafloor character raster for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Seafloor character is a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Arcata, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a ... |
Info |
Seafloor character--Offshore of Bodega Head, California
This part of DS 781 presents the seafloor-character map Offshore of Bodega Head, California (raster data file is included in "SeafloorCharacter_BodegaHead.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBodegaHead/data_catalog_OffshoreBodegaHead.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, J.T., Krigsman, L.M., ... |
Info |
Seafloor character--Offshore of Bolinas, California
This part of DS 781 presents the seafloor-character map Offshore of Bolinas, California (raster data file is included in "SeafloorCharacter_OffshoreBolinas.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreBolinas/data_catalog_OffshoreBolinas.html). These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Manson, M.W., Sliter, R.W., Endris, C.A., Watt, J.T., Ross, S.L., Kvitek, R.G., Phillips, ... |
Info |
Seafloor character offshore of Cape Mendocino, California
Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Cape Mendocino, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National ... |
Info |
Seafloor character--Offshore of Carpinteria, California
This part of DS 781 presents data for the seafloor-character map of the Offshore of Carpinteria map area, California. The raster data file is included in "SeafloorCharacter_OffshoreCarpinteria.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreCarpinteria/data_catalog_OffshoreCarpinteria.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Endris, C.A., Seitz, G.G., ... |
Info |
Seafloor character offshore of Eureka, California
This seafloor character raster for the Offshore of Eureka, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Seafloor character is a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Eureka, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a ... |
Info |
Seafloor character--Offshore of Fort Ross, California
This part of DS 781 presents the seafloor-character map Offshore of Fort Ross, California (raster data file is included in "SeafloorCharacter_OffshoreFortRoss.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreFortRoss/data_catalog_OffshoreFortRoss.html). These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, J.T., Krigsman, L.M., ... |
Info |
Seafloor character--Offshore of Gaviota Map Area, California
This part of DS 781 presents data for the Seafloor character map of the Offshore of Gaviota map area, California. The vector data file is included in "SeafloorCharacter_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series-Offshore of Gaviota, ... |
Info |
Seafloor character--Offshore of Half Moon Bay, California
This part of DS 781 presents the seafloor-character map of the Offshore of Half Moon Bay map area, California. The raster data file is included in "SeafloorCharacter_OffshoreHalfMoonBay.zip", which is accessible from https://pubs.usgs.gov/ds/781/OffshoreHalfMoonBay/data_catalog_OffshoreHalfMoonBay.html. This raster-format seafloor-character map shows four substrate classes of Offshore of Half Moon Bay, California. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G. ... |
Info |
Seafloor character offshore of Morro Bay, California
Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Morro Bay, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National Oceanic ... |
Info |
Seafloor character--Offshore of Pacifica, California
This part of DS 781 presents the seafloor-character map Offshore of Pacifica, California. The raster data file is included in "SFC_OffshorePacifica.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePacifica/data_catalog_OffshorePacifica.html. These data accompany the pamphlet and map sheets of Edwards, B.D., Phillips, E.L., Dartnell, P., Greene, H.G., Bretz, C.K., Kvitek, R.G., Hartwell, S.R., Johnson, S.Y., Cochrane, G.R., Dieter, B.E., Sliter, R.W., Ross, S.L., Golden, N.E., Watt, J.T., ... |
Info |
Seafloor character offshore of Point Buchon, California
Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Point Buchon, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National ... |
Info |
Seafloor character--Offshore of Point Conception Map Area, California
This part of DS 781 presents data for the Seafloor character map of the Offshore of Point Conception Map Area, California. The vector data file is included in "SeafloorCharacter_OffshorePointConception.zip," which is accessible from https://doi.org/10.5066/F7QN64XQ. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Hartwell, S.R., Golden, N.E., Kvitek, R.G., and Davenport, C.W. (S.Y. Johnson and S.A. Cochran, eds.), 2018, California State Waters Map Series� ... |
Info |
Seafloor character offshore of Point Estero, California
Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of Point Estero, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National ... |
Info |
Seafloor character--Offshore of Point Reyes Map Area, California
This part of DS 781 presents the seafloor-character map Offshore of Point Reyes, California (raster data file is included in "SFC_PointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshorePointReyes/data_catalog_PointReyes.html). These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., Krigsman, L.M., Lowe, E.N ... |
Info |
Seafloor character--Offshore of Refugio Beach, California
This part of DS 781 presents the seafloor-character map of the Offshore of Refugio Beach map area, California. The raster data file is included in "SeafloorCharacter_OffshoreRefugioBeach.zip," which is accessible from https ://pubs.usgs.ov/ds/781/OffshoreRefugioBeach/data_catalog_OffshoreRefugioBeach.html). These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Krigsman, L.M., Dieter, B.E., Conrad, J.E., Greene, H.G., ... |
Info |
Seafloor character--Offshore of Salt Point, California
This part of DS 781 presents the seafloor-character map Offshore of Salt Point, California (raster data file is included in "SeafloorCharacter_SaltPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSaltPoint/data_catalog_OffshoreSaltPoint.html). These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Erdey, M.D., Greene, H.G., Cochrane, G.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Watt, J.T., Krigsman, L.M., ... |
Info |
Seafloor character--Offshore of San Francisco, California
This part of DS 781 presents the seafloor-character map (see sheet 5) Offshore of San Francisco, California (raster data file is included in "SFC_OffshoreSanFrancisco.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanFrancisco/data_catalog_OffshoreSanFrancisco.html). These data accompany the pamphlet and map sheets of Cochrane, G.R., Johnson, S.Y., Dartnell, P., Greene, H.G., Erdey, M.D., Golden, N.E., Hartwell, S.R., Endris, C.A., Manson, M.W., Sliter, R.W., Kvitek, R.G., Watt, J.T., ... |
Info |
Seafloor character--Offshore of San Gregorio, California
This part of SIM 3306 presents data for the seafloor-character map of the Offshore of San Gregorio map area, California. The raster data file is included in "SeafloorCharacter_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., ... |
Info |
Seafloor character--Offshore of Santa Barbara, California
This part of DS 781 presents data for the seafloor-character map of the Offshore of Santa Barbara map area, California. The raster data file is included in "SeafloorCharacter_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B ... |
Info |
Seafloor character offshore of the Eel River, California
Seafloor character, a combination of seafloor induration (surface hardness) and rugosity, was derived from multibeam echosounder (MBES) and annotated underwater video data collected offshore of the Eel River, California. The MBES and underwater video data were collected in support of the U.S. Geological Survey (USGS) California Seafloor Mapping Program, under a collaboration with the California State University Monterey Bay Seafloor Mapping Lab, the California Ocean Protection Council, and the National ... |
Info |
Seafloor character--Offshore of Tomales Point, California
This part of DS 781 presents the seafloor-character map of the Offshore of Tomales Point map area, California. The raster data file is included in "SeafloorCharacter_OffshoreTomalesPoint.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html). These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Golden, N.E., Hartwell, S.R., Greene, H.G., Erdey, M.D., Cochrane, G.R., Watt, J.T., Kvitek, R.G., Manson, M.W., Endris, C ... |
Info |
Seafloor character--Offshore of Ventura, California
This part of DS 781 presents data for the seafloor-character map of the Offshore of Ventura map area, California. The raster data file is included in "SeafloorCharacter_OffshoreVentura.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreVentura/data_catalog_OffshoreVentura.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Seitz, G.G., ... |
Info |
Seafloor character--Offshore Pigeon Point, California
This part of DS 781 presents the seafloor-character map Offshore of Pigeon Point, California. The raster data file is included in "SeafloorCharacter_OffshorePigeonPoint.zip," which is accessible from https://doi.org/10.5066/F7513W80. These data accompany the pamphlet and map sheets of Cochrane, G.R., Watt, J.T., Dartnell, P., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Johnson, S.Y., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Krigsman, L.M., Ritchie, A.C., Sliter, R.W., ... |
Info |
Seafloor character--Offshore Santa Cruz, California
This part of DS 781 presents the seafloor-character map Offshore of Santa Cruz, California. The raster data file is included in "SeafloorCharacter_OffshoreSantaCruz.zip," which is accessible from https://doi.org/10.5066/F7TM785G. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Erdey, M.D., Golden, N.E., Greene, H.G., Dieter, B.E., Hartwell, S.R., Ritchie, A.C., Finlayson, D.P., Endris, C.A., Watt, J.T., Davenport, C.W., Sliter, R.W., Maier, K.L., and Krigsman ... |
Info |
Seafloor character--Offshore Scott Creek, California
This part of DS 781 presents the seafloor-character map of the Offshore of Scott Creek map area, California. The raster data file is included in "SeafloorCharacter_OffshoreScottCreek.zip," which is accessible from https://doi.org/10.5066/F7CJ8BJW. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Johnson, S.Y., Greene, H.G., Erdey, M.D., Dieter, B.E., Golden, N.E., Endris, C.A., Hartwell, S.R., Kvitek, R.G., Davenport, C.W., Watt, J.T., Krigsman, L.M., Ritchie, A.C., Sliter, ... |
Info |
Seafloor character of the Oregon outer continental shelf (OCS) proposed wind farm site
This seafloor-character raster is part of a data release of the Oregon outer continental shelf (OCS) proposed wind farm map site. The substrate classes mapped in this area have been numbered to indicate combinations of seafloor hardness and ruggedness. The map was created from multibeam echosounder (MBES) bathymetry and backscatter data collected in 2014 and processed in 2015 (Cochrane and others, 2016) and a video supervised classification method described by Cochrane (2008). |
Info |
Seafloor Elevation and Volume Change Analyses from 2016 to 2019 Along the Florida Reef Tract, USA
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes along the Florida Reef Tract (FRT) from Miami to Marquesas Keys within a 939.4 square-kilometer area between 2016 and 2019. USGS staff used light detection and ranging (lidar)-derived data acquired by the National Oceanic and Atmospheric Administration (NOAA) during two separate lidar surveys. The first is dataset is referenced as "2016 lidar" data and was collected between ... |
Info |
Seafloor elevation change from 2002 to 2016 in the Upper Florida Keys
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes in the Upper Florida Keys (UFK) from Triumph Reef to Pickles Reef within a 242.4 square-kilometer area. USGS staff calculated changes in seafloor elevation from 2002 to 2016 using light detection and ranging (lidar)-derived data acquired by the USGS in 2001 and 2002 and lidar-derived data acquired by the National Oceanic and Atmospheric Administration (NOAA) in 2016 and 2017. ... |
Info |
Seafloor Elevation Change From 2004 to 2016 at Looe Key, Florida Keys
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes at Looe Key near Big Pine Key, Florida (FL), within a 16.4 square-kilometer area between 2004 and 2016. USGS staff used light detection and ranging (lidar)-derived data acquired by the U.S. Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of eXpertise (JALBTCX) between December 1 and 31, 2004 (USACE-JALBTCX) and the National Oceanic and ... |
Info |
Seafloor Elevation Change From 2016 to 2017 at Crocker Reef, Florida Keys-Impacts From Hurricane Irma
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes at Crocker Reef near Islamorada, Florida (FL), within a 33.6 square-kilometer area following the landfall of Hurricane Irma in September 2017. USGS staff used light detection and ranging (lidar)-derived data acquired by the National Oceanic and Atmospheric Administration (NOAA) between July 21 and November 21, 2016 and USGS multibeam data collected between October 10 and ... |
Info |
Seafloor Elevation Change From 2016 to 2017 at Looe Key, Florida Keys-Impacts From Hurricane Irma (version 2.0)
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes at Looe Key near Big Pine Key, Florida (FL), within a 19.7 square-kilometer area following Hurricane Irma's landfall in September 2017. USGS staff used light detection and ranging (lidar)-derived data acquired by the National Oceanic and Atmospheric Administration (NOAA) between July 21 and November 21, 2016 and USGS multibeam data collected December 12-17, 2017 (Fredericks ... |
Info |
Seafloor Elevation Change From 2017 to 2018 at a Subsection of Crocker Reef, Florida Keys-Impacts from Hurricane Irma
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes at a subsection of Crocker Reef near Islamorada, Florida (FL), within a 6.1 square-kilometer area following the landfall of Hurricane Irma in September 2017. USGS staff used USGS multibeam data collected between October 10 and December 8, 2017 (Fredericks and others, 2019) and March 8-15, 2018 (Fredericks and others, 2019) to assess changes in seafloor elevation and structure ... |
Info |
Seafloor elevation change from the 1930s to 2016 along the Florida Reef Tract, USA
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes along the Florida Reef Tract (FRT) from Miami to Key West within a 982.4 square-kilometer area. USGS staff calculated changes in seafloor elevation from the 1930’s to 2016 using digitized historical hydrographic surveys (H-sheets) acquired by the U.S. Coast and Geodetic Survey (USC&GS) in the 1930’s and light detection and ranging (lidar)-derived digital elevation models ... |
Info |
Sea-floor environments in the Hudson Canyon region (polyline shapefile, geographic, WGS 84)
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and ... |
Info |
Sea-floor interpretation of the East Flower Garden Region, northwestern Gulf of Mexico outer shelf (ef_interp)
Seafloor bottom type interpretation of the East Flower Garden Bank portion of the Flower Garden Banks NMS based on sediment samples and the mulitbeam backscatter and bathymetry. (Polygon Shapefile) |
Info |
Sea-floor interpretation of the West Flower Garden Region, northwestern Gulf of Mexico outer shelf (wf_interp)
Seafloor bottom type interpretation of the West Flower Garden Bank portion of the Flower Garden Banks NMS based on sediment samples and the mulitbeam backscatter and bathymetry. (Polygon Shapefile) |
Info |
Sea floor maps showing topography, sun-illuminated topographic imagery, and backscatter intensity of the Stellwagen Bank National Marine Sanctuary Region off Boston, Massachusetts
This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization ... |
Info |
Sea floor ruggedness analysis for the Stellwagen Bank National Marine Sanctuary region (rugged)
The Terrain Ruggedness Index (TRI) calculates the average difference in elevation between a small area (a center pixel of 13 x 13 m) and its surrounding area (neighboring pixels). The TRI was applied to the digital bathymetric grids of the seafloor of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts to create an analysis of sea floor ruggedness. |
Info |
Sea floor slope analysis for the Stellwagen Bank National Marine Sanctuary region (slope)
The slope analysis of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts was performed using the slope tool in the Spatial Analyst extension in ArcGIS 8.3. The slope tool calculates the maximum rate of change in elevation over a pixel and its eight neighbors for a surface. The slope calculations were carried out for the bathymetric grids of the seafloor of this region. |
Info |
Sea-floor videos and location of bottom video tracklines collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (MP4 video files and polyline shapefile)
Two marine geological surveys were conducted in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey (USGS), University of Connecticut, and University of New Haven through the Long Island Sound Mapping and Research Collaborative. Sea-floor images and videos were collected at 210 sampling sites within the survey area, and surficial sediment samples were collected at 179 of the sites. The sediment data and the observations from the images and videos are used ... |
Info |
Sea-floor videos and location of bottom video tracklines collected in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey during field activities 2016-005-FA and 2017-022-FA (MP4 video files and polyline shapefile)
Two marine geological surveys were conducted in Nantucket Sound, Massachusetts, in May 2016 and May 2017 by the U.S. Geological Survey (USGS) as part of an agreement with the Massachusetts Office of Coastal Zone Management to map the geology of the sea floor offshore of Massachusetts. Samples of surficial sediment and photographs of the sea floor were collected at 76 sampling sites within the survey area, and sea-floor videos were collected at 75 of the sites. The sediment data and the observations from the ... |
Info |
Sea-floor videos and locations of bottom video tracklines collected in Cape Cod Bay, Massachusetts, in September 2019 by the U.S. Geological Survey during field activity 2019-034-FA (MP4 video files and polyline shapefile, GCS WGS 84)
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterize the surface and shallow subsurface geologic framework. Geophysical data collected include swath bathymetry, ... |
Info |
SeaMARC 1A sidescan sonar mosaic for the Mississippi Fan
This ArcView GIS layer is a 25 m version of the completed SeaMARC 1A sidescan sonar mosaic. |
Info |
Seamless USGS Hydrography for the Grand Strand region of South Carolina (HSHYDD, 1:24000: Polygon shapefile)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 02, 2022, from South Hutchinson Beach, Florida
On August 02, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220802.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 03, 2021, from Jupiter Island, Florida
On August 03, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210803.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 03, 2022, from South Hutchinson Beach, Florida
On August 03, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220803.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 04, 2021, from Jupiter Island, Florida
On August 04, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210804.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 05, 2021, from Juno Beach, Florida
On August 05, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210805.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 06, 2021, from Juno Beach, Florida
On August 06, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210806.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 07, 2018, from Jensen Beach, Florida
On August 07, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20180807.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 08, 2018, from Melbourne Beach, Florida
On August 08, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20180808.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 10, 2021, from Melbourne Beach, Florida
On August 10, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210810.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 11, 2021, from Melbourne Beach, Florida
On August 11, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210811.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 20, 2019, from Melbourne Beach, Florida
On August 20, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190820.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 21, 2019, from Melbourne Beach, Florida
On August 21, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190821.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 27, 2019, from Jupiter Island, Florida
On August 27, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190827.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on August 28, 2019, from Jupiter Island, Florida
On August 28, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190828.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 12, 2022, from South Hutchinson Beach, Florida
On July 12, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220712.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 13, 2021, from Jupiter Island, Florida
On July 13, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210713.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 13, 2022, from South Hutchinson Beach, Florida
On July 13, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220713.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 14, 2021, from Jupiter Island, Florida
On July 14, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210714.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 15, 2021, from Juno Beach, Florida
On July 15, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210715.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 16, 2019, from Melbourne Beach, Florida
On July 16, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190716.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 16, 2021, from Juno Beach, Florida
On July 16, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210716.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 17, 2018, from Jensen Beach, Florida
On July 17, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20180717.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 17, 2019, from Melbourne Beach, Florida
On July 17, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190717.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 18, 2018, from Melbourne Beach, Florida
On July 18, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20180718.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 19, 2022, from Jupiter Island, Florida
On July 19, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220719.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 20, 2021, from Melbourne Beach, Florida
On July 20, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210720.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 20, 2022, from Jupiter Island, Florida
On July 20, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220720.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 21, 2021, from Melbourne Beach, Florida
On July 21, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210721.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 21, 2022, from Juno Beach, Florida
On July 21, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220721.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 22, 2022, from Juno Beach, Florida
On July 22, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220722.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 23, 2019, from Jupiter Island, Florida
On July 23, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190723.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 24, 2019, from Jupiter Island, Florida
On July 24, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190724.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 25, 2019, from Jensen Beach, Florida
On July 25, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190725.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on July 26, 2019, from Jensen Beach, Florida
On July 26, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190726.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 12, 2018, from Jensen Beach, Florida
On June 12, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20180612.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 13, 2018, from Melbourne Beach, Florida
On June 13, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20180613.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 14, 2022, from Jupiter Island, Florida
On June 14, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220614.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 15, 2021, from Melbourne Beach, Florida
On June 15, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210615.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 15, 2022, from Jupiter Island, Florida
On June 15, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220615.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 16, 2020, from Jupiter Island, Florida
On June 16, 2020, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20200616.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 16, 2021, from Melbourne Beach, Florida
On June 16, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210616.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 16, 2022, from Juno Beach, Florida
On June 16, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220616.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 17, 2020, from Jupiter Island, Florida
On June 17, 2020, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20200617.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 17, 2022, from Juno Beach, Florida
On June 17, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220617.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 18, 2019, from Melbourne Beach, Florida
On June 18, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190618.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 19, 2019, from Melbourne Beach, Florida
On June 19, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190619.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 22, 2021, from Jupiter Island, Florida
On June 22, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210622.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 22, 2022, from South Hutchinson Beach, Florida
On June 22, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220622.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 23, 2021, from Jupiter Island, Florida
On June 23, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210623.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 23, 2022, from South Hutchinson Beach, Florida
On June 23, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220623.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 24, 2021, from Juno Beach, Florida
On June 24, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210624.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 24, 2022, from South Hutchinson Beach, Florida
On June 24, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220624.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 25, 2019, from Jupiter Island, Florida
On June 25, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190625.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 25, 2020, from Melbourne Beach, Florida
On June 25, 2020, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20200625.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 25, 2021, from Juno Beach, Florida
On June 25, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210625.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 26, 2019, from Jupiter Island, Florida
On June 26, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190626.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 26, 2020, from Melbourne Beach, Florida
On June 26, 2020, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20200626.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 27, 2019, from Jensen Beach, Florida
On June 27, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190627.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on June 28, 2019, from Jensen Beach, Florida
On June 28, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190628.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 08, 2018, from Jensen Beach, Florida
On May 08, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20180508.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 09, 2018, from Melbourne Beach, Florida
On May 09, 2018, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20180509.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 18, 2021, from Jupiter Island, Florida
On May 18, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210518.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 19, 2021, from Jupiter Island, Florida
On May 19, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20210519.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 19, 2022, from South Hutchinson Beach, Florida
On May 19, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220519.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 20, 2019, from Jupiter Island, Florida
On May 20, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190520.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 20, 2021, from Juno Beach, Florida
On May 20, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210520.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 20, 2022, from South Hutchinson Beach, Florida
On May 20, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220520.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 21, 2019, from Jupiter Island, Florida
On May 21, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20190521.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 21, 2021, from Juno Beach, Florida
On May 21, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20210521.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 22, 2019, from Jensen Beach, Florida
On May 22, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190522.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 23, 2019, from Jensen Beach, Florida
On May 23, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jensen Beach, Florida. This dataset, Jensen_20190523.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 24, 2022, from Jupiter Island, Florida
On May 24, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220524.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 25, 2021, from Melbourne Beach, Florida
On May 25, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210525.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 25, 2022, from Jupiter Island, Florida
On May 25, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Jupiter Island, Florida. This dataset, Jupiter_20220525.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 26, 2021, from Melbourne Beach, Florida
On May 26, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210526.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 26, 2022, from Juno Beach, Florida
On May 26, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220526.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 27, 2022, from Juno Beach, Florida
On May 27, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Juno Beach, Florida. This dataset, Juno_20220527.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; Brown and ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 30, 2019, from Melbourne Beach, Florida
On May 30, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190530.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on May 31, 2019, from Melbourne Beach, Florida
On May 31, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190531.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, 2016; ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 01, 2022, from South Hutchinson Beach, Florida
On September 01, 2022, surveys were conducted on ‘high-density’ sea turtle nesting areas located on South Hutchinson Beach, Florida. This dataset, SouthHutchinson_20220901.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 08, 2021, from Melbourne Beach, Florida
On September 08, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210908.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 09, 2021, from Melbourne Beach, Florida
On September 09, 2021, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20210909.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 10, 2019, from Melbourne Beach, Florida
On September 10, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190910.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, ... |
Info |
Sea Turtle Nesting Decision Points and Cross-Shore Beach Profile Data Collected on September 11, 2019, from Melbourne Beach, Florida
On September 11, 2019, surveys were conducted on ‘high-density’ sea turtle nesting areas located on Melbourne Beach, Florida. This dataset, Melbourne_20190911.zip, was collected and processed by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and includes sea turtle nesting decision point locations (.csv) and cross-shore beach profiles (.xyz) at those locations. Utilizing previously published methods for collecting beach profile data (Henderson and others, ... |
Info |
Seawater carbonate chemistry, Kahekili, west Maui
Time-series of seawater carbonate chemistry variables, including salinity, dissolved inorganic nutrients, pH, total alkalinity, and dissolved inorganic carbon from sites along Kahekili Beach Park, west Maui near submarine groundwater seeps and living coral reefs. Samples for seawater were collected by pumping bottom water from the seafloor using a peristaltic pump and collecting discrete water samples every 4-hrs over a 6-day period. |
Info |
SECRU1M.TIF - Southeast Santa Cruz sidescan sonar backscatter image in nearshore Benthic Habitat mapping Project S. California map Series. (UTM 10N, NAD83)
The sidescan sonar image of the nearshore seafloor (0 to 100 m water depths) of the Southeast Santa Cruz area was mosaicked from data collected in 1999. A Klein 2000 sidescan system was used for geophysical surveying. A Triton Elics Isis brand side-scan data recording system was used on the cruise. The 1998 survey was navigated with a Leica Differential Global Positioning System (DGPS) which provided a ship position with accuracy of 1-5 m in DGPS mode. At times during the cruise differential signal was ... |
Info |
SECRUHAB -- Habitat polygons for Southeast Santa Cruz Island (UTM 10N, NAD83)
Benthic habitat polygon coverages have been created for marine reserve locations surrounding the Santa Barbara Basin. Diver, ROV and submersible video transects, bathymetry data, sedimentary samples, and sonar mapping, have been integrated to describe the geological, biological, and oceanographic aspects of habitat. Anacapa Reserve, is part of the Marine Ecological Reserves Research Program (MERRP). The U.S. Geological Survey (USGS), in a cooperative project with Sea Grant-MERRP and investigators at ... |
Info |
Sectional Acoustic Backscatter Image (Falsecolor) of the Puerto Rico Trench in a Projected Coordinate System (utm19_30m_mosaic)
The Puerto Rico Trench is a tectonic plate boundary where the North American Plate slides by and descends under the Caribbean Plate. Although much of the trench lies within the United States of America's Exclusive Economic Zone (EEZ), surprisingly few surveys have been conducted there during the past 25 years. This data set is a grey toned surface model image product derived from a process using multibeam bathymetry and acoustic-backscatter imagery data collected during the U.S. Geological Survey (USGS) ... |
Info |
Sediment and Radiochemical Characteristics from Shore-Perpendicular Estuarine and Marsh Transects in the Grand Bay National Estuarine Research Reserve, Mississippi
To examine sediment transport and provenance between a marsh and estuary, surface sediments were collected along two transects in the Grand Bay National Estuarine Research Reserve, Mississippi (GNDNERR). Each shore-perpendicular transect consisted of fifteen surface samples, collected every 2.5 meters (m) from 10-m out into the estuary to 25-m into the marsh from the shoreline. Sediment samples were analyzed for their physical and radiochemical properties or signatures. Sediment samples were collected ... |
Info |
Sedimentary Data Collected in April 2013 From Dauphin Island and salt marshes of coastal Alabama
From April 13 to 20, 2013, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) collected push cores and vibracores on Dauphin Island, Alabama, along with push and auger cores in salt marshes at several locations in southwestern coastal Alabama. This work, a component of the SPCMSC’s Barrier Island Evolution Research (BIER) project, was conducted as part of USGS field activity number (FAN) 13BIM01. The objectives of the study were to evaluate processes ... |
Info |
Sedimentary Data Collected in April 2016 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2016–327–FA)
The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ... |
Info |
Sedimentary Data Collected in August 2015 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2015–329–FA)
The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ... |
Info |
Sedimentary Data Collected in February 2016 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2016–312–FA)
The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ... |
Info |
Sedimentary Data Collected in November 2015 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2015–341–FA)
The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ... |
Info |
Sedimentary Data Collected in September 2016 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2016–350–FA)
The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ... |
Info |
Sedimentary Data From Grand Bay, Alabama/Mississippi, 2014-2016 (ver. 1.1, April 2020)
This data release is an archive of sedimentary field and laboratory analytical data collected in Grand Bay, Alabama/Mississippi from 2014-2016 by scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC). This work, a component of the SPCMSC’s Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, provides the necessary data to quantify sedimentation rates and sediment sources for the marsh and estuary. The SSIEES project ... |
Info |
Sedimentary Data from the Coastal Marshes Fringing the Lower Waccasassa River, Northwest Florida
Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center extracted sediment and surface samples along transects at three saltmarsh sites situated on the lower end of the Waccasassa River in north-west Florida in order to increase understanding of the region’s environmental history and the ongoing soil chemical processes. To this end, they obtained 17 (ten long and seven short) sediment cores and seven surface samples from saltmarshes along the margins of the river ... |
Info |
Sedimentation Rate Dependence on Pore Fluid Chemistry for Sediment Collected From Area B, Krishna-Godavari Basin, During India's National Gas Hydrate Program Expedition NGHP-02
One goal of the Indian National Gas Hydrate Program's NGHP-02 expedition was to examine the geomechanical response of marine sediment to the extraction of methane from gas hydrate found offshore eastern India in the Bay of Bengal. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages in a lattice of water molecules. Methane gas hydrate is a potential energy resource, but whether extracting methane from gas hydrate in the marine subsurface is ... |
Info |
Sediment Core Locations Collected in March 2012 from the Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 12BIM01)
Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center collected a set of sediment cores from the back-barrier environments along the Chandeleur Islands, Louisiana, in March 2012. The sampling efforts were part of a larger USGS study to evaluate effects on the geomorphology of the Chandeleur Islands following the construction of an artificial sand berm to reduce oil transport onto federally managed lands. The objective of this study was to evaluate the response ... |
Info |
Sediment Core Microfossil Data Collected from the Coastal Marsh of Grand Bay National Estuarine Research Reserve, Mississippi, USA
To aid in geologic studies of sediment transport and environmental change in coastal marsh, 1-centimeter (cm) foraminiferal subsamples were taken from seven sediment push cores collected in the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi, in October 2016. The push cores were collected along two, shore-perpendicular transects at 5, 15, 25, and 50 meters (m) from the shoreline, on opposite sides of Middle Bay during U.S. Geological Survey (USGS) Field Activities Number (FAN) 2016-358 ... |
Info |
Sediment core pore fluid chemistry measurements collected along the Cascadia margin for the FK190612 expedition in June 2019.
Geochemical analysis of sediment core pore fluids collected from seep fields on the FK190612 research expedition in the north Pacific Ocean along the Cascadia margin in June 2019. Samples were collected to deconvolve the different processes impacting the fluid chemistry, including hydrate dissociation and clay mineral dehydration during the smectite-illite transformation that releases inter-layer water. |
Info |
Sediment Database and Geochemical Assessment of Lake Pontchartrain Basin
Detailed chemical, station (source and documentation, sample locations), and texture data are provided for bottom sediments of Lake Pontchartrain, Louisiana. The sediment data are provided as spreadsheet (Microsoft Excel), database (Microsoft Access), and tab-delimited files on CD-ROM and web site. The browser format is the same for both mediums. These data are in the form of appendixes at the end of the report, which provides extensive supporting data, interpretive diagrams, and discussion. The data were ... |
Info |
Sediment data collected in July 2014 from around Breton and Gosier Islands, Louisiana (U.S. Geological Survey Field Activity Numbers 2014–314–FA and 14BIM04)
Breton Island, located at the southern end of the Chandeleur Islands, supports one of Louisiana’s largest historical brown pelican (Pelecanus occidentalis) nesting colonies. Although the brown pelican was delisted as an endangered species in 2009, nesting areas are threatened by continued land loss and are extremely vulnerable to storm impacts. The U.S. Fish and Wildlife Service proposed to restore Breton Island to pre-Hurricane Katrina conditions through rebuilding the shoreface, dune, and back-barrier ... |
Info |
Sediment Data for Samples Collected in 2015, 2016, and 2017 from Coastal Louisiana
Data release doi:10.5066/F71G0KKD associated with this metadata record serves as an archive of sediment data for samples collected in 2015, 2016, and 2017 from coastal Louisiana. In 2015 and 2016, sediment grab samples (N=874) were collected coast-wide along shore-perpendicular transects that included back-barrier, emergent (beach and barrier island), shoreface, and nearshore environments. Sample locations were selected to re-occupy locations previously sampled in 2008 (U.S. Geological Survey [USGS] Open ... |
Info |
Sediment Data from Cobscook Bay, Maine (LARSEN03 shapefile)
The data in this layer were generated as part of an environmental impact statement evaluating the construction of a proposed 250,000 barrel per day oil refinery and marine terminal. Permits for this facility, which would serve the Eastport, Maine area, were requested by the Pittston Company of New York. |
Info |
Sediment Data from Great Bay Estuary, New Hampshire (ARMSTRONG74 shapefile)
The sediment data presented in this data layer were from a geochemical study sited in Great Bay Estuary, New Hampshire. The analog data were originally converted into digital form for inclusion in a Gulf of Maine Contaminated Sediments Database. |
Info |
Sediment Data from off New Hampshire (WARD01 shapefile)
The sediment data contained in this set were produced as part of the site description and monitoring phases of an aquaculture demonstration project. The site is located off the coast of New Hampshire in the Gulf of Maine. |
Info |
Sediment Data from the Continental Rise (ZIMMERMAN72 shapefile)
Short cores were collected on the continental rise off Georges Bank. The character of the sediments and measured bottom currents show that the Western Boundary Undercurrent is a significant factor in sediment transport and deposition along the east coast continental rise. Size data for the sand and mud fractions were estimated by the compilers by subtracting the percent carbonate (composed largely of sand-sized planktonic foraminifera) from the coarse fraction. Silt and clay were not differentiated; the ... |
Info |
Sediment Data from the Great Bay Estuarine System acquired in 1986 (NELSON86 shapefile)
The sediment data presented in this data layer were from a geochemical study sited in Great Bay estuarine system of New Hampshire. Textural data were used to support interpretations of trace metal distributions. The analog data were originally converted into digital form for inclusion in a Gulf of Maine Contaminated Sediments Database. |
Info |
Sediment Data from the Kennebec/Androscoggin River System (LARSEN02 shapefile)
The data in this layer are from an unpublished report produced by the Bigelow Laboratory. The source project was conducted primarily to examine contaminant distributions, but also produced sediment textural data. The data presented in this layer were not part of the Gulf of Maine Contaminated Sediments Database. |
Info |
Sediment data from vibracores collected in January 2015 from around Breton Island, Louisiana (U.S. Geological Survey Field Activity Number 2014–336–FA)
Breton Island, located at the southern end of the Chandeleur Islands, supports one of Louisiana’s largest historical brown pelican (Pelecanus occidentalis) nesting colonies. Although the brown pelican was delisted as an endangered species in 2009, nesting areas are threatened by continued land loss and are extremely vulnerable to storm impacts. The U.S. Fish and Wildlife Service proposed to restore Breton Island to pre-Hurricane Katrina conditions through rebuilding the shoreface, dune, and back-barrier ... |
Info |
Sediment Data Produced by the Bigelow Laboratory (BIGELOW shapefile)
The data in this layer are from a number of published and unpublished sets produced by the Bigelow Laboratory. The source projects were conducted primarily to examine contaminant (e.g. trace metals, PAHs) distributions, but also produced sediment textural data. The data were originally converted into digital format for inclusion in the Gulf of Maine Contaminated Sediments Database. |
Info |
Sediment from Northwest Atlantic Ocean acquired in 1978 (ROWE78 shapefile)
Presented in this dataset are data determined from sediments collected by different means during a variety of cruises to the northwest Atlantic Ocean. These data have been collected in an attempt to gain knowledge of the interrelationships between early diagenesis and remineralization of organic matter, bioturbation, and dissolved ion exchange between sediments and the overlying water. All data are from surficial sediments (0-3 cm below the sediment-water interface). |
Info |
Sediment Grab Samples from the inner continental shelf off the northern Oregon and southern Washington coast from U.S. Geological Survey field activity 1998-014-FA
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan-sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Sediment grain size at river outlets along the California coast
Fluvial sediment samples were collected from the lowermost reaches of 21 coastal watersheds in California, in order to characterize surficial grain size of river sediment from deposits that appeared to be recent based on field context. Samples were collected using a trowel to sample the uppermost 10 cm of sediment. Sampled locations included river-deposited sediment, upstream of tidal influence. Samples excluded coarse gravel and cobble grain sizes, if present. The watersheds selected for sampling have ... |
Info |
Sediment grain size data from samples collected offshore Oceanside, southern California during field activity 2017-686-FA from 2017-10-23 to 2017-10-31
This section of the data release contains grain-size analysis of twenty-six seafloor surface grab samples that were collected aboard the R/V Snavely in 2017 on U.S. Geological Survey cruise 2017-686-FA offshore Oceanside, southern California. The samples were collected at strategic locations along the same transects as seismic-reflection lines oriented to assess sand and gravel resources in Federal and State waters for potential use in future beach nourishment projects along stretches of the coast where ... |
Info |
Sediment grain-size data from sand augers collected in March/April and October 2014 from Assateague Island, Maryland (U.S. Geological Survey Field Activity Numbers [FAN] 2014-301-FA and 2014-322-FA)
The U.S. Geological Survey has a long history of responding to and documenting the impacts of storms along the Nation’s coasts and incorporating these data into storm impact and coastal change vulnerability assessments. Although physical changes caused by tropical and extratropical storms to the sandy beaches and dunes fronting barrier islands are generally well documented, the interaction between sandy shoreline erosion and overwash with the back-barrier wetland and estuarine environments is poorly ... |
Info |
Sediment Grain-Size Data from Sediment Cores Collected in March 2012 Along the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Numbers 12BIM01)
Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center collected a set of sediment cores from the back-barrier environments along the Chandeleur Islands, Louisiana, in March 2012. The sampling efforts were part of a larger USGS study to evaluate effects on the geomorphology of the Chandeleur Islands following the construction of an artificial sand berm to reduce oil transport onto federally managed lands. The objective of this study was to evaluate the response ... |
Info |
Sediment Grain-Size Data from Sediment Samples Collected in July 2013 from the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 13BIM05)
As part of the Barrier Island Evolution Research (BIER) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected sediment samples from the northern Chandeleur Islands in July 2013. The overall objective of this project, which integrates geophysical (bathymetric, seismic, and topographic) and sedimentologic data, is to understand better the depositional and erosional processes that drive the morphologic evolution of barrier islands over ... |
Info |
Sediment Grain-Size Data from Sediment Samples Collected in March and September 2012 from the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Numbers 12BIM01 and 12LGC02)
As part of the Barrier Island Evolution Research (BIER) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected sediment samples from the northern Chandeleur Islands in March and September 2012. The overall objective of this project, which integrates geophysical (bathymetric, seismic, and topographic) and sedimentologic data, is to better understand the depositional and erosional processes that drive the morphologic evolution of barrier ... |
Info |
Sediment grain size data from vibracore samples collected offshore Oceanside to San Diego, southern California, during field activity 2018-638-FA from 2018-05-22 to 2018-05-26
This section of the data release contains grain-size and total organic carbon (TOC) analyses of 174 samples taken from vibracores that were collected aboard the R/V Bold Horizon in 2018 on U.S. Geological Survey Field Activity 2018-638-FA offshore Oceanside to San Diego, southern California. The samples were analyzed for percent weight of grain size and total organic carbon. The samples were taken at approx. 50 cm intervals from (and including) the core-catcher, which represents the bottom of the core. |
Info |
Sediment grain-size data from vibracore samples collected offshore San Francisco, California, during field activity 2019-649-FA from 2019-10-11 to 2019-10-18
This section of the data release contains grain-size and total organic carbon (TOC) analyses of 132 samples taken from vibracores that were collected aboard the R/V Bold Horizon in 2019 on U.S. Geological Survey Field Activity 2019-649-FA offshore San Francisco, California. The samples were analyzed for percent weight of grain size and total organic carbon. The samples were taken at approx. 50 cm intervals from (and including) the core-catcher, which represents the bottom of the core. |
Info |
Sediment grain-size distributions from vibracores collected in Searsville Lake, Jasper Ridge Biological Preserve, Stanford, California
This portion of the data release presents sediment grain-size data from vibracores collected from Searsville Lake, Jasper Ridge Biological Preserve, Stanford, California in October 2018 (USGS Field Activity 2018-682-FA). In total, 36 samples were subsampled from two vibracores: JRBP2018-VC01A and JRBP2018-VC01B. The grain-size distributions of samples were determined using standard techniques developed by the USGS Pacific Coastal and Marine Science Center sediment lab. The grain-size data are provided in a ... |
Info |
Sedimentologic Data from Point aux Chenes Marsh and Estuary, Mississippi (18CCT09)
Sediment samples, including marsh and estuarine surface samples and marsh push and peat-auger cores, were collected from Point aux Chenes, Mississippi from October 23-26, 2018, and August 4, 2021. Marsh surface samples (top 1 centimeter (cm) of sediment; sample names appended with S), marsh push cores (core names appended with M) and peat-auger cores (core names appended with R) were collected along 50-meter (m), shore perpendicular, transects identified as sites 5, 6, 7, and 9. All samples in the dataset ... |
Info |
Sedimentologic Data from Point aux Chenes Marsh and Estuary, Mississippi (21CCT02)
Sediment samples, including marsh and estuarine surface samples and marsh push and peat-auger cores, were collected from Point aux Chenes, Mississippi from October 23-26, 2018, and August 4, 2021. Marsh surface samples (top 1 centimeter (cm) of sediment; sample names appended with S), marsh push cores (core names appended with M) and peat-auger cores (core names appended with R) were collected along 50-meter (m), shore perpendicular, transects identified as sites 5, 6, 7, and 9. All samples in the dataset ... |
Info |
Sedimentologic Data from Vibracores Collected in 2023 from St. Andrew Bay, Florida
In April 2023, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected 11 sediment vibracores within East Bay, St. Andrew Bay, Florida (FL). Sediment vibracore and lithology data in this data release provide assessments on the composition and age of sediments below the seafloor. |
Info |
Sediment Physical Properties Data from Sediment Cores Collected in March 2012 Along the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Numbers 12BIM01)
Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center collected a set of sediment cores from the back-barrier environments along the Chandeleur Islands, Louisiana, in March 2012. The sampling efforts were part of a larger USGS study to evaluate effects on the geomorphology of the Chandeleur Islands following the construction of an artificial sand berm to reduce oil transport onto federally managed lands. The objective of this study was to evaluate the response ... |
Info |
Sediment_PhysicalProperties-met: Archive of sediment physical properties and grain-size data for sediment samples collected offshore of Assateague Island, Maryland and Virginia
This data release serves as an archive of sediment physical properties and grain-size data for surficial samples collected offshore of Assateague Island, Maryland and Virginia, for comparison with surficial estuarine and subaerial sedimentological samples collected and assessed following Hurricane Sandy (Ellis and others, 2015 (http://doi.org/10.3133/ofr20151219); Smith and others, 2015 (http://doi.org/10.3133/ofr20151169); Bernier and others, 2016 (https://pubs.usgs.gov/ds/0999/)). The sediment samples ... |
Info |
Sediment porewater nutrient data from the Escanaba Trough, off the coast of Northern California, USA, from May-June 2022.
Nutrients were measured from porewaters of sediment within the Escanaba Trough, a hydrothermal spreading center. Location information (latitude, longitude, and depth) is also reported. |
Info |
Sediment Radiochemical Data from Georgia, Massachusetts and Virginia Coastal Marshes
This data release is an archive of sedimentary laboratory analytical data produced by scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) for sediment cores and surface samples collected from coastal marshes in Georgia (GA), Virginia (VA), and Massachusetts (MA). Collaborators from USGS Patuxent Wildlife Research Center (PWRC) and the Virginia Institute of Marine Science (VIMS) collected these samples in South Altamaha, GA, Mockhorn Island, VA, Goodwin ... |
Info |
Sediment sample analysis for calcium carbonate of sample collected in the East and West Flower Garden regions, northwestern Gulf of Mexico outer shelf
This file contains location and carbonate content analysis of samples taken during Cruise No. FERL01052 aboard the NOAA Ship Ferrel. These samples were taken on East and West Flower Garden Banks of the Flower Gardens Bank National Marine Sanctuary between May 28, 2002 and June 3, 2002. The information collected during this cruise is intended for a preliminary geologic interpretation of the surficial sediment distribution in order to determine sites for future sample collection. The interpretations ... |
Info |
Sediment sample and textural properties at 40 sample locations collected by the U.S. Geological Survey in Moultonborough Bay, Lake Winnipesaukee, New Hampshire in 2005 (Geographic, WGS 84, Esri point shapefile, 2005-004-FA_SAMPLES.SHP)
In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ... |
Info |
Sediment sample locations and analysis collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA (Microsoft Excel file).
In September 2018, the USGS Woods Hole Coastal and Marine Science Center (WHCMSC), in collaboration with the US Army Corps of Engineers (USACE), conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands”, were dumped into the laFke in the early 20th century, with wide-reaching consequences that have continued into the ... |
Info |
Sediment sample locations and grain size results from samples collected in Barnegat Bay, NJ by the U.S. Geological Survey during 3 surveys in 2012 and 2013 (Esri point shapefile, Geographic, WGS 84)
Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events ... |
Info |
Sediment Sample Locations Collected in August 2015 from Dauphin Island and the surrounding areas
Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ... |
Info |
Sediment samples collected by the USGS within Red Brook Harbor, MA, 2009 (RB_SedimentSamples)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
Sediments of Block Island Sound acquired in 1966 (SAVARD66 shapefile)
A total of 84 surficial sediments samples were collected aboard two cruises from Block Island Sound as part of a Master's Thesis completed at the University of Rhode Island. Sampling was performed with a pipe dredge for most of the samples; a van veen grab was used for the remaining smaples. The data presented in this source show the sediments distribution and elucidate the sedimentary environments and processes on this portion of the continental shelf. |
Info |
Sediments of Boston Harbor acquired in 1968 (MENCHER shapefile)
A study was made of the composition, grain-size distribution, and organic content of grab samples collected from Boston Harbor. In general, the coarsest mean sizes occur in the channels scoured by dredging or tidal action, and the finest in areas where no dredging has occurred and where tidal velocities are at a minimum. |
Info |
Sediments of Buzzards Bay acquired in 1963 (MOORE63 shapefile)
A study of bottom sediment samples from Buzzards Bay, Massachusetts, provides a basis for establishing their major depositional facies and their relationships to the environmental framework. Texturally the sands tend to occur in shoaling areas of greater tidal-current activity, while the argillaceous sediments are deposited in deeper bathymetric entrapments. |
Info |
Sediments of Buzzards Bay, MA (HOUGH40)
The modern sediments of Buzzards Bay are described principally by the use of quantitative data from mechanical analyses. The environment of the sediment and its source and mode of deposition are discussed in the original publication. Although Hough (1940) is available as part of the NGDC Deck41 database, additional data from the original report were manually entered and, therefore, this file is unique. |
Info |
Sediments of Cape Cod Bay, Massachusetts (HOUGH42 shapefile)
Cape Cod Bay, lying on the Massachusetts coast partly enclosed by Cape Cod, is in a glaciated region of low relief. Coarse sediments generally occur in areas exposed to wave and current action as in shallow water near shore or on shoals, and in the deep channel north of the tip of Cape Cod, which is swept by tidal currents. Fine sediments are restricted to the deeper water in the central portion of the Bay, and to the small well-protected embayments of the shore. Although Hough (1942) is available as part ... |
Info |
Sediments off Cape Ann to Cape Cod, MA acquired in 1973 (SCHLEE73 shapefile)
The reconnaissance maps upon which this data set is based show the areal distribution of the major bottom sediment types covering the sea floor off Massachusetts between Cape Ann and Cape Cod. The maps were intended as a guide to the future mapping of gravel, sand, silt, and clay, and, because these sediments reflect the hydraulic conditions, they are also helpful for deducing the important sediment transport mechanisms. |
Info |
Sediments of Narragansett Bay acquired in 1960 (MCMASTER60 shapefile)
Gravel, sand, silt, and clay contents were determined for samples from Narragansett Bay and the adjacent Rhode Island Shelf. In the Narragansett Bay system, clayey silt and sand-silt-clay are the most abundant sediments. Sand is abundant locally and on the inner shelf. In general, toward the lower passages of the Bay the sediments show a progressive change to coarser textures. |
Info |
Sediments of Western Mass Bay acquired in 1976 (MEISBURGER76 shapefile)
A seismic reflection survey with concurrent bottom sampling was conducted in western Massachusetts Bay to obtain information on bottom topography and sediments, subbottom structure and composition, and the location of sand deposits potentially usable for restoration and nourishment of nearby beaches. Primary sediment data was derived from 43 cores. The predominant sediments of the surface and shallow subsurface deposits in the study area are fine sand, sand and gravel, and clayey silt. Sand suitable for ... |
Info |
Sediments on the Shelf off Southern New England (GARRISON66 shapefile)
The sediments and geomorphology of a portion of the northeastern continental shelf between Hudson Canyon and Georges Bank have been investigated. Wave-cut terraces at 13, 45, 65, and 80 fathoms indicate four former low sea levels, while concentrations of beach ridges around 35 fathoms reveal a fifth. The pre-Holocene drainage pattern, still exposed over part of the area, shows that Block Channel was the main stream system which drained most of southern New England. The surface sediments on the western part ... |
Info |
Sediments on the Shelf South of Martha's Vineyard (HOLLISTER69 shapefile)
An unusual accumulation ofi ncohesive fine-grained sediment (silt and clay) occurs in the midst of the sand-covered continental shelf south of Martha's Vineyard. This 4000 square mile deposit of soft material is assumed to overlie relict Pleistocene sands. The objective of this study was to determine the distribution, thickness, and engineering properties of this fine-grained deposit. |
Info |
Sediment Texture and Geomorphology of the Sea Floor from Fenwick Island, Maryland to Fisherman's Island, Virginia
These data are a qualitatively derived interpretive polygon shapefile defining surficial sediment type and distribution, and geomorphology, for nearly 1,400 square kilometers of sea floor on the inner-continental shelf from Fenwick Island, Maryland to Fisherman’s Island, Virginia, USA. These data are classified according to Barnhardt and others (1998) bottom-type classification system, which was modified to highlight changes in secondary sediment-types such as mud and gravel across this primarily sandy ... |
Info |
Sediment Texture of the Sea Floor offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This ... |
Info |
Sediment-Texture Units of the Sea Floor for Buzzards Bay, Massachusetts (BuzzardsBay_sedcover, polygon shapefile, Geographic, WGS84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ... |
Info |
Sediment-Texture Units of the Sea Floor for Vineyard and western Nantucket Sounds, Massachusetts (polygon shapefile, Geographic, WGS84)
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ... |
Info |
Sediment Texture Units of the Sea Floor from Nahant to Northern Cape Cod Bay, Massachusetts (NAH_CCB_sedcover polygon shapefile, Geographic, WGS84)
These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ... |
Info |
Sediment Thickness—Bolinas to Pescadero, California
This part of DS 781 presents data for the sediment-thickness map of the Bolinas to Pescadero, California, region. The raster data file is included in "SedimentThickness_BolinastoPescadero.zip," which is accessible from http://pubs.usgs.gov/ds/781/BolinastoPescadero/data_catalog_BolinastoPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from seismic ... |
Info |
Sediment thickness from seismic reflection data collected offshore of Arcata, California
This 100-m-resolution sediment thickness data raster for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Seismic data were collected by the USGS in 2009 using a mini-sparker seismic systems installed on the Humboldt State University R/V Coral Sea. The data were processed by the USGS into segy format files. The data are available as a georeferenced TIFF image. |
Info |
Sediment thickness from seismic reflection data collected offshore of Eureka, California
This 100-m-resolution sediment thickness data raster for the Offshore of Eureka, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). Seismic data were collected by the USGS in 2009 using a mini-sparker seismic systems installed on the Humboldt State University R/V Coral Sea. The data were processed by the USGS into segy format files. The data are available as a georeferenced TIFF image. |
Info |
Sediment thickness grid of the deep-sea basins offshore of Washington, Oregon, and California (cowthkg.tif) based on data collected in 1984
Cowthkg.tif is a 1000-m resolution grid of sediment thickness derived from contours (cowiso.shp, also in this data set) from 1:1,000,000-scale Map Showing Sediment Isopachs in the Deep-sea Basins of the Pacific Continental Margin, Strait of Juan de Fuca to Point Loma, California (Gardner and others, 1992, 1993a, 1993b). The maximum sediment thickness in this region is 2342 m with a mean value of 359 m. |
Info |
Sediment Thickness--Pigeon Point to Monterey, California
This part of DS 781 presents data for the sediment-thickness map of the Pigeon Point to Monterey, California, map region. The raster data file is included in "SedimentThickness_PigeonPointToMontereyBay.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m-resolution grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was generated from ... |
Info |
Sediment Thickness--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the sediment-thickness map of the Point Conception to Hueneme Canyon, California, region. The raster data file is included in "SedimentThickness_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ... |
Info |
Sediment Thickness—Point Sur to Point Arguello, California
This part of DS 781 presents data for the sediment-thickness map of the Point Sur to Point Arguello, California, region. The raster data file is included in the “SedimentThickness_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected ... |
Info |
Sediment Thickness--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the sediment-thickness map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "SedimentThickness_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between ... |
Info |
Sediment Thickness--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the sediment-thickness map of the Punta Gorda to Point Arena, California, region. The raster data file is included in the "SedimentThickness_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data collected between ... |
Info |
Sediment Thickness--Salt Point to Drakes Bay, California
This part of DS 781 presents data for the sediment-thickness map of the Salt Point to Drakes Bay, California, region. The raster data file is included in "SedimentThickness_SaltPointToDrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/SaltPointToDrakesBay/data_catalog_SaltPointToDrakesBay.html. As part of the USGS's California State Waters Mapping Project, a 20-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Salt Point and Drakes Bay was generated ... |
Info |
Sediment thickness--Santa Barbara Channel, California
This part of DS 781 presents data for the sediment-thickness map of the Santa Barbara Channel, California, region. The raster data file is included in "SedimentThickness_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Program, a 50-m grid of sediment thickness atop the bedrock at the Last Glacial Maximum horizon for the seafloor within the 3-nautical-mile limit of ... |
Info |
Sediment trap and water column chemistry, Baltimore Canyon, U.S. Mid-Atlantic Bight
Time-series of sediment chemistry, including organic biomarker composition and bulk inorganic geochemical analytes, from samples collected over a one-year period in a sediment trap. The sediment traps were deployed at a depth between 603 m to 1318 m, and they were programmed to rotate a 250 mL sample bottle at 30 d intervals, delivering 12 samples during the 1-year deployment between August 2012 and June 2013. In addition, dissolved water column nutrient concentrations and water column trace element ... |
Info |
Sediment Trap Time Series of GDGT and alkenone flux in the Gulf of Mexico
The tetraether index of C86 (TEX86) and alkenone unsaturation index (Uk37Õ) molecular biomarker proxies have been broadly applied in down-core marine sediments to reconstruct past sea surface temperature (SST). Although both TEX86 and Uk37 have been interpreted as proxies for mean annual SST throughout the global ocean, regional studies of glycerol dibiphytanyl glycerol tetraethers (GDGT)s and alkenones in sinking particulate matter (SPM) are required to understand the influence of seasonality, depth ... |
Info |
SEG-Y format boomer seismic data collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
SEG-Y format chirp seismic data from geophysical surveys of Bear Lake, Utah-Idaho, 2002
Bear Lake is a tectonic lake that has existed for at least several hundred thousand years. The lake basin is a relatively simple half graben, a spoon-shaped depression tilted toward the main fault on the east side of the lake. The U.S. Geological Survey, in cooperation with researchers from several universities, has been studying the sediments of Bear Lake since 1996. The general purpose of this effort is to reconstruct past limnological conditions and regional climate on a range of timescales, from ... |
Info |
SEG-Y format Chirp Seismic-Reflection data from the John Day Reservoir collected in 2000
A two-week field operation was conducted in the John Day Reservoir on the Columbia River to image the floor of the pool, to measure the distribution and thickness of post-impoundment sediment, and to verify these geophysical data with video photography and bottom sediment samples. The field program was a cooperative effort between the USGS Coastal and Marine Geology Team of the Geologic Division and the USGS Columbia River Research Laboratory of the Biological Resources Division. The data collection was ... |
Info |
SEG-Y format of boomer seismic-reflection profiles collected in the Pulley Ridge study area 2001
These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote sensing is the next best tool. It was uncertain if Pulley Ridge represented a drowned reef or paleoshoreline. Through seismic imaging, it was determined from the high-amplitude, level-bedded nature of material in the sub-surface that Pulley Ridge represents several stages of barrier-island development. |
Info |
SEG-Y format of Chirp seismic data collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
SEG-Y format of chirp seismic data collected offshore of the Chandeleur Islands, LA, 2006
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
SEG-Y format of chirp seismic data collected offshore of the Chandeleur Islands, LA, 2007
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
SEG-Y format of chirp seismic data collected off the southern shore of Martha's Vineyard, MA, 2007
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
SEG-Y format of chirp seismic-reflection profiles collected in Lake Mead in 1999
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
SEG-Y format of EdgeTech SB-512i and SB-424 chirp seismic-reflection profiles collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_SeismicProfiles)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
SEG-Y format of EdgeTech SB-512i, EdgeTech SB-424, and Knudsen 3200 chirp seismic-reflection profiles collected by the U.S. Geological Survey offshore of Massachusetts within northern Cape Cod Bay.
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
SEG-Y format of EdgeTech SB-512i seismic-reflection profiles collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010.
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
SEG-Y format of Knudsen chirp seismic-reflection profiles collected in Lake Mohave in 2002
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and ... |
Info |
SEG-Y formatted chirp seismic-reflection profile data collected in the Indian River Bay, Delaware, on April 13, 2010, on U.S. Geological Survey Field Activity 2010-006-FA
A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around ... |
Info |
SEG-Y Formatted Seismic-Reflection Profile Data Collected in the Potomac River/Chesapeake Bay from Sept. 6, 2006 to Sept. 8, 2006
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Seismic-Profile Lines Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 07034 in the Vicinity of Woods Hole, Offshore Massachusetts (RAFA07034SPNAVLINE)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Seismic Reflection, Boomer profile images collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior,during USGS field activity 2018-043-FA, (PNG Images)
In September 2018, the USGS Woods Hole Coastal and Marine Science Center (WHCMSC), in collaboration with the US Army Corps of Engineers (USACE), conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands”, were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present ... |
Info |
Seismic Reflection, Boomer shot points collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior, during USGS field activity 2018-043-FA, (CSV text and Esri point shapefile, GCS WGS 84)
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town ... |
Info |
Seismic Reflection, boomer tracklines collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior, during USGS field activity 2018-043-FA, (Esri polyline shapefile, GCS WGS 84)
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town ... |
Info |
Seismic Reflection, EdgeTech SB-424 Chirp profile images collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior, during USGS field activity 2018-043-FA, (PNG Images)
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town ... |
Info |
Seismic Reflection, EdgeTech SB-424 chirp profile images collected within Lake Powell, UT-AZ during USGS field activity 2017-049-FA (PNG images).
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the ... |
Info |
Seismic Reflection, EdgeTech SB-424 Chirp shot points collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS field activity 2018-043-FA, (CSV text and Esri point shapefile, GCS WGS 84)
In September 2018, the USGS Woods Hole Coastal and Marine Science Center (WHCMSC), in collaboration with the US Army Corps of Engineers (USACE), conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands”, were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present ... |
Info |
Seismic Reflection, EdgeTech SB-424 chirp shot points collected within Lake Powell, UT-AZ during USGS field activity 2017-049-FA (CSV text and Esri point shapefile, GCS WGS 84)
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the ... |
Info |
Seismic Reflection, EdgeTech SB-424 Chirp tracklines collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS field activity 2018-043-FA, (Esri polyline shapefile, GCS WGS 84)
In September 2018, the U.S. Geological Survey, in collaboration with the U.S. Army Corps of Engineers, conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands,” were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present. Mapping was focused offshore of the town ... |
Info |
Seismic Reflection, EdgeTech SB-424 chirp tracklines collected within Lake Powell, UT-AZ during USGS field activity 2017-049-FA, (Esri polyline shapefile, GCS WGS 84)
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the ... |
Info |
Seismic Reflection, EdgeTech SB-512i chirp profile images,USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (PNG images)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Seismic Reflection, EdgeTech SB-512i chirp shot points, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (CSV text and Esri point shapefile, GCS WGS 84)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Seismic Reflection, EdgeTech SB-512i chirp tracklines, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (Esri polyline shapefile, GCS WGS 84)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Seismic Reflection, Geometrics multi-channel streamer common midpoint brute stack profile images, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (PNG images)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Seismic Reflection, Geometrics multi-channel streamer common midpoint navigation, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (CSV text and Esri point shapefile, GCS WGS 84)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Seismic Reflection, Geometrics multi-channel streamer tracklines, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (Esri polyline shapefile, GCS WGS 84)
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Seismic-Reflection Profile Data in JPEG Image Format Collected in the Potomac River/Chesapeake Bay from Sept. 6, 2006 to Sept. 8, 2006 on USGS Cruise 06018
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Seismic-Reflection Profiles in SEG-Y Format from Eastern Rhode Island Sound Collected in 1975
During 1975, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in eastern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Seismic-Reflection Profiles in SEG-Y Format From Southern Rhode Island Sound
During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in southern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 3 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Seismic-Reflection Profiles in SEG-Y Format From Western Rhode Island Sound (1980)
During 1980, a Uniboom seismic-reflection survey was conducted by the U.S. Geological Survey (USGS) in western Rhode Island Sound aboard the Research Vessel NeechoThe cruise consisted fo 2 legs and had a total of 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. As a result of recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise ... |
Info |
Seismic-reflection profile tracklines that are located adjacent to vibracores collected by the U.S. Geological Survey within Apalachicola Bay, Florida (Seismic_Cores_INT.shp, 2005-2007)
In 2007, the U.S. Geological Survey collected 24 vibracores within Apalachicola Bay, Florida. The vibracores were collected using a Rossfelder electric percussive (P-3) vibracore system during a cruise on the R/V Gilbert. Selection of the core sites was based on a geophysical survey that was conducted during 2005 and 2006 in collaboration with the National Oceanic and Atmospheric Administration’s (NOAA) Coastal Services Center (CSC) and the Apalachicola Bay National Estuarine Research Reserve. Available ... |
Info |
Seismic Reflection Results from the Gyre 1997 Cruise at the Bryant Canyon of the Louisiana Gulf Coast
This CD-ROM contains digital high resolution seismic-reflection data collected during the USGS GYRE 97006 cruise. The coverage is the offshore Louisana continental slope, Gulf of Mexico. The seismic-reflection data are stored as IBM 4 bit interger SEG-Y format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
Seismic reflection-tracklines, shotpoints, and profile images collected in the Belfast Bay, Maine pockmark field using an EdgeTech SB-424 subbottom profiler during USGS field activities 2006-024-FA and 2009-037-FA (Esri polyline, and point shapefiles, WGS 84, and JPEG images)
The U.S. Geological Survey, Woods Hole Coastal and Marine Science Center in cooperation with the University of Maine mapped approximately 50 square kilometers of the seafloor within Belfast Bay, Maine. Three geophysical surveys conducted in 2006, 2008 and 2009 collected swath bathymetric (2006 and 2008) and chirp seismic reflection profile data (2006 and 2009). The project characterized the spatial, morphological and subsurface variability of the Belfast Bay, Maine pockmark field. Pockmarks are large ... |
Info |
Seismic Shotpoint Navigation: USF 100-shot shotpoint navigation of seismic data collected in the Pulley Ridge area in 1996 and 2001
These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote sensing is the next best tool. It was uncertain if Pulley Ridge represented a drowned reef or paleoshoreline. Through seismic imaging, it was determined from the high-amplitude, level-bedded nature of material in the sub-surface that Pulley Ridge represents several stages of barrier-island development. |
Info |
Seismic shots at 100 shot intervals collected using an EdgeTech 424 chirp seismic-reflection data by the U.S. Geological Survey in the Barnegat Bay, NJ in 2011, 2012, and 2013 (Esri point shapefile, Geographic, WGS 84).
Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events, ... |
Info |
Seismic Trackline Navigation: USF navigation of seismic data collected in the Pulley Ridge area in 1996 and 2001
These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote sensing is the next best tool. It was uncertain if Pulley Ridge represented a drowned reef or paleoshoreline. Through seismic imaging, it was determined from the high-amplitude, level-bedded nature of material in the sub-surface that Pulley Ridge represents several stages of barrier-island development. |
Info |
September 2006 Mississippi and Alabama USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2006 USGS Mississippi ... |
Info |
September 2006 Post-Hurricane Wilma Florida U.S. Army Corps of Engineers Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2006 Post-Hurricane ... |
Info |
September 2007 Northern Gulf of Mexico USGS EAARL Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Northern Gulf of ... |
Info |
September 2007 Southwest Florida Division of Emergency Management Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2007 Southwest Florida ... |
Info |
SfM Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) – Field data from periodic surveys of the Florida Keys and other select shallow water environments
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) and Processes Impacting Seafloor Change and Ecosystem Services (PISCES) projects collect underwater imagery of coral reefs and other scientifically interesting, submerged environments using the novel SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. This sensor collects imagery with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three ... |
Info |
Shaded-relief GeoTIFF image of a portion of Cape Cod and the surrounding sea floor
In order to test hypotheses about groundwater flow under and into estuaries and the Atlantic Ocean, geophysical surveys, geophysical probing, submarine groundwater sampling, and sediment coring were conducted by U.S. Geological Survey (USGS) scientists at Cape Cod National Seashore (CCNS) from 2004 through 2006. Coastal resource managers at CCNS and elsewhere are concerned about nutrients that are entering coastal waters via submarine groundwater discharge, which are contributing to eutrophication and ... |
Info |
Shaded-relief image mosaic of the nearshore coastal waters from Waikiki to Portlock on the island of O'ahu generated using aerial photographs and SHOALS airborne lidar bathymetry data
This portion of the data release contains a digital image mosaic from Waikiki to Portlock along the southeast coast of O'ahu. Digital mosaics at 1-foot (0.3048-meter) resolution, including the areas of Waikiki, Diamond Head, Wai'alae, Maunalua Bay, and Portlock, were generated from 1:10K aerial photography. These five image mosaics were then combined into one larger mosaic, resampled to 1-meter resolution, and merged with lidar bathymetry data to produce the shaded-relief image. |
Info |
Shallow Along Reef Track Imaging System (sATRIS) Images – Dry Tortugas, Florida, 2009
Underwater digital images, single-beam bathymetry, and global positioning system (GPS) data were collected June 13-14, 2009 at Pulaski Shoal within Dry Tortugas National Park, Florida, USA. A total of 195,406 images of the seafloor and water column were collected along pre-defined transect lines and organized into 3 sets: track1, track2, and track3. This data release contains a subset of those images (32,135 images), all of which were used for benthic habitat classification, and contain GPS data. The data ... |
Info |
Shallow Along Track Reef Imaging System (sATRIS) Images – Dry Tortugas, Florida, 2011
Underwater digital images, single-beam bathymetry, and global positioning system (GPS) data were collected July 13 to July 17, 2011 within Dry Tortugas National Park, Florida, USA. A total of 272,828 images of the seafloor and water column were collected along pre-defined transect lines and organized into 14 sets, track1-track14. This data release contains a subset of those images (43,991 images), all of which were used for benthic habitat classification and contain GPS data. The data were collected using ... |
Info |
Shallow ATRIS (sATRIS) Images Crocker Reef, Florida, 2014
Underwater digital images, single-beam bathymetry, and global positioning system (GPS) data were collected June 24-25, 2014, within a 1-kilkometer (km) x 1-km area around Crocker Reef in the Florida Keys, USA. A total of 91,206 images of the seafloor and water column were collected along pre-defined transect lines and organized into three sets: track1, track2, and track3. This data release contains a subset of those images (25,485 images), all of which were used for benthic habitat classification, and ... |
Info |
Shallow ATRIS Seafloor Images - West Turtle Shoal Patch Reef, Rawa PatchReef, Dustan Rocks Patch Reef, and Thor Patch Reef, Florida, 2011
Underwater digital images, single-beam bathymetry, and global-positioning system (GPS) data were collected September 29-30, 2011 around Dustan Rocks Patch Reef, Thor Patch Reef, West Turtle Shoal Patch Reef, and Rawa Patch Reef in the Florida Keys. A total of 101,734 images were collected, covering 4672 square meteres (m2) of reef habitat. This data release contains a subset of 1,420 images, organized into four sets: Track1, Track2, Track3, and Track4. These images were used for coral bleaching assessments ... |
Info |
Shapefile of Historical Bathymetric Soundings for Mississippi and Alabama Derived from National Ocean Service (NOS) Hydrographic Sheets
Hydrographic sheets (H-sheets) and nautical charts produced by the National Ocean Service (NOS) during the 1800s provide historic sounding (water depth) measurements of coastal areas. The data can be vectorized into a geographic information system (GIS), adjusted to a modern vertical datum, and converted into a digital elevation model to provide an interpretation of the historic seafloor elevation. These data were produced to provide an estimate of historical bathymetry for the Mississippi-Alabama coastal ... |
Info |
Shapefile of Historical shorelines for Fire Island and Great South Bay, New York, derived from previously unpublished National Oceanic and Atmospheric Administration (NOAA) 1834-1875 topographic sheets
Topographic sheets (t-sheets) produced by the National Ocean Service (NOS) during the 1800s provide the position of past shorelines. The shoreline data can be vectorized into a geographic information system (GIS) and compared to modern shoreline data to calculate estimates of long-term shoreline rates of change. Many t-sheets were scanned and digitized by the National Oceanic and Atmospheric Administration (NOAA) and are available on the NOAA Shoreline website (https://shoreline.noaa.gov/data/datasheets/t ... |
Info |
Shapefile of the postimpoundment sediment limits in Lake Mead
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United States ... |
Info |
Shapefile of the Single-beam Bathymetry Tracklines Surveyed in July 2015 from Point Au Fer to Raccoon Pint, Louisiana
As part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the south-central coast of Louisiana, from Raccoon Point to Point Au Fer Island, in July 2015. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration ... |
Info |
Shapefile of the Single-beam Bathymetry Tracklines Surveyed in June 2015 from The Chandeleur Islands, Louisiana
As part of the Louisiana Coastal Protection and Restoration Authority (CPRA) Barrier Island Comprehensive Monitoring (BICM) Program, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey around the Chandeleur Islands, Louisiana in June 2015. The goal of the program is to provide long-term data on Louisiana’s barrier islands and use this data to plan, design, evaluate, and maintain current and future barrier island ... |
Info |
Shapefile of the Single-beam Bathymetry Tracklines Surveyed in May-June, 2015 from Grand Bay Alabama/Mississippi
As part of the Sea level and Storm Impacts on Estuarine Environments and Shorelines project (SSIEES), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open bay and tidal creek environments of Grand Bay Alabama/Mississippi, in May-June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the ... |
Info |
Shelf Sediments off Long Island (MCKINNEY70 shapefile)
The detailed nature of relict sediments resulting from and related to the Holocene transgression is revealed through this sedimentological study of a densely sampled corridor across the southern New England continental shelf. These shelf sediments can be divided into an inner and middle clean sand facies and an outer shelf muddy sand facies. Sediment data supports the view that the outer muddy sediment is relict; the sharp "mud line" at about 35 fathoms results not from modern deposition, but from the ... |
Info |
Ship_Horn_Island_2016_IFB_SBB_DEM_metadata: Bathymetric Digital Elevation Model (DEM) of the 2016 nearshore coastal bathymetry from West Ship Island to Horn Island, Gulf Islands National Seashore, Mississippi.
The United States Geological Survey Saint Petersburg Coastal and Marine Science Center (USGS SPCMSC), in cooperation with the United States Army Corps of Engineers (USACE) conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi (GUIS). Camille Cut separates Ship Island into East Ship Island and West Ship Island. The objective of this study was to establish base-level elevation conditions around West Ship Island, East Ship Island, ... |
Info |
Ship_Horn_Island_2016_SBB_xyz_metadata: Bathymetric Digital Elevation Model (DEM) of the 2016 nearshore coastal bathymetry from West Ship Island to Horn Island, Gulf Islands National Seashore, Mississippi.
The United States Geological Survey Saint Petersburg Coastal and Marine Science Center (USGS SPCMSC), in cooperation with the United States Army Corps of Engineers (USACE) conducted bathymetric surveys of the nearshore waters surrounding Ship and Horn Islands, Gulf Islands National Seashore, Mississippi (GUIS). Camille Cut separates Ship Island into East Ship Island and West Ship Island. The objective of this study was to establish base-level elevation conditions around West Ship Island, East Ship Island, ... |
Info |
SHIP NAVIGATION: ANSI Text File of the Navigation and Bathymetry Recorded by the Ship's Differential Global Positioning System (DGPS) in the Potomac River/Chesapeake Bay from Sept. 6 to Sept. 8, 2006 - USGS Cruise 06018
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Ship navigation tracklines from a 2017 multibeam survey near Noyes Submarine Canyon, southeast Alaska
These metadata describe ship navigation tracklines from a 2017 multibeam echosounder survey near Noyo Submarine Canyon and Dixon Entrance, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. The tracklines are provided as a GIS shapefile. |
Info |
Ship navigation tracklines from a 2018 multibeam survey near Noyes Submarine Canyon, southeast Alaska
These metadata describe ship navigation tracklines from a 2018 multibeam echosounder survey near Noyo Submarine Canyon and vicinity, southeast Alaska. Data were collected by the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA survey vessel Fairweather and the data were post-processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) for PCMSC research projects. The tracklines are provided as a GIS shapefile. |
Info |
Ship's log recorded during U.S. Geological Survey field activity 2012-005-FA conducted in Baltimore, Washington, and Norfolk Canyons in a Microsoft Excel 2010 spreadsheet format
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
Ship Tracklines for Seismic-Reflection Data Collected in Eastern Rhode Island Sound in 1975 (A75_6LINES2.SHP)
During 1975, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in eastern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Ship Tracklines for Seismic-Reflection Data Collected in Southern Rhode Island Sound in 1980 (A80_6LINES2.SHP)
During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in southern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 3 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Ship Tracklines for Seismic-Reflection Data Collected in Western Rhode Island Sound (N80_1LINES.SHP)
During 1980, a seismic-reflection survey utilizing Uniboom seismics was conducted by the U.S. Geological Survey (USGS) in western Rhode Island Sound aboard the Research Vessel Neecho. This cruise consisted of 2 legs totalling 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. As a result of recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from ... |
Info |
Ship Tracklines of Seismic-Reflection Data Collected in Eastern Rhode Island Sound in 1975; Lines Correspond to SEG-Y Files (A75_6_SEGYLINES.SHP)
During 1975, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in eastern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Ship Tracklines of Seismic-Reflection Data Collected in Southern Rhode Island Sound in 1980; Lines Correspond to SEG-Y Files (A80_6_SEGYLINES.SHP)
During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in southern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 3 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and ... |
Info |
Ship Tracklines of Seismic-Reflection Data Collected in Western Rhode Island Sound; Lines Correspond to SEG-Y Files (N80_1_SEGYLINES.SHP)
During 1980, a seismic-reflection survey utilizing Uniboom seismics was conducted by the U.S. Geological Survey (USGS) in western Rhode Island Sound aboard the Research Vessel Neecho. This cruise consisted of 2 legs totalling 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. As a result of recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assawoman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cape Hatteras, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cape Lookout, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cedar Island, VA, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cedar Island, VA, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cedar Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Coast Guard Beach, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cobb Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Edwin B. Forsythe NWR, NJ, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Edwin B. Forsythe NWR, NJ, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Edwin B. Forsythe NWR, NJ, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fisherman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Metompkin Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Monomoy Island, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Myrtle Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parker River, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parramore Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rhode Island National Wildlife Refuge, RI, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Ship Shoal Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Smith Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Wreck Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
Shorelines_Oct2012_Sep2016.shp: Fire Island, NY pre and post storm shoreline data from October 2012 to September 2016
Hurricane Sandy made U.S. landfall, coincident with astronomical high tides, near Atlantic City, New Jersey, on October 29, 2012. The storm, the largest on historical record in the Atlantic basin, affected an extensive area of the east coast of the United States. The highest waves and storm surge were focused along the heavily populated New York and New Jersey coasts. At the height of the storm, a record significant wave height of 9.6 meters (m) was recorded at the wave buoy offshore of Fire Island, New ... |
Info |
Shore Proximal Marsh Sediment Deposition and Ancillary Data From Grand Bay National Estuarine Research Reserve, Mississippi: grain size analysis
To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ... |
Info |
Shore proximal sediment deposition in coastal marsh at the Grand Bay National Estuarine Research Reserve, Mississippi: net sedimentation tile datasets from July 2018 to January 2020
To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ... |
Info |
Shore proximal sediment deposition in coastal marsh at the Grand Bay National Estuarine Research Reserve, Mississippi: net sedimentation tile datasets from October 2016 to October 2017
To understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites in the Grand Bay National Estuarine Research Reserve, Mississippi (GNDNERR). Each site consisted of four plots located along a transect perpendicular to the marsh-estuary shoreline at 5-meter (m) increments (5, 10, 15, and 20 m from the shoreline). Each plot contained four net sedimentation tiles (NST) that were secured ... |
Info |
Short-Lived Radium-Isotope (Radium-223 and -224) Specific Activity for Samples Collected Between November 2022 and March 2024 Along the West Florida Shelf (Indian Rocks Beach, Nature Coast, and Venice Headland)
In 2021, a collaborative scientific investigation (National Science Foundation Grant Award OCE-2148989, Project 880516) was stated for the purpose of quantifying shelf inventories and boundary fluxes of dissolved organic nitrogen and dissolved iron to the West Florida Shelf (WFS) to assess their role in supporting the oligotrophic WFS ecosystem. To assess the spatial and temporal variability in submarine groundwater as a boundary source to the shelf, scientists from the U.S. Geological Survey, St. ... |
Info |
Short-term shoreline change rates for Rincon, Puerto Rico 1994-2006 (st_transects.shp)
The 8 km of shoreline from Punta Higüero to Punta Cadena in Rincón, Puerto Rico is experiencing long-term coastal erosion. This study documents historical shoreline changes at Rincón for the period 1936-2006. Thirteen historical shoreline positions were compiled from existing data, new orthophotography, and GPS field surveys. Shoreline vectors represent the high water line at the time of the survey. |
Info |
Shot-point calibrated trackline navigation for chirp seismic data collected in Indian River Bay, Delaware, on April 13, 2010, on U.S. Geological Survey Field Activity 2010-006-FA (IR_ROUTES_CALIB.SHP, Geographic, WGS 84)
A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around ... |
Info |
Shot Point Calibrated Trackline Navigation for Seismic Data Collected in the Potomac River/Chesapeake Bay from Sept. 6, 2006 to Sept. 8, 2006 (TRACK_ROUTE_CALIB_GEOG.SHP)
In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to ... |
Info |
Shotpoint navigation (100 shot interval) for CHIRP seismic data collected during USGS cruise GYRE 99002 (L1_5SP100G.SHP)
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. A two week cruise aboard the R/V GYRE focused on mapping surficial sedimentary processes and their connection to the subsurface geology. The study area was on the upper continental slope in the northwestern Gulf of Mexico; an area of active ... |
Info |
Shot-Point Navigation (500 Shot Interval) for the Boomer High-Resolution Seismic-Reflection Profiles Collected During U.S. Geological Survey (USGS) R/V Rafael Cruise 08034 off Edgartown, Massachusetts (08034_BOOMERNAV500.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Shot-Point Navigation (500 Shot Interval) for the Chirp High-Resolution Seismic-Reflection Profiles Collected During U.S. Geological Survey (USGS) R/V Rafael Cruise 08034 off Edgartown, Massachusetts (08034_KELNAV500.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Shotpoint navigation (60 shot interval) for lines 1-5 of USGS GYRE cruise 99002 (L1_5SP.SHP)
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. A two week cruise aboard the R/V GYRE focused on mapping surficial sedimentary processes and their connection to the subsurface geology. The study area was on the upper continental slope in the northwestern Gulf of Mexico; an area of active ... |
Info |
Shot point navigation at 100-shot intervals collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, 08016_Chirp_100SHT.SHP)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Shot point navigation at 100 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected by the U.S. Geological Survey off the southern shore of Martha's Vineyard, MA, 2007 (ESRI POINT SHAPEFILE, SEISMIC_100SHT.SHP).
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Shot point navigation at 100 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Baltimore Canyon, mid-Atlantic margin (Esri point shapefile, Geographic, WGS 84, BC_all100shot.shp)
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
Shot point navigation at 100 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Norfolk Canyon, mid-Atlantic margin (Esri point shapefile, Geographic, WGS 84, NC_all100shot.shp)
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
Shot point navigation at 100 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Washington Canyon, mid-Atlantic margin (Esri point shapefile, Geographic, WGS 84, WC_all100shot.shp)
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
Shot point navigation at 500-shot intervals collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, 08016_Chirp_500SHT.SHP)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Shot point navigation at 500 shot intervals for EdgeTech SB-424 chirp seismic-reflection data collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Elizabeth Islands, MA, 2010 (2010-003-FA_Chirp424_500shot.shp, ESRI point shapefile)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Shot point navigation at 500 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected by the U.S. Geological Survey - St. Petersburg Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010 (ESRI point shapefile, 10cct02_SeismicShot_500.shp)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Shot point navigation at 500 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010 (ESRI point shapefile, 2010-012-FA_SeismicShot_500.shp)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Shotpoint navigation at a 500-shot interval for chirp seismic-reflection data collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (Point Shapefile)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Shotpoint navigation at a 500-shot interval for chirp seismic-reflection data collected in 2016 by the U.S. Geological Survey off Town Neck Beach in Sandwich, Massachusetts, during field activity 2016-017-FA (point shapefile)
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ... |
Info |
Shotpoint navigation at a 500-shot interval for chirp seismic-reflection data collected south of Martha's Vineyard and north of Nantucket by the U.S. Geological Survey during field activity 2013-003-FA offshore of Massachusetts in 2013 (2013-003-FA_512i_shot500, Esri Point Shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish ... |
Info |
Shot point navigation at even 500 shot intervals for 512i seismic-reflection data collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA, 2014 (Esri polyline shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
Shot point navigation at even 500 shot intervals for EdgeTech SB-512i and SB-424 chirp seismic-reflection data collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_SeismicShot_500 shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Shot point navigation at even 500 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected by the U.S. Geological Survey offshore of Massachusetts within Vineyard Sound by the U.S. Geological Survey in 2009, 2010, and 2011 (VS_SeismicShot_500, ESRI Point Shapefile, Geographic, WGS84).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ... |
Info |
Shot point navigation at even 500 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected in 2014 by the U.S. Geological Survey offshore of Fire Island, NY (Esri point shapefile, GCS WGS 84)
The U.S. Geological Survey (USGS) conducted a geophysical and sampling survey in October 2014 that focused on a series of shoreface-attached ridges offshore of western Fire Island, NY. Seismic-reflection data, surficial grab samples and bottom photographs and video were collected along the lower shoreface and inner continental shelf. The purpose of this survey was to assess the impact of Hurricane Sandy on this coastal region. These data were compared to seismic-reflection and surficial sediment data ... |
Info |
Shot point navigation at even 500 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (Esri point shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
Shot point navigation at even 500 shot intervals for EdgeTech SB-512i chirp seismic-reflection data collected in Buzzards Bay by the U.S. Geological Survey offshore of Massachusetts in 2009, 2010, and 2011 (BB_SeismicShot_500 Esri Point Shapefile, Geographic, WGS84).
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
Shot point navigation at even 500 shot intervals for EdgeTech SB-512i, EdgeTech SB-424, and Knudsen 3200 chirp seismic-reflection data collected by the U.S. Geological Survey offshore of Massachusetts within northern Cape Cod Bay (CCB_SeismicShot_500 shapefile)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
Shot point navigation at even 500 shot intervals for Knudsen 3202 seismic-reflection data collected by the U.S. Geological Survey surrounding the eastern Elizabeth Islands and northern Martha's Vineyard, MA, 2011 (Esri point shapefile, GCS WGS 84, 2011-013-FA_Knudsen_500sht.shp)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Shot point navigation at even 500 shot intervals for Knudsen 3202 seismic-reflection data collected by the USGS within Red Brook Harbor, MA, 2009 (RB_SeismicShot_500)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ... |
Info |
Shot-Point Navigation Data Collected Along Chirp Seismic-Profile Lines During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 08034 in the Vicinity of Edgartown Harbor, Offshore Massachusetts (08034_KELNAV.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Shot-Point Navigation Data Collected Along Seismic-Profile Lines During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 07034 in the Vicinity of Woods Hole, Offshore Massachusetts (RAFA07034SPNAV.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Shot point navigation for chirp, water-gun, and boomer seismic reflection data collected within the New York Bight by the U.S. Geological Survey (Esri point shapfile, Geograhpic, WGS84)
These data represent the shot point navigation data for the seismic-reflection systems utilized during U.S. Geological Survey geophysical research cruises. These data are stored in intervals of 500, 1000, or 2000 shots. |
Info |
Shotpoint navigation for Keathley Canyon Multichannel Seismics Survey Collected During USGS Cruise G1-03-GM (03001) - G1CDP_NAV_KC_GEO.SHP
The point shapefile contains the shotpoint navigation for the Keathley Canyon multichannel seismic survey collected during USGS cruise G1-03-GM aboard the R/V Gyre in the Gulf of Mexico in May, 2003. The purpose of this cruise was to collect multichannel seismic data in support of USGS and Department of Energy gas hydrate studies. About 786 km of data were collected along 59 lines in and around lease block Keathley Canyon 195. |
Info |
Shot-Point Navigation for the Boomer High-Resolution Seismic-Reflection Profiles Collected During U.S. Geological Survey (USGS) R/V Rafael Cruise 08034 off Edgartown, Massachusetts (08034_BOOMERNAV.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Shot points (60 shot interval) for CHIRP seismic profiles 15-27 collected on GYRE cruise 99002 (L15_27SP.SHP)
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. A two week cruise aboard the R/V GYRE focused on mapping surficial sedimentary processes and their connection to the subsurface geology. The study area was on the upper continental slope in the northwestern Gulf of Mexico; an area of active ... |
Info |
Shot points at 500 shot intervals for chirp seismic-reflection data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (seismic_sht_06015.shp, points)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Shot points at 500 shot intervals for chirp seismic-reflection data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (seismic_sht_07007.shp, points)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Shot points at 500 shot intervals for EdgeTech 512i chirp seismic-reflection data collected by the U.S. Geological Survey in the Cape Ann - Salisbury Beach, MA survey area (SEISMICSHOT_500, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
Shot Points at 500 shot intervals for seismic data collected aboard R/V RAFAEL (field activities 05001 and 06001) in Apalachicola Bay and St. George Sound, FL (SeismicShot500)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Sidescan-sonar 1-minute navigation collected by the U.S. Geological Survey off the southern shore of Martha's Vineyard, MA, 2007. (ESRI POINT SHAPEFILE, SONAR_1MIN.SHP)
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Sidescan-sonar Image of the Eastern Portion of the John Day Reservoir - Washington State Plane South
A two-week field operation was conducted in the John Day Reservoir on the Columbia River to image the floor of the pool, to measure the distribution and thickness of post-impoundment sediment, and to verify these geophysical data with video photography and bottom sediment samples. The field program was a cooperative effort between the USGS Coastal and Marine Geology Team of the Geologic Division and the USGS Columbia River Research Laboratory of the Biological Resources Division. The data collection was ... |
Info |
Sidescan-sonar Image of the Western Portion of the John Day Reservoir - Washington State Plane South
A two-week field operation was conducted in the John Day Reservoir on the Columbia River to image the floor of the pool, to measure the distribution and thickness of post-impoundment sediment, and to verify these geophysical data with video photography and bottom sediment samples. The field program was a cooperative effort between the USGS Coastal and Marine Geology Team of the Geologic Division and the USGS Columbia River Research Laboratory of the Biological Resources Division. The data collection was ... |
Info |
Sidescan-sonar mosaic collected by the U.S. Geological Survey off the southern shore of Martha's Vineyard, MA, 2007. (GeoTIFF IMAGE, SONAR_05M.TIF)
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Sidescan sonar navigation from USGS cruise 1999-045-FA along the inner continental shelf of northern North Carolina (iss1999045_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Sidescan sonar navigation from USGS cruise 2001-005-FA along the inner continental shelf of northern North Carolina (iss2001005_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Sidescan sonar navigation from USGS cruise 2002-012-FA along the inner continental shelf of northern North Carolina (iss2002012_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Sidescan sonar navigation from USGS cruise 2002-013-FA along the inner continental shelf of northern North Carolina (iss2002013_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Sidescan sonar navigation from USGS cruise 2003-003-FA along the inner continental shelf of northern North Carolina (iss2003003_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Sidescan sonar navigation from USGS cruise 2004-003-FA along the inner continental shelf of northern North Carolina (iss2004003_tracklines.shp)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Sidescan-Sonar navigation trackline data collected by the U.S. Geological Survey offshore of the Grand Strand, South Carolina (SONAR_TRK, Polyline)
In 1999, the USGS, in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this geologic framework and ... |
Info |
Sidescan Sonar point shapefile and ASCII navigation files collected by the U.S. Geological Survey in the Madison Swanson and Steamboat Lumps Marine Protected Areas, Gulf of Mexico in 2000 (Geographic, WGS 84)
The U.S. Geological Survey (USGS) mapped approximately 22 square miles of the Madison Swanson Marine Protected Area (MPA) and Steamboat Lumps MPA, which are located on the Florida shelf edge in the northeastern Gulf of Mexico in 2000 using sidescan sonar and high-resolution chirp seismic-reflection systems. This survey was conducted as part of a larger study of the effectiveness of no-fishing reserves in protecting grouper spawning aggregations. Field activity information for this cruise is available on ... |
Info |
Sidescan sonar polyline shapefile of trackline navigation files collected by the U.S. Geological Survey in the Madison Swanson and Steamboat Lumps Marine Protected Areas, Gulf of Mexico in 2000 (Geographic, WGS 84)
The U.S. Geological Survey (USGS) mapped approximately 22 square miles of the Madison Swanson Marine Protected Area (MPA) and Steamboat Lumps MPA, which are located on the Florida shelf edge in the northeastern Gulf of Mexico in 2000 using sidescan sonar and high-resolution chirp seismic-reflection systems. This survey was conducted as part of a larger study of the effectiveness of no-fishing reserves in protecting grouper spawning aggregations. Field activity information for this cruise is available on ... |
Info |
Sidescan-sonar trackline navigation collected by the U.S. Geological Survey off the southern shore of Martha's Vineyard, MA, 2007. (ESRI POLYLINE SHAPEFILE, SONAR_TRKNAV.SHP)
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Sidescan-sonar trackline navigation collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, 08016_KLEIN_TRK.SHP)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Sidescan-sonar Tracklines in Geographic Coordinates from Lake Mohave - 2002
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and ... |
Info |
Sidescan-sonar Tracklines in the Geographic Coordinate System - Lake Mead 2000
A one-week geophysical survey was conducted in the Las Vegas Bay part of Lake Mead during June 1-6, 2000 to acoustically map the surficial sediments and shallow subsurface geology of this part of the lake. The study was done by researchers from the U.S. Geological Survey, Coastal and Marine Geology Program in Woods Hole, MA and the University of Nevada at Las Vegas. The objective was to map the distribution, volume and acoustic character of sediment that has accumulated on the floor of this part of the lake ... |
Info |
Single-Beam Bathymetric Data Collected in 2004 from Madison Bay, Louisiana
Data release doi:10.5066/P9RIB5GC associated with this metadata record serves as an archive of single-beam bathymetric (SBB) data collected in July 2004 (Madison Bay) and August 2008 (Bully Camp, Point au Chien, Caminada, Fourchon, and Leeville) at six study areas in the Mississippi River Delta Plain (MRDP), Louisiana. Data were collected from historically formed open-water bodies as part of the U.S. Geological Survey’s (USGS) Gulf Coast Subsidence project to provide more extensive spatial coverage than ... |
Info |
Single-Beam Bathymetric Data Collected in 2008 from the Mississippi River Delta Plain, Louisiana
Data release doi:10.5066/P9RIB5GC associated with this metadata record serves as an archive of single-beam bathymetric (SBB) data collected in July 2004 (Madison Bay) and August 2008 (Bully Camp, Point au Chien, Caminada, Fourchon, and Leeville) at six study areas in the Mississippi River Delta Plain (MRDP), Louisiana. Data were collected from historically formed open-water bodies as part of the U.S. Geological Survey’s (USGS) Gulf Coast Subsidence project to provide more extensive spatial coverage than ... |
Info |
Single-Beam Bathymetric Data collected with Personal Watercraft around Fire Island, New York (2014) in XYZ ASCII text file format
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ... |
Info |
Single-Beam Bathymetric Data collected with Personal Watercraft collected along the Fire Island, New York shoreface (2014) in XYZ ASCII text file format
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ... |
Info |
Single-Beam Bathymetric Data collected with Personal Watercraft collected within Fire Island Inlet, New York (2014) in XYZ ASCII text file format
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ... |
Info |
Single-Beam Bathymetric Data collected with Personal Watercraft collected within Great South Bay, New York (2014) in XYZ ASCII text file format
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ... |
Info |
Single-Beam Bathymetric Data collected with Personal Watercraft collected within Narrow Bay, New York (2014) in XYZ ASCII text file format
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ... |
Info |
Single-Beam Bathymetric Data collected with Personal Watercraft collected within Wilderness Breach, Fire Island, New York (2014) in XYZ ASCII text file format
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ... |
Info |
Single-Beam Bathymetry Data 10-meter DEM Collected in 2015 from Grand Bay, Alabama/Mississippi
As part of the Sea level and Storm Impacts on Estuarine Environments and Shorelines project (SSIEES), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open bay and tidal creek environments of Grand Bay Alabama/Mississippi, in May-June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the ... |
Info |
Single-Beam Bathymetry Data 30-meter DEM Collected in 2015 from Grand Bay, Alabama/Mississippi
As part of the Sea level and Storm Impacts on Estuarine Environments and Shorelines project (SSIEES), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open bay and tidal creek environments of Grand Bay Alabama/Mississippi, in May-June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the ... |
Info |
Single-beam bathymetry data collected in 2010 and 2011 in the vicinity of Arey Lagoon and Barter Islands, Alaska
Single-beam bathymetry data were collected in 2010 and 2011 in the nearshore waters around Barter Island, Arey Island, and within Arey Lagoon, Alaska. Measurements were made from a small boat or dinghy using one of three systems: a Humminbird 898 SI Fish Finder with integrated GPS (2010 and 2011), an Ohmex Sonarmite BT integrated with a Trimble GeoHX series GPS (2011), or a Garmin Sounder with integrated GPS (2011). Each system collected single-beam water depth with accuracies better than 4 meters (m) ... |
Info |
Single-Beam Bathymetry Data Collected in 2015 nearshore Dauphin Island, Alabama, U.S. Geological Survey (USGS). These data are in the North American Datum 1983 (NAD83) for horizontal component, and the North American Vertical Datum 1988 (NAVD88) with respect to GEOID12A, and Mean Low or Lower Water (MLLW) for the vertical components.
Dauphin Island, Alabama is a barrier island located in the Gulf of Mexico that supports local residence, tourism, commercial infrastructure, and the historical Fort Gaines. During the past decade the island has been impacted by several major hurricanes (Ivan, 2004; Katrina, 2005; Isaac 2012). Storms along with sea level rise, presents a continued threat to island stability. State and federal managers are taking a scientific investigative approach to identify the best options available to formulate and ... |
Info |
Single-Beam Bathymetry Data Collected in 2015 nearshore Dauphin Island, Alabama, U.S. Geological Survey (USGS). This metadata file is specific to the International Reference Frame 2000 (ITRF00) xyz point data.
Dauphin Island, Alabama is a barrier island located in the Gulf of Mexico that supports local residence, tourism, commercial infrastructure, and the historical Fort Gaines. During the past decade the island has been impacted by several major hurricanes (Ivan, 2004; Katrina, 2005; Isaac 2012). Storms along with sea level rise, presents a continued threat to island stability. State and federal managers are taking a scientific investigative approach to identify the best options available to formulate and ... |
Info |
Single-Beam Bathymetry Data Collected in 2022 from Point Aux Chenes Bay, Mississippi
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS – SPCSMC), conducted a single-beam bathymetry survey within Point Aux Chenes Bay, Mississippi (MS), in June 2022 under the USGS Field Activity Number (FAN) 2022-320-FA. The data was collected from two personal watercrafts (PWC): research vessel (R/V) Shark (subFAN 22CCT09, WVR1) and R/V Chum (subFAN 22CCT10, WVR2). A re-survey of just the north and south subtidal reefs occurred in November 2022 (subFANs ... |
Info |
Single-Beam Bathymetry Data Collected in March 2021 from Grand Bay and Point Aux Chenes Bay, Mississippi/Alabama
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) in St. Petersburg, Florida, conducted a bathymetric survey of Point Aux Chenes Bay and a small portion of Grand Bay, Mississippi/Alabama, from March 3-6, 2021. Efforts were supported by the Estuarine and MaRsh Geology project (EMRG), and the data described will provide baseline bathymetric information for future research investigating wetland/marsh evolution, sediment transport, and recent and long-term ... |
Info |
Single-Beam Bathymetry XYZ Data Collected in 2015 from Grand Bay, Alabama/Mississippi
As part of the Sea level and Storm Impacts on Estuarine Environments and Shorelines project (SSIEES), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open bay and tidal creek environments of Grand Bay Alabama/Mississippi, from May to June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along ... |
Info |
Single Beam Bathymetry XYZ Data Collected in July 2015 from Point Au Fer to Raccoon Point, Louisiana
As part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the south-central coast of Louisiana, from Raccoon Point to Point Au Fer Island, in July 2015. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration ... |
Info |
Single Beam Bathymetry XYZ Data Collected in June 2015 from the Chandeleur Islands, Louisiana
As part of the Louisiana Coastal Protection and Restoration Authority (CPRA) Barrier Island Comprehensive Monitoring (BICM) Program, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single beam bathymetry survey around the Chandeleur Islands, Louisiana in June 2015. The goal of the program is to provide long-term data on Louisiana’s barrier islands and use this data to plan, design, evaluate, and maintain current and future barrier island ... |
Info |
Site_Information-met: Archive of sediment physical properties and grain-size data for sediment samples collected offshore of Assateague Island, Maryland and Virginia
This data release serves as an archive of sediment physical properties and grain-size data for surficial samples collected offshore of Assateague Island, Maryland and Virginia, for comparison with surficial estuarine and subaerial sedimentological samples collected and assessed following Hurricane Sandy (Ellis and others, 2015 (http://doi.org/10.3133/ofr20151219); Smith and others, 2015 (http://doi.org/10.3133/ofr20151169); Bernier and others, 2016 (https://pubs.usgs.gov/ds/0999/)). The sediment samples ... |
Info |
Slope—Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the curvature map of the Hueneme Canyon and vicinity map area, California. The raster data file is included in "Curvature_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter, R.W., ... |
Info |
SMIG1M.TIF - Sidescan sonar image of South San Miguel Island (UTM 10N, NAD83)
The sidescan sonar image of the nearshore seafloor (0 to 100 m water depths) of the Big Sycamore reserve area was mosaicked from data collected in 1998. A Klein 2000 sidescan system was used for geophysical surveying. A Triton Elics Isis brand side-scan data recording system was used on the cruise. The 1998 survey was navigated with a Leica Differential Global Positioning System (DGPS) which provided a ship position with accuracy of 1-5 m in DGPS mode. At times during the cruise differential signal was ... |
Info |
Snap Raster used to create interpolated digital elevation models (DEMs) in the nearshore around Ship, Horn, and Petit Bois Islands, Mississippi: 1916 to 1920, 2008 to 2009 and 2016
To characterize coastal change, historical maps and complementary records were compiled including: topographic sheets (T-sheets), hydrographic sheets (H-sheets, smooth sheets), shorelines, and bathymetric soundings surrounding the Mississippi (MS) barrier islands over several time periods (1916-1920, 2008-2009 and 2016). One goal of this work was to create a time-series of bathymetric change maps around the islands. This USGS data release includes three digital elevation models (DEMs) for 1916 to 1920, 2008 ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM03
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11CEV01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, ... |
Info |
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11CEV02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17 ... |
Info |
Sonde data to characterize physical and chemical water column properties of flooded caves (Ox Bel Ha and Cenote Crustacea) within the coastal aquifer of the Yucatan Peninsula, Quintana Roo, from December 2013 to January 2015
Natural cave passages penetrating coastal aquifers in the Yucatan Peninsula (Quintana Roo, Mexico) were accessed to investigate how regional meteorology and hydrology control dissolved organic carbon and methane dynamics in karst subterranean estuaries, the region of aquifers where fresh and saline waters mix. Three field trips were carried out in December 2013, August 2014, and January 2015 to obtain 1) physicochemical and 2) geochemical data from the water column and 3) temporal records of water chemistry ... |
Info |
Sonobuoy Seismic and Navigation Data Collected Using Sercel GI Guns and Ultra Electronics Seismic Sonobuoys During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA
In summer 2018, the U.S. Geological Survey partnered with the U.S Department of Energy and the Bureau of Ocean Energy Management to conduct the Mid-Atlantic Resources Imaging Experiment (MATRIX) as part of the U.S. Geological Survey Gas Hydrates Project. The field program objectives were to acquire high-resolution 2-dimensional multichannel seismic-reflection and split-beam echo sounder data along the U.S Atlantic margin between North Carolina and New Jersey to determine the distribution of methane gas ... |
Info |
Sorbed-water (H2O-) corrected chemistry for ferromanganese crust samples from the western equatorial Pacific Ocean
Ferromanganese crust samples were collected via dredge during four oceanographic research cruises to the western equatorial Pacific Ocean. The location (latitude, longitude, depth) and concentrations of 27 major and trace elements in the most recent growth layers of ferromanganese crusts from 57 dredge sites are presented here, as well as select seawater chemistry at each location. These data were used in statistical analyses to determine how oceanographic conditions affect the chemical composition of ... |
Info |
Sound velocity profile data from an AML Oceanographic MVP30 and Minos X collected in Cape Cod Bay, Massachusetts during USGS Field Activity 2019-002-FA (PNG images, SVP text, and point shapefile, GCS WGS 84)
Accurate data and maps of sea floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. To address these concerns the U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management (CZM), comprehensively mapped the Cape Cod Bay sea floor to characterize the surface and shallow subsurface geologic framework. Geophysical data collected include swath bathymetry, ... |
Info |
Sound velocity profile data from an AML Oceanographic MVP30 collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-001-FA (PNG images, CSV text, ASVP text, and point shapefile, GCS WGS 84)
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg ... |
Info |
Sound Velocity Profiles, AML Minos X sound velocity profile data, collected during USGS field activity 2017-049-FA within Lake Powell, UT-AZ (PNG images, SVP text, and Esri point shapefile, GCS WGS 84).
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the ... |
Info |
Sound Velocity Profiles collected in Nantucket Sound Massachusetts in the vicinity of Horseshoe Shoal, during USGS Field Activity 2022-001-FA using AML-3 LGR or AML Minos-X CTDSV sensors (PNG images, SVP text, and ESRI point shapefile, GCS WGS 84)
In June 2022, the U.S. Geological Survey, in collaboration with the Massachusetts Office of Coastal Zone Management, collected high-resolution geophysical data, in Nantucket Sound to understand the regional geology in the vicinity of Horseshoe Shoal. This effort is part of a long-term collaboration between the USGS and the Commonwealth of Massachusetts to map the State’s waters, support research on the Quaternary evolution of coastal Massachusetts, resolve the influence of sea-level change and sediment ... |
Info |
Sound velocity profiles - locations, images, and text files for sound velocity profiles calculated from XBT and CTD casts conducted during USGS field activities 2017-001-FA and 2017-002 FA.
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and ... |
Info |
Sound Velocity Profiles, Odim MVP 30 sound velocity profile data, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (PNG images, ASVP text, and Esri point shapefile, GCS WGS 84).
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of ... |
Info |
Sound velocity vs. depth plots and CTD cast data collected in April 2021 offshore Santa Cruz, California during USGS field activity 2021-619-FA
Sound velocity and CTD (conductivity, temperature, depth) cast data were collected at 9 sites offshore Santa Cruz, CA during USGS field activity 2021-619-FA in April of 2021. Aboard the R/V Parke Snavely (RVPS), a SonTek CastAway-CTD was used to collect these data at in the upper 67 meters of the water column. these data is provided in csv format, a shapefile of cast locations, as well as PNG plots of the speed of sound as a function of depth for each cast location. |
Info |
South Carolina Coastal Erosion Study Data Report for Observations : October 2003 - April 2004
Oceanographic observations have been made at nine locations in Long Bay, South Carolina from October 2003 through April 2004. These sites are centered around a shore-oblique sand feature that is approximately 10 km long, 2 km wide, and in excess of 3 m thick. The observations were collected through a collaborative effort with the U.S. Geological Survey, the University of South Carolina, and Georgia Institute of Technology Savannah Campus as part of a larger study to understand the physical processes that ... |
Info |
South Florida Holocene coral sea-level database for samples collected from 1977 to 2017
Holocene-aged coral samples from the south Florida region were extensively characterized to create a new database of verified sea-level data. The samples were originally collected using coral-reef coring or other geologic sampling methods and were obtained by various researchers from published studies spanning the interval of 1977 to 2017. Many of these samples are presently stored in the U.S. Geological Survey (USGS) Core Archive at the St. Petersburg Coastal and Marine Science Center in St. Petersburg, ... |
Info |
South Florida mangrove peat radiocarbon metadata
In 2016, U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC) researchers and academic collaborators collected cores of mangrove peat from two islands in the Florida Keys: Snipe Key (24.679°N, 81.653°W) and Swan Key (25.349°N, 80.251°W). This data release contains the radiocarbon ages and associated data for peat samples analyzed throughout the two cores (SNK-16-C1 and SBC-16-C10). |
Info |
Sparker seismic reflection data collected during USGS field activity C109NC offshore of Arcata
This processed high-resolution sparker seismic-reflection (Seismic) data for the Offshore of Arcata, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). The map area is one of 83 map areas of the California State Waters Map Series. The data were collected aboard Humboldt State Universitys R/V Coral Sea in 2009 on U.S. Geological Survey cruise C109NC on the shelf between Cape Blanco, Oregon, and Cape Mendocino, California. Seismic data were collected to characterize quaternary ... |
Info |
Sparker seismic reflection data collected during USGS field activity C109NC offshore of Eureka
This processed high-resolution sparker seismic-reflection (Seismic) data for the Offshore of Eureka, California, map area is part of USGS Data Series 781 (Golden and Cochrane, 2019). The map area is one of 83 map areas of the California State Waters Map Series. The data were collected aboard Humboldt State Universitys R/V Coral Sea in 2009 on U.S. Geological Survey cruise C109NC on the shelf between Cape Blanco, Oregon, and Cape Mendocino, California. Seismic data were collected to characterize quaternary ... |
Info |
Split-beam Echo Sounder and Navigation Data Collected Using a Simrad EK80 Wide Band Transceiver and ES38-10 Transducer During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA
In summer 2018, the U.S. Geological Survey partnered with the U.S Department of Energy and the Bureau of Ocean Energy Management to conduct the Mid-Atlantic Resources Imaging Experiment (MATRIX) as part of the U.S. Geological Survey Gas Hydrates Project. The field program objectives were to acquire high-resolution 2-dimensional multichannel seismic-reflection and split-beam echo sounder data along the U.S Atlantic margin between North Carolina and New Jersey to determine the distribution of methane gas ... |
Info |
Split-beam echo sounder - navigation points, tracklines, and profile images for Simrad EK60 split-beam echo sounder data collected during USGS field activities 2017-001-FA and 2017-002-FA.
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and ... |
Info |
Sr/Ca and linear extension data for five modern Orbicella faveolata colonies from Dry Tortugas National Park, Florida, USA
This data release includes new, sub-annual Strontium/Calcium (Sr/Ca) and annual linear extension rates covering a period between 1980 and 2012 for five colonies of the massive coral, Orbicella faveolata (O. faveolata). All five coral colonies were collected live by U.S. Geological Survey (USGS) scientists from the Dry Tortugas National Park (DTNP), Florida (FL) in August 2008 and May 2012. |
Info |
Sr/Ca, oxygen isotope, and linear extension data for five Holocene Orbicella faveolata corals from Dry Tortugas and Marquesas Keys, Florida, USA
This data release contains new, 40–70-year long subannual strontium-to-calcium ratio (Sr/Ca) records and linear extension measurements from five mid-to-late Holocene, Orbicella faveolata corals from the Dry Tortugas National Park (DT) and Marquesas Keys (MK), Florida (FL). U.S. Geological Survey (USGS) researchers used these Sr/Ca data to calculate sea-surface temperature (SST) using the Sr/Ca-SST equation from Flannery and others (2018). The data release also provides and stable oxygen isotope snapshots ... |
Info |
ST1_Final_DEM_metadata: Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
ST2_Final_DEM_metadata: Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration measures for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
ST3_Final_DEM_metadata: Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
ST4_Final_DEM_metadata: Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).
The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020). |
Info |
Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015
Coastal wetlands are major global carbon sinks; however, quantification of carbon flux can be difficult in these heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, static chamber measurements of greenhouse gas (GHG) fluxes were compared among major plant-defined zones (high marsh dominated by Distichlis spicata and a zone of invasive Phragmites australis) during 2013 and 2014 growing seasons. Two sediment cores were collected in 2015 from the ... |
Info |
Static Oceanographic Observations made by the USGS Coastal and Marine Geology Program at Martha's Vineyard Coastal Observatory, September and October 2011
The U.S. Geological Survey (USGS) obtained oceanographic measurements as part of the Office of Naval Research (ONR) Optics Acoustics and Stress In Situ (OASIS) Project. The objective of this work is to relate optical and acoustic properties of suspended particles as a function of particle size, concentration, and vertical distribution near the sea floor. In order to accomplish this task, a specially modified tripod allows vertical profiling near the sea floor by moving instruments up and down within 2 ... |
Info |
Station and data summary for data collected by the U.S. Geological Survey on Stellwagen Bank during six surveys aboard the R/V Auk, May 2016 to April 2019
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Station and data summary for data collected by the U.S. Geological Survey on Stellwagen Bank during three surveys aboard the R/V Auk, September 2020 to August 2021
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2013-044-FA, aboard the R/V Auk, November 5, 15, and 21, 2013
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-015-FA, aboard the R/V Auk, May 22-23 and 29-30, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-055-FA, aboard the R/V Auk, September 23 and 24, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-066-FA, aboard the R/V Auk, November 10, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2014-070-FA, aboard the R/V Auk, December 12, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2015-017-FA, aboard the R/V Auk, May 18-19, 29, and June 3, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2015-074-FA, aboard the R/V Auk, December 1, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2016-004-FA, aboard the R/V Auk, January 28, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2016-038-FA, aboard the R/V Auk, Sept. 16 and 19, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-030-FA, aboard the R/V Auk, May 18-23, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-043-FA, aboard the R/V Auk, Aug. 22 and 23, 2017 (geographic, WGS84)
This field activity is part of an effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000-scale) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The data collected in this study will aid research on the ecology of fish and invertebrate species that inhabit the region. On August 22 and 23, 2017, the U.S. Geological ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-044-FA, aboard the R/V Auk, September 12-14, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank during U.S. Geological Survey field activity 2019-008-FA, aboard the R/V Auk, July 30, 31, and August 1, 2019
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank on U.S. Geological Survey field activity 2015-062-FA, aboard the R/V Auk, Oct. 21 and 22 and Nov. 3 and 4 2015 (geographic, WGS84)
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station and data summary for data collected on Stellwagen Bank on U.S. Geological Survey field activity 2017-009-FA, aboard the R/V Auk, Jan. 30, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Station locations in quadrangle 2 in Stellwagen Bank National Marine Sanctuary offshore of Boston, Massachusetts where video, photographs and sediment samples were collected by the U.S. Geological Survey from 1993-2019 - includes sediment sample analyses and interpreted geologic substrate
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 2, which is one of 18 similarly-sized quadrangles that comprise the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a ... |
Info |
Station locations in quadrangle 5 in Stellwagen Bank National Marine Sanctuary offshore of Boston, Massachusetts where video, photographs and sediment samples were collected by the U.S. Geological Survey from 1993-2015 - includes sediment sample analyses and interpreted geologic substrate
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated ... |
Info |
Still images in JPEG format of the sediment surface in the grab sampler, collected by the U.S. Geological Survey on Stellwagen Bank during six surveys aboard the R/V Auk, May 2016 to April 2019
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Still images in JPEG format of the sediment surface in the grab sampler, collected by the U.S. Geological Survey on Stellwagen Bank during three surveys aboard the R/V Auk, September 2020 to August 2021
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Still images in JPEG format of the sediment surface in the grab sampler, collected on Stellwagen Bank during U.S. Geological Survey field activity 2016-038-FA, aboard the R/V Auk, Sept. 16 and 19, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Still images in JPEG format of the sediment surface in the grab sampler, collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-030-FA, aboard the R/V Auk, May 18-23, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Still images in JPEG format of the sediment surface in the grab sampler, collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-043-FA, aboard the R/V Auk, Aug. 22 and 23, 2017
This field activity is part of an effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000-scale) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The data collected in this study will aid research on the ecology of fish and invertebrate species that inhabit the region. On August 22 and 23, 2017, the U.S. Geological ... |
Info |
Still images in JPEG format of the sediment surface in the grab sampler, collected on Stellwagen Bank during U.S. Geological Survey field activity 2017-044-FA, aboard the R/V Auk, September 12-14, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Still images in JPEG format of the sediment surface in the grab sampler, collected on Stellwagen Bank during U.S. Geological Survey field activity 2019-008-FA, aboard the R/V Auk, July 30, 31, and August 1, 2019
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Storm-Impact Scenario XBeach Model Inputs – Initial Bathymetry and Topography Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 11 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 12 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 1 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 20 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 2 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 3 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 6 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 7 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
Storm-Impact Scenario XBeach Model Results – Scenario 8 Digital Elevation Model (DEM) Grid
The numerical model XBeach (version 4937) was used to investigate how different storm scenarios impact the sediment berm constructed offshore of the Chandeleur Islands and adjacent areas. The XBeach model solves coupled 2-dimensional, horizontal wave propagation equations to predict flow, sediment transport, and bottom changes for varying spectral wave and flow boundary conditions (Roelvink and others, 2009 ). The XBeach model setup requires the input of a merged topographic and bathymetric DEM, and inputs ... |
Info |
St. Petersburg Coastal and Marine Science Center Geoscience Data Viewer Metadata
This web mapping application is a compilation of geoscientific data collected and published by the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC). This application does not serve as a complete archive of all the geoscientific data collected by the center, but highlights frequently published data types. Data within this web application include: seismic data extents, seismic survey tracklines (boomer, chirp, and minisparker), bathymetric footprints, bathymetric ... |
Info |
St. Petersburg Coastal and Marine Science Center's Geologic Core and Sample Database Metadata
This database contains a comprehensive inventory of geologic (coral, coral reef, limestone, and sediment) cores and samples collected, analyzed, published, and/or archived by, or in collaboration with, the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC). The SPCMSC Geologic Core and Sample Database includes geologic cores and samples collected beginning in the 1970s to present day, from study sites across the world. This database captures metadata about samples ... |
Info |
Stretched Sidescan-Sonar Image of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_1M_SSS_GEO_STR.TIF, Geographic)
The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan-sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, ... |
Info |
Structure-from-Motion (SfM) surface models derived from seafloor video from the Channel Islands, California
Structure-from-Motion (SfM) surface models were created using seafloor video collected over a visible fault scarp in the Channel Islands, California, during a 2016 U.S. Geological Survey (USGS) field activity. Four SfM surface models were created, each with a different combination of locating, scaling, and optimizing methods. Video imagery was collected using the USGS Pacific Coastal and Marine Science Center's BOBSled, equipped with high-definition (720p) video cameras (video published in Coastal and ... |
Info |
Structure grid of the depth to the Pleistocene surface (Q30), inner shelf and back-barrier from Virginia border to Cape Lookout, North Carolina (q30depth, ESRI binary grid, 200 m cell size, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Structure grid of the depth to the Pleistocene surface (Q50), inner shelf and back-barrier from Virginia border to Cape Lookout, North Carolina (q50depth, ESRI binary grid, 200 m cell size, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Structure grid of the depth to the Pliocene surface (Q0), inner shelf and back-barrier from Virginia border to Cape Lookout, North Carolina (q0depth,ESRI binary grid, 200 m cell size, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Structure grid of the depth to the top of Pleistocene (Q99), inner shelf and back-barrier from Virginia border to Cape Lookout, North Carolina (q99depth, ESRI binary grid, 400 m cell size, UTM Zone 18N, WGS 84)
The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and ... |
Info |
Subbottom and Sidescan Sonar Data Acquired in 2015 From Grand Bay, Mississippi and Alabama
From May 28 to June 3, 2015, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic evolution and estuarine sediment thickness in Grand Bay, Alabama and Mississippi. Specific objectives were to document the age and accumulation patterns of estuarine sediment to advance our understanding of sediment exchange with the adjacent marsh and sources of sediment to the coastal ocean. This investigation is part of the USGS Sea-level and Storm Impacts on Estuarine Environments ... |
Info |
Sub-bottom chirp data acquired in the Salton Sea, California, between 2006 and 2008
More than 1,000 line-km of sub-bottom chirp data were collected with an Edgetech 0.5-16 kHz subscan system by Scripps Institution of Oceanography between 2006 and 2008 in the Salton Sea, California, with assistance from the U.S. Geological Survey (USGS). Data were subsequently donated by Scripps to the USGS for public release (USGS field activity identifier 2006-603-DD). |
Info |
Submarine-landslide scarps--Hueneme Canyon and Vicinity, California
This part of DS 781 presents data for the submarine-landslide scarps for the geologic and geomorphic map of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "SubmarineLandslideScarps_HuenemeCanyon.zip," which is accessible from http://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G. ... |
Info |
Subtropical Storm Alberto Assessment of Potential Coastal Change Impacts: NHC Advisory 8, 0800 AM EDT SUN MAY 27 2018
This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Subtropical Storm Alberto in May 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the ... |
Info |
Summary of analytical data for sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
Summary of Oceanographic and Water-Quality Measurements near the Blackwater National Wildlife Refuge, 2011
Suspended-sediment transport is a critical element governing the geomorphology of tidal marshes. Marshes rely both on organic material and inorganic sediment deposition to maintain their elevation relative to sea-level. In wetlands near the Blackwater National Wildlife Refuge, MD, portions of the salt marsh have been subsiding relative to sea level since the early 20th century. Other portions of the marsh have been successful at maintaining elevation. The USGS undertook measurements of suspended-sediment ... |
Info |
Sun-Illuminated Color GeoTIFF Image of the 150-meter bathymetry grid of the Puerto Rico Trench generated from data collected in 2002 and 2003 by the U.S. Geological Survey and National Oceanic and Atmospheric Administration (combined_grd.tif, geographic, WGS84)
In 2002 and 2003, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), conducted three exploration cruises (USGS Cruise 02051, NOAA RB0208, September 24 to 30, 2002; USGS Cruise 03008, NOAA RB0303, February 18 to March 7, 2003 and USGS Cruise 03032, NOAA RB0305, August 28 to September 4, 2003). These cruises mapped for the first time the morphology of this entire tectonic plate boundary ... |
Info |
Sun Illuminated Color Image of the 150 meter grid of the Puerto Rico Trench (SUNILLUM.TIF)
Geologic features in the Puerto Rico trench are remotely sensed, monitored, collected, studied, and analyzed. This data set was colorized by depth and converted to sun illuminated raster imagery; it was collected and processed during the U.S. Geological Survey science cruise 03008 in collaboration with National Oceanic and Atmospheric Administration Research Cruise RB0303 from 18 February to 7 March 2003, Leg II of III. (Leg I and III: 20020924 to 20020930 and 20030828 to 20030904, respectively). |
Info |
Sun-illuminated topographic imagery of the seafloor in the Stellwagen Bank National Marine Sanctuary region (sunillum.tif)
The sun-illuminated topographic imagery of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts covers an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Cedar Island, VA, 2010–2011
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Cedar Island, VA, 2012–2013
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Cedar Island, VA, 2013–2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Edwin B. Forsythe NWR, NJ, 2010
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Edwin B. Forsythe NWR, NJ, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Edwin B. Forsythe NWR, NJ, 2013–2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Fire Island, NY, 2010–2011
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Fire Island, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Fire Island, NY, 2014–2015
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2010–2011
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2012
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2013–2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Assateague Island, MD & VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Assawoman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Cape Hatteras, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Cape Lookout, NC, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Coast Guard Beach, MA, 2013-2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Cobb Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Fisherman Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Metompkin Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Monomoy Island, MA, 2013-2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Myrtle Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Parker River, MA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Parramore Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Rhode Island National Wildlife Refuge, RI, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Ship Shoal Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Smith Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Wreck Island, VA, 2014
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ... |
Info |
Surface sediment physical parameters data collected in August 2015 from Dauphin Island and the surrounding areas
Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM03
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11CEV01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, ... |
Info |
Surficial and Downcore Sedimentological and Foraminiferal Microfossil Data from St. Marks National Wildlife Refuge, Florida
In October 2019, five marsh push cores (core names appended with M for marsh push core) and 18 surface sediment samples (top 1 cm of sediment) were collected from the estuary (sample name appended G for PONAR grab) near the mouth of the St. Marks River and some of the surrounding marshes (sample name appended with S for surface), along with elevation transects and peat augers (sample name appended with R or R50, depending on length, for Russian peat auger). The purpose of the study was to 1) evaluate peat ... |
Info |
Surficial geology interpretive map from the inner continental shelf off the northern Oregon and southern Washington coast based on sidescan-sonar imagery and sediment samples
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan-sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery ... |
Info |
Surficial Sediment Data Collected During OSV Bold cruise 2010-015-FA Offshore in Eastern Long Island Sound (2010_015_997SEDDATA.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Surficial Sediment Data Collected During RV Rafael Cruise 2010-010-FA and OSV Bold Cruise 2010-015-FA North of Duck Pond Point, New York in Eastern Long Island Sound (H11999_SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Surficial Sediment Data Collected During RV Rafael cruise 2010-033-FA and RV Connecticut cruise 2010-005-FA Offshore of Gay Head Massachusetts in Eastern Rhode Island Sound (2010_033_SEDDATA.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During July-August 2008 NOAA completed hydrographic ... |
Info |
Surficial Sediment Data Collected During RV Rafael cruise 2011-006-FA in the Vicinity of Cross Rip Channel in Nantucket Sound off Southeastern Massachusetts (2011_006_CRSEDDATA.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities off southern New England, shows the character and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey Cruises 2009-050-FA and 2010-010-FA Off the Entrance to the Connecticut River in Eastern Long Island Sound (H12013_SEDDATA.SHP, Geographic, WGS84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 06005 in Great Round Shoal Channel, Offshore Massachusetts (RAF06005_SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 07034 in the Vicinity of Woods Hole, Offshore Massachusetts (RAFA07034_SEDIMENT.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 08012 in the Vicinity of Edgartown Harbor, Offshore Martha's Vineyard, Massachusetts (RAFA08012_SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 09059 in Long Island Sound, North of Plum Island, New York (RAFA09059_SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 09059 Offshore of Rocky Point, New York (RAFA09059_RPSEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 2010-010 in Long Island Sound, North of Orient Point, New York (2010-010_OPSEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 2010-033 in Rhode Island Sound (2010-033_996SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 2011-006-FA in Rhode Island Sound (2011-006_995SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 2012-002-FA in H12023 Study Area in Block Island Sound (2012-002_023SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 2012-002-FA in H12296 Study Area in Block Island Sound (2012-002_296SEDDATA.SHP, Geographic, WGS 84)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 2013-005-FA in H12298 Study Area in Block Island Sound (2013-005_298SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along western Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 2013-005-FA in H12299 Study Area in Block Island Sound (Geographic, WGS 84, 2013-005_299SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2013, bottom photographs and ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) Cruise R/V RAFAEL 2014-046-FA in H12324 Study Area in Block Island Sound
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric data, originally collected by NOAA for charting purposes, provide a framework for research and management activities along southern Narragansett Bay, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During September 2014, bottom photographs and surficial ... |
Info |
Surficial Sediment Data Collected During U.S. Geological Survey (USGS) RV Rafael cruise 2011-006-FA in Block Island Sound off Southwestern Rhode Island (2011_006BISSEDDATA.SHP, Geographic, WGS84)
The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ... |
Info |
Surficial Sediment Data Collected during USGS Cruise R/V RAFAEL 04011 off of Eastern Cape Cod, Massachusetts (RAFA04011_SEDDATA.SHP)
This data set includes the locations, identifiers, grain-size data and(or) textural descriptions of surficial sediments collected at 89 stations on topographic and backscatter data of the sea floor offshore east of Cape Cod, Massachusetts. The sediments were collected with a modified Van Veen grab (small SEABOSS) during USGS survey 04011, conducted May 25- June 4, 2004. |
Info |
Surficial Sediment Data Collected Within National Oceanic and Atmospheric Administration Survey H12012 During U.S. Geological Survey Cruises 2010-010-FA and 2010-015-FA Offshore in Northeastern Long Island Sound (Geographic, WGS84, H12012_SEDDATA.SHP)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), has produced detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Surficial sediment data from Boston Harbor collected during USGS Field Activity 04019 (SEDGRABS, UTM 19, WGS84)
This data set includes the locations, identifiers, grain-size data and(or) textural descriptions of surficial sediments collected at stations based on topographic and backscatter data of the seafloor in Boston Harbor and the harbor appraoches, Massachusetts. The sediments were collected with a modified Van Veen grab (mini-SEABOSS) during USGS survey 04019, conducted September 14-17, 2004. |
Info |
Surficial sediment distribution interpretation of the sidescan sonar mosaic of National Oceanic and Atmospheric Administration (NOAA) survey H11043 off Branford, Connecticut
The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies ... |
Info |
Surficial Sediment Distributions off Eastern Cape Cod, Massachusetts (CC_SEDDIST.SHP, Geographic, WGS84)
This data set shows the distribution of surficial sediments offshore of northern and eastern Cape Cod, Massachusetts. This interpretation is based on data collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998 and on data collected with a bottom sampling and photographic system during USGS survey 04011, conducted during May and June, 2004. |
Info |
Surficial sediment samples collected by the U.S. Geological Survey within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI VECTOR SHAPEFILE, 08016_SAMPLE.SHP)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Survey lines along which acoustic backscatter data were acquired using a Klein 3000 sidescan sonar and a SWATHplus interferometric sonar offshore of Massachusetts within the northern Cape Cod Bay survey area (CCB_BackscatterTracklines Esri Shapefile, Geographic, WGS84).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
Survey lines along which acoustic backscatter data were acquired using a Klein 3000 sidescan sonar offshore of Massachusetts within Vineyard Sound by the U.S. Geological Survey in 2009, 2010, and 2011 (VS_BACKSCATTERTRACKLINES, ESRI Shapefile, Geographic WGS84).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ... |
Info |
Survey lines along which EdgeTech 424 chirp seismic-reflection data were collected by the U.S. Geological Survey in the Barnegat Bay, NJ in 2011, 2012, and 2013 (Esri polyline shapefile, Geographic, WGS 84).
Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events, ... |
Info |
Survey lines along which EdgeTech 512i chirp seismic-reflection data were collected by the U.S. Geological Survey in the Cape Ann - Salisbury Beach, MA survey area (SEISMICTRACKLINE, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
Survey lines along which EdgeTech SB-424 chirp seismic-reflection data were collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Elizabeth Islands, MA, 2010 (2010-003-FA_Chirp424_tracklines.shp, ESRI polyline shapefile)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Survey lines along which EdgeTech SB-512i and SB-424 chirp seismic-reflection data were collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_SeismicTrackline shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Survey lines along which EdgeTech SB-512i chirp seismic-reflection data were collected by the U.S. Geological Survey offshore of Massachusetts within Vineyard Sound by the U.S. Geological Survey in 2009, 2010, and 2011 (VS_SeismicTrackline, ESRI Shapefile, Geographic, WGS84).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ... |
Info |
Survey lines along which EdgeTech SB-512i chirp seismic-reflection data were collected by the U.S. Geological Survey - St. Petersburg Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010 (ESRI polyline shapefile, 10cct02_SeismicTrackline.shp)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Survey lines along which EdgeTech SB-512i chirp seismic-reflection data were collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010 (ESRI polyline shapefile, 2010-012-FA_SeismicTrackline.shp)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Survey lines along which EdgeTech SB-512i chirp seismic-reflection data were collected in Buzzards Bay by the U.S. Geological Survey offshore of Massachusetts in 2009, 2010, and 2011 (BB_SeismicTrackline Esri Polyline Shapefile, Geographic, WGS84).
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
Survey lines along which EdgeTech SB-512i, EdgeTech SB-424, and Knudsen 3200 chirp seismic-reflection data were collected by the U.S. Geological Survey offshore of Massachusetts within northern Cape Cod Bay (CCB_SeismicTrackline Esri Shapefile, Geographic, WGS84).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
Survey lines along which interferometric and multibeam bathymetric sonar data were collected by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts between Duxbury and Hull (DH_BathyTrackline shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Survey lines along which interferometric sonar (bathymetric and backscatter) data were collected in 2016 by the U.S. Geological Survey off Town Neck Beach in Sandwich, Massachusetts, during field activity 2016-017-FA (polyline shapefile)
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ... |
Info |
Survey lines along which interferometric sonar data were collected by the USGS within Red Brook Harbor, MA, 2009 (RB_BathyBackscatterTrackline.shp)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
Survey lines along which Klein 3000 sidescan-sonar data were collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_KleinTrackline shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Survey lines along which Klein 3000 sidescan-sonar data were collected in Buzzards Bay by the U.S. Geological Survey offshore of Massachusetts in 2009, 2010, and 2011 (BB_BackscatterTracklines Esri Polyline Shapefile, Geographic, WGS84).
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
Survey Lines along which seismic data were collected aboard R/V RAFAEL (field activities 05001 and 06001) in Apalachicola Bay, FL (SEISMICLINES)
These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of ... |
Info |
Survey lines along which seismic reflection data were collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (Polyline Shapefile)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Survey lines along which seismic reflection data were collected in 2016 by the U.S. Geological Survey off Town Neck Beach in Sandwich, Massachusetts, during field activity 2016-017-FA (polyline shapefile)
Geophysical and geological survey data were collected off Town Neck Beach in Sandwich, Massachusetts, in May and July 2016. Approximately 130 linear kilometers of subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, sea floor photographs, and (or) video at 26 sites within the geophysical survey area. Sediment grab samples were collected at 19 of the 26 sampling sites and video and (or) photographic imagery of ... |
Info |
Survey lines along which seismic reflection data were collected south of Martha's Vineyard and north of Nantucket by the U.S. Geological Survey offshore of Massachusetts in 2013 (2013-003-FA_512i_shottrack, Esri Polyline Shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish ... |
Info |
Survey lines along which swath backscatter data were collected south of Martha's Vineyard and north of Nantucket by the U.S. Geological Survey offshore of Massachusetts in 2013 (2013-003-FA_BackscatterTracklines, Esri Polyline Shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish ... |
Info |
Survey lines along which swath bathymetry data were collected in Buzzards Bay by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts in 2004, 2009, 2010, and 2011 (BB_BathyTracklines Esri Polyline Shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
Survey lines along which swath bathymetry data were collected south of Martha's Vineyard and north of Nantucket by the U.S. Geological Survey offshore of Massachusetts in 2013 (2013-003-FA_BathyTracklines, Esri Polyline Shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish ... |
Info |
Survey lines along which swath sonar (bathymetric and backscatter) data were collected in 2012 by the U.S. Geological Survey in the Connecticut River during field activity 2012-024-FA (Polyline Shapefile)
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Survey lines of the sidescan sonar system of data collected in Boston Harbor and Approaches (surveylines_sss)
These data are the trackline from the high-resolution acoustic backscatter measurements of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km² of sidescan sonar data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS). |
Info |
Survey tracklines along which backscatter data were collected with a Klein 3000, EdgeTech 4200 sidescan sonar and a SEA Ltd., SWATHplus-H interferometric sonar with in Barnegat Bay, New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri polyline shapefile, Geographic, WGS 84)
Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in partnership with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events ... |
Info |
Survey tracklines along which bathymetric data were collected with a SEA Ltd., SWATHplus-H interferometric sonar with in the Barnegat Bay, New Jersey by the U.S. Geological Survey in 2011, 2012, and 2013 (Esri polyline shapefile, Geographic, WGS 84)
Water quality in the Barnegat Bay-Little Egg Harbor estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen -depletion events ... |
Info |
Survey tracklines along which bathymetric data were collected with a SEA Ltd., SWATHplus-M interferometric sonar offshore of Massachusetts within Vineyard Sound by the U.S. Geological Survey in 2009, 2010, and 2011 (VS_BATHTYMETRYTRACKLINES, ESRI Shapefile, Geographic, WGS84).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, ... |
Info |
Survey tracklines along which bathymetric data were collected with a SEA, SWATHplus interferometric sonar offshore of Massachusetts within northern Cape Cod Bay (CCB_BathTracklines EsriI Shapefile, Geographic, WGS84).
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
Survey tracklines of chirp subbottom data collected by the U.S. Geological Survey in Moultonborough Bay, Lake Winnipesaukee, New Hampshire in 2005 (Geographic, WGS 84, Esri polyline shapefile, CHIRP_TRK.SHP)
In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ... |
Info |
Survey tracklines of swath bathymetry collected by the U.S. Geological Survey in Moultonborough Bay, Lake Winnipesaukee, New Hampshire in 2005 (Geographic, WGS 84, Esri polyline shapefile, 2005-004-FA_BATHYTRK.SHP)
In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ... |
Info |
Suspended-sediment concentration and grain size in the San Lorenzo River, coastal California
Water samples were collected from the San Lorenzo River, Santa Cruz, California, and analyzed for suspended-sediment concentration and sand break (proportion of sand vs. silt-plus-clay) at the U.S. Geological Survey (USGS) laboratory in Santa Cruz, California. The samples were all single-vertical samples collected from the thalweg of the river, using a D-95 sampler deployed from a bridge box at a pedestrian bridge across the river in downtown Santa Cruz. All samples were collected from that location: 36 ... |
Info |
SVAN1M.TIF - Point Agruello (South Vandenberg Reserve) sidescan sonar backscatter image in the Nearshore Benthic Habitat Mapping Project S. California map series. (UTM 10N, NAD83)
The sidescan sonar image of the nearshore seafloor (0 to 100 m water depths) of the Big Sycamore reserve area was mosaicked from data collected in 1998. A Klein 2000 sidescan system was used for geophysical surveying. A Triton Elics Isis brand side-scan data recording system was used on the cruise. The 1998 survey was navigated with a Leica Differential Global Positioning System (DGPS) which provided a ship position with accuracy of 1-5 m in DGPS mode. At times during the cruise differential signal was ... |
Info |
SWASH Model Water Level Time Series at Wrightsville Beach, NC, USA for ILM site
This data release contains model output of water level elevations resulting from deterministic simulations at Wrightsville Beach, North Carolina (NC), USA. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Birchler and others (2024). |
Info |
SWASH Model Water Level Time Series at Wrightsville Beach, NC, USA for MHX site
This data release contains model output of water level elevations resulting from deterministic simulations at Wrightsville Beach, North Carolina (NC), USA. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Birchler and others (2024). |
Info |
SWASH Model Water Level Time Series at Wrightsville Beach, NC, USA for PIER site
This data release contains model output of water level elevations resulting from deterministic simulations at Wrightsville Beach, North Carolina (NC), USA. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Birchler and others (2024). |
Info |
Swath acoustic-backscatter data collected in 2013 off the islands of Maui and Kaho`olawe, Hawaii, during field activity A-01-13-HW
1-m resolution acoustic-backscatter data were collected during a February 2013 SWATHPlus survey offshore of the Hawaiian Islands of Maui and Kaho`olawe. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), with fieldwork activity number A-01-13-HW. The 1-m backscatter data are provided as a GeoTIFF file. |
Info |
Swath bathymetric data from three locations in the Sacramento-San Joaquin Delta, California, 2017 to 2018
This part of the data release contains high-resolution swath bathymetry data collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center at three locations in the Sacramento-San Joaquin Delta. Data were collected in Lindsey Slough in April 2017, Middle River in March 2018, and Mokelumne River in March 2018 using an interferometric bathymetric sidescan sonar systems mounted to the USGS R/V Parke Snavely. Data are provided in 1-m resolution GeoTIFF formats. These data were ... |
Info |
Swath bathymetry 13-m-cell-size grid of quadrangle 2 on Stellwagen Bank offshore of Boston, Massachusetts collected by the U.S. Geological Survey aboard the CCGS Frederick G. Creed from 1994-1996
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 2, which is one of 18 similarly-sized quadrangles that comprise the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a ... |
Info |
Swath bathymetry 13-m-cell-size grid of quadrangle 5 on Stellwagen Bank offshore of Boston, Massachusetts collected by the U.S. Geological Survey aboard the CCGS Frederick G. Creed from 1994-1996
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated ... |
Info |
Swath bathymetry 13-m-cell-size grid of quadrangle 6 on Stellwagen Bank offshore of Boston, Massachusetts collected by the U.S. Geological Survey aboard the Frederick G. Creed from 1994-1996 (custom Mercator projection, NAD 83, Esri binary grid format)
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, ... |
Info |
Swath bathymetry collected by the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL offshore of the Gulf Islands, MS, 2010 (ESRI binary grid, tmunro_50m)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Swath bathymetry data collected in 2013 off the islands of Maui and Kaho`olawe, Hawaii, during field activity A-01-13-HW
1-m resolution bathymetry data were collected during a February 2013 SWATHPlus survey offshore of the Hawaiian Islands of Maui and Kaho`olawe. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), with fieldwork activity number A-01-13-HW. The 1-m bathymetry data are provided as a GeoTIFF file. |
Info |
Swath bathymetry data collected in the Cache Slough Complex and the Sacramento River Deep Water Ship Channel, California, during field activity 2018-684-FA
Bathymetry data were collected during a 2018 swath survey in the Cache Slough Complex and the Sacramento River Deep Water Ship Channel, California. Data were collected by the U.S. Geological Survey (USGS) during USGS field activity 2018-684-FA, using interferometric bathymetric sidescan sonar systems mounded to the USGS R/V San Lorenzo and the R/V Kelpfly. The bathymetry data and a shaded-relief version are provided as GeoTIFF images. |
Info |
Swath bathymetry gridded data collected by the U.S. Geological Survey on Middle Ground Shoal, Massachusetts, 2007-2009 (Esri grid, UTM Zone 19N, WGS 84, 2-m resolution, mg-2m)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Swath bathymetry gridded data collected by the U.S. Geological Survey surrounding the eastern Elizabeth Islands and northern Martha's Vineyard, MA, 2011 (Esri grid, UTM Zone 19N, WGS 84, 2-m resolution, fa2011013_2m)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Swath bathymetry gridded data (survey 1) collected by the U.S. Geological Survey surrounding Muskeget Channel, MA, October 2010 (Esri grid, UTM Zone 19N, WGS 84, 2-m resolution, survey1_2m)
These data were collected in a collaboration between the Woods Hole Oceanographic Institution and the U.S. Geological Survey (USGS). The primary objective of this program was to collect baseline bathymetry for Muskeget Channel, Massachusetts, and identify areas of morphologic change within and around the channel. Repeat surveys in select areas were collected one month apart to monitor change. These data were collected to support an assessment of the effect on sediment transport that a tidal instream energy ... |
Info |
Swath bathymetry gridded data (survey 2) collected by the U.S. Geological Survey surrounding Muskeget Channel, MA, November 2010 (Esri grid, UTM Zone 19N, WGS 84, 2-m resolution, survey2_2m)
These data were collected in a collaboration between the Woods Hole Oceanographic Institution and the U.S. Geological Survey (USGS). The primary objective of this program was to collect baseline bathymetry for Muskeget Channel, Massachusetts, and identify areas of morphologic change within and around the channel. Repeat surveys in select areas were collected one month apart to monitor change. These data were collected to support an assessment of the effect on sediment transport that a tidal instream energy ... |
Info |
SwathPlus and RESON Bathymetric Tracklines collected in the Cape Ann - Salisbury Beach Massachusetts Survey Area (BATHTRACKLINES, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and ... |
Info |
Swell-filtered, high-resolution seismic-reflection data collected between Fort Bragg and Point Arena (northern Califrnia) during field activity C-1-10-NC from 08/09/2010 to 08/15/2010
This dataset includes swell-filtered, high-resolution seismic-reflection data jointly collected by the U.S. Geological Survey (USGS) and Oregon State University in 2010, between Fort Bragg and Point Arena in northern California. |
Info |
Swell-filtered, high-resolution seismic-reflection data collected between Point Sal and Refugio State Beach (southern California) during field activity 2014-632-FA from 07/17/2014 to 08/02/2014
This dataset includes swell-filtered, high-resolution seismic-reflection data, collected by the U.S. Geological Survey (USGS) in 2014, between Point Sal and Refugio State Beach in southern California. |
Info |
Swell-filtered, high-resolution seismic-reflection data collected between Punta Gorda and Fort Bragg (northern California) during field activity B-04-12-NC from 09/17/2012 to 09/25/2012
This dataset includes swell-filtered, high-resolution seismic-reflection data jointly collected by the U.S. Geological Survey (USGS) and Oregon State University in 2012, between Punta Gorda and Fort Bragg in northern California. |
Info |
Swell-filtered, high-resolution seismic-reflection data collected between Shelter Cove and Fort Bragg (northern Califrnia) during field activity B-5-10-NC from 09/20/2010 to 10/01/2010
This dataset includes swell-filtered, high-resolution seismic-reflection data jointly collected by the U.S. Geological Survey (USGS) and Oregon State University in 2010, between Shelter Cove and Fort Bragg in northern California. |
Info |
t198gb.m77t and t198gb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity T-1-98-GB in Glacier Bay, Alaska from 08/21/1998 to 09/01/1998
Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise T-1-98-GB. The cruise was conducted in Glacier Bay, Alaska from August 21 to September 1, 1998. The chief scientists were Paul Carlson, Guy Cochrane, and Philip Hooge all from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study was to add the geophysical surveying done in this and previous studies with existing population and sonic-tracking data ... |
Info |
T-3 Ice Island One Hour Navigation: May 14, 1962 to September 15, 1974
The T-3 (Fletcher's) Ice Island in the Arctic Ocean was the site of a scientific research station re-established by the Naval Arctic Research Laboratory starting in 1962. Lamont Geological Observatory (LGO; now Lamont-Doherty Earth Observatory) and the U.S. Geological Survey, along with other organizations, ran research laboratories on the island during the 1960s and early 1970s as the island drifted in the Amerasian Basin. LGO compiled navigational data, measured gravity and magnetic data, and conducted ... |
Info |
Tabular data: Sediment Sample Locations Collected in July 2013 from the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 13BIM05)
As part of the Barrier Island Evolution Research (BIER) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected sediment samples from the northern Chandeleur Islands in July 2013. The overall objective of this project, which integrates geophysical (bathymetric, seismic, and topographic) and sedimentologic data, is to better understand the depositional and erosional processes that drive the morphologic evolution of barrier islands over ... |
Info |
Tabular data: Sediment Sample Locations Collected in March 2012 from the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 12BIM01)
As part of the Barrier Island Evolution Research (BIER) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected sediment samples from the northern Chandeleur Islands in March and September 2012. The overall objective of this project, which integrates geophysical (bathymetric, seismic, and topographic) and sedimentologic data, is to better understand the depositional and erosional processes that drive the morphologic evolution of barrier ... |
Info |
Tabular data: Sediment Sample Locations Collected in September 2012 from the Northern Chandeleur Islands, Louisiana (U.S. Geological Survey Field Activity Number 12LGC02)
As part of the Barrier Island Evolution Research (BIER) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected sediment samples from the northern Chandeleur Islands in March and September 2012. The overall objective of this project, which integrates geophysical (bathymetric, seismic, and topographic) and sedimentologic data, is to better understand the depositional and erosional processes that drive the morphologic evolution of barrier ... |
Info |
Tabulated wave parameter results from modeling surface gravity waves on a schematized ancient lake on Mars
This portion of the data release presents tabulated wave parameter results derived from simulations of wind generated surface gravity waves on an ancient lake on Mars. The phase-averaged wave model, SWAN, was applied within the Delft3D modeling system (Deltares, 2018) with reduced gravity and a range of atmospheric densities and wind speeds to simulate potential conditions that could generate wind waves on Mars. |
Info |
Temperature, specific conductance, and salinity data collected with a YSI 30 handheld system in Greenwich Bay, Rhode Island, May 15, 2009 on U.S. Geological Survey Field Activity 2009-021-FA
As part of a larger investigation to understand groundwater-surface water interactions in Greenwich Bay, Rhode Island, a geophysical survey was conducted from a small research boat on 14-15 May 2009. The specific research objective was to gain an improved understanding of the role of direct groundwater discharge in delivery of excess nitrogen to the bay, which may have contributed to the development of low-oxygen conditions in waters of the bay and associated fish kills. Data collected in this survey ... |
Info |
Temporal hydrologic and chemical records from the Ox Bel Ha cave network within the coastal aquifer of the Yucatan Peninsula, from January 2015 to January 2016
Natural cave passages penetrating a coastal aquifer in the Yucatan Peninsula (Mexico) were accessed to investigate how regional meteorology and hydrology control methane dynamics in karst subterranean estuaries. Three field trips were carried out in January 2015, June 2015, and January 2016 to obtain year-long high-resolution temporal records of water chemistry and environmental parameters below and above the surface at a site (Cenote Bang) within the Ox Bel Ha cave network. These efforts resulted in ... |
Info |
Text Files of the DGPS Navigation Logged with HYPACK Software on U.S. Geological Survey Cruise 2012-002-FA from June 11 to June 14, 2012
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetric and sidescan-sonar data, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of Block Island Sound, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. During June 2012, ... |
Info |
Text Files of the DGPS Navigation Logged with HYPACK Software on U.S. Geological Survey (USGS) Cruise 2011-006-FA from June 13 to June 21, 2011
The USGS, in cooperation with NOAA, is producing detailed maps of the seafloor off southern New England. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery, verified with bottom sampling and ... |
Info |
Text Files of the DGPS Navigation Logged with HYPACK Software on USGS Cruise 09059 from Nov. 9 to Nov. 11, 2009
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Text Files of the DGPS Navigation Logged with HYPACK Software on USGS Cruise 09059 from Nov. 9 to Nov. 11, 2009
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Text Files of the DGPS Navigation Logged with HYPACK Software on USGS Cruise 2010-033-FA from July 21 to July 23, 2010
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Text Files of the DGPS Navigation Logged with HYPACK Software on USGS Cruise 2011-006-FA from June 13 to June 21, 2011
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Rhode Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretations were derived from the ... |
Info |
Text files of the Differential Global Positioning System (DGPS) and Real-Time Kinematic (RTK) navigation logged with HYPACK software by the U.S. Geological Survey during Cruise 08016 within the St. Clair River between Michigan and Ontario, Canada, 2008
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Text Files of the GPS Navigation Logged with an ASHTECH G12 Sensor During OSV Bold Cruise 2010-015-FA of May 24 to May 28, 2010
The U.S. Geological Survey (USGS), in cooperation with the Connecticut Department of Environmental Protection and National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic ... |
Info |
Text files of the navigation logged by HYPACK during the U.S. Geological Survey offshore of Fire Island, NY in 2014 (Geographic, WGS 84, HYPACK ASCII Text Files)
The U.S. Geological Survey (USGS) conducted a geophysical and sampling survey in October 2014 that focused on a series of shoreface-attached ridges offshore of western Fire Island, NY. Seismic-reflection data, surficial grab samples and bottom photographs and video were collected along the lower shoreface and inner continental shelf. The purpose of this survey was to assess the impact of Hurricane Sandy on this coastal region. These data were compared to seismic-reflection and surficial sediment data ... |
Info |
Text files of the navigation logged by the U.S. Geological Survey offshore of Fire Island, NY in 2011 (Geographic, WGS 84, HYPACK ASCII Text Files)
The U.S. Geological Survey (USGS) mapped approximately 336 square kilometers of the lower shoreface and inner-continental shelf offshore of Fire Island, New York in 2011 using interferometric sonar and high-resolution chirp seismic-reflection systems. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island. For more information about the WHCMSC Field Activity, see https:/ ... |
Info |
Text files of the navigation logged during field activity 2011-015-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management offshore of Massachusetts around Cape Cod and the Islands in September 2011 (ASCII text and CSV files)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The project is focused on the inshore waters (5–30 meters deep) of Massachusetts. This dataset is from U ... |
Info |
Text files of the navigation logged during field activity 2012-035-FA by the U.S. Geological Survey and Massachusetts Office of Coastal Zone Management in Ipswich Bay and Massachusetts Bay, Massachusetts, in August 2012 (ASCII text and CSV files)
Accurate data and maps of sea-floor geology are important first steps toward protecting habitat, delineating marine resources, and assessing environmental changes due to natural or human effects. Initiated in 2003, the primary objective of the Geologic Mapping of the Massachusetts Sea Floor program is to develop regional geologic framework information for the management of coastal and marine resources. The program is focused on the inshore waters (primarily 5-30 meters deep, although the region surveyed in ... |
Info |
Text files of the navigation logged with during the sampling survey of field activity 2012-024-FA in 2012 by the U.S. Geological Survey in the Connecticut River
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Text files of the navigation logged with HYPACK Software during field activity 2012-024-FA in 2012 by the U.S. Geological Survey in the Connecticut River
A geophysical and geological survey was conducted at the mouth of the Connecticut River from Old Saybrook to Essex, Connecticut, in September 2012. Approximately 230 linear kilometers of digital Chirp subbottom (seismic-reflection) and 234-kilohertz interferometric sonar (bathymetric and backscatter) data were collected along with sediment samples, riverbed photographs, and (or) video at 88 sites within the geophysical survey area. Sediment grab samples were collected at 72 of the 88 sampling sites, video ... |
Info |
Text files of the navigation logged with HYPACK Software during field activity 2013-003-FA in 2013 by the U.S. Geological Survey south of Martha's Vineyard and north of Nantucket, Massachusetts
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea floor geology are important first steps toward protecting fish ... |
Info |
Text files of the navigation logged with HYPACK Software during survey 2009-002-FA conducted in Buzzards Bay and Vineyard Sound by the U.S. Geological Survey offshore of Massachusetts in 2009.
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
Text files of the navigation logged with HYPACK Software during survey 2010-004-FA conducted in Buzzards Bay and Vineyard Sound by the U.S. Geological Survey offshore of Massachusetts in 2010.
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
Text files of the navigation logged with HYPACK Software during survey 2011-004-FA conducted in Buzzards Bay and Vineyard Sound by the U.S. Geological Survey offshore of Massachusetts in 2011.
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat ... |
Info |
Text files of the navigation logged with HYPACK Software during survey 2012-005-FA conducted in Baltimore, Washington, and Norfolk Canyons by the U.S. Geological Survey in 2012
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
Text files of the navigation logged with HYPACK Software during survey 2014-002-FA conducted along the Delmarva Peninsula, MD and VA by the U.S. Geological Survey in 2014
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
Text files of the navigation logged with HYPACK Software during survey 2015-001-FA conducted along the Delmarva Peninsula, MD and VA by the U.S. Geological Survey in 2015
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
Text files of the navigation logged with HYPACK Software during surveys 06012 and 07001 conducted by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_HYPACK_NAV)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Text files of the navigation logged with HYPACK Software during surveys 07002, and 08002 conducted by the U.S. Geological Survey offshore of Massachusetts within northern Cape Cod Bay (CCB_Hypack_Nav)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat ... |
Info |
Text files of the Real-time Kinematic (RTK) navigation logged with HYPACK Software during USGS Cruise 07011 conducted off the southern shore of Martha's Vineyard, 2007
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Text files of the Wide Area Augmentation System (WAAS) navigation collected by the U.S. Geological Survey in Moultonborough Bay, Lake Winnipesaukee, New Hampshire in 2005 (Geographic, WGS 84, HYPACK ASCII Text Files)
In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ... |
Info |
Textural Data from the Continental Margin Program (HATHAWAY71 shapefile)
This data set contains sediment grain size and textural information from the Continental Margin Program. The program was a joint collaboration between the U.S. Geological Survey and the Woods Hole Oceanographic Institution during the 1960s to conduct a geological reconnaissance investigation of the continental shelf and slope off the Atlantic coast of the United States. Only those records with complete size analyses are included in this data set. Other stations where only lithologic descriptions are ... |
Info |
Textural description of surface sediment samples collected in August 2015 from Dauphin Island and the surrounding areas
Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ... |
Info |
The absolute and relative composition of Holocene reef cores collected between 1976 and 2017 from the Florida Keys reef tract
This data release provides a summary of the absolute percent composition of all recovered material and relative percent composition of coral taxa in the Holocene-aged intervals of 61 coral-reef cores collected throughout the Florida Keys reef tract (FKRT) housed in the USGS Core Archive in St. Petersburg, FL (Estimated ages for distinct depths within each core are also provided; those ages were either measured by radiometric dating of coral samples at those depths or estimated by linear interpolation ... |
Info |
The Fire Island Wilderness Breach Bathymetric Data collected with Personal Watercraft and Backpack in Fire Island, New York (2014) as a GeoTIFF
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, ... |
Info |
The Sedimentological Characteristics and Radiochemistry Data for the Marshes on Dauphin Island, Alabama (U.S. Geological Survey Field Activity Number 2015-322-FA)
This project is a collaborative effort between the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), and the state of Alabama funded by the National Fish and Wildlife Foundation (NFWF) to investigate viable, sustainable restoration options that protect and restore the natural resources of Dauphin Island, Alabama. Scientists from the USGS, St. Petersburg Coastal and Marine Science Center collected push cores and water quality data from the marshes of Dauphin Island, Little Dauphin Island, ... |
Info |
Thickness of Holocene sediment within the inner shelf of Long Bay (Grid; sedthick_grd)
In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this ... |
Info |
Thickness of Quaternary seismic stratigraphic units offshore of the Delmarva Peninsula, including Maryland and Virginia state waters
Geologic structure and isopach maps were constructed by interpreting over 19.890 trackline kilometers of co-located multichannel boomer, sparker and chirp seismic reflection profiles from the continental shelf of the Delmarva Peninsula, including Maryland and Virginia state waters. In this region, Brothers and others (2020) interpret 12 seismic units and 11 regional unconformities. They interpret the infilled channels as Late Tertiary and Quaternary courses of the Susquehanna, Potomac, Rappahannock, York ... |
Info |
Thickness of Quaternary undifferentiated glaciofluvial, glaciolacustrine, fluvial, and lacustrine deposits within the St. Clair River between Michigan and Ontario, Canada, 2008 (ESRI GRID, QU)
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the ... |
Info |
Tidally Corrected Shoreline Positions for Three Sites of Western Long Island, New York
This data release provides tidally corrected shoreline positions for three sites of western Long Island, NY (Rockaway Peninsula, Long Beach, Jones Beach Island). The CSVs are derived from the software CoastSeg (Fitzpatrick and others, 2024). CoastSeg collects satellite images from Google Earth Engine to create shoreline data along with user supplied inputs based on the CoastSat methodology (Vos and others, 2019). Data have been tidally corrected based on beach foreshore slopes (Farris and Webber, 2024). The ... |
Info |
TIFF Sidescan-Sonar mosaic of Lake Mohave : UTM, Zone 11, NAD83 Projection
Lake Mohave is one of several multi-purpose reservoirs that have been constructed on the Colorado River. The lake was formed upon completion of the Davis Dam in 1953. No mapping of the floor of the lake had been conducted since completion of the Davis Dam. The U.S. Geological Survey, in cooperation with researchers from the University of Nevada Las Vegas, completed a geophysical survey of this lake in April 2002. The survey included collection of sidescan sonar imagery of nearly the entire lake floor, and ... |
Info |
Tile index for Alaska coastal orthoimagery and elevation data: Icy Cape to Cape Prince of Wales, 2016
This part of the data release presents a shapefile that includes a spatial index of orthoimagery and elevation data describing the Alaskan coastline from Icy Cape to Cape Prince of Wales. The data products referenced in this index include orthoimagery, digital surface models, and elevation point clouds which were generated from aerial imagery using structure-from-motion methods. Fairbanks Fodar, a contracted mapping service, collected the aerial imagery in 2016 and created all of the data products ... |
Info |
Time-series coral-cover data from Hawaii, Florida, Mo'orea, and the Virgin Islands
Coral reefs around the world have degraded over the last half-century as evidenced by loss of live coral cover. This ubiquitous observation led to the establishment of long-term, ecological monitoring programs in several regions with sizable coral-reef resources. As part of the U.S. Geological Survey (USGS) John Wesley Powell Center for Analysis and Synthesis working group "Local-scale ecosystem resilience amid global-scale ocean change: the coral reef example," scientists gathered resultant data from four ... |
Info |
Time-series measurements of acoustic intensity, flow, pressure, water level, conductivity, temperature, and dissolved oxygen collected in a flooded cave at Cenote Bang, Yucatan Peninsula, Tulum, Mexico from March 25, 2018 to August 1, 2018
Natural flooded caves were accessed along the coastline of the Yucatan Peninsula (Quintana Roo, Mexico) to investigate how regional meteorologic and hydrologic processes control solute transport, mixing, and salinization in the coastal aquifer. Instruments were deployed to monitor environmental parameters within the Ox Bel Ha Cave System accessed through the sinkhole Cenote Bang. These efforts resulted in temporal hydrologic records of specific conductivity, water level (pressure), dissolved oxygen, flow ... |
Info |
Time-series measurements of oceanographic and water quality data collected at Thompsons Beach and Stone Harbor, New Jersey, USA, September 2018 to September 2019 and March 2022 to May 2023
In October 2012, Hurricane Sandy made landfall in the Northeastern U.S., affecting ecosystems and communities of 12 states. In response, the National Fish and Wildlife Federation (NFWF) and the U.S. Department of Interior (DOI) implemented the Hurricane Sandy Coastal Resiliency Program, which funded various projects designed to reduce future impacts of coastal hazards. These projects included marsh, beach, and dune restoration, aquatic connectivity, and living shoreline installation, among others. To ... |
Info |
Time-series measurements of oceanographic and water quality data collected in the Herring River, Wellfleet, Massachusetts, USA, November 2018 to November 2019
Restoration in the tidally restricted Herring River Estuary in Wellfleet, MA benefits from understanding pre-restoration sediment transport conditions. Submerged sensors were deployed at four sites landward and seaward of the Herring River restriction to measure water velocity, water quality, water level, waves, and seabed elevation. These data will be used to evaluate sediment dynamics and geomorphic change and inform marsh modeling efforts over tidal and seasonal timescales. |
Info |
Time-series measurements of pressure, conductivity, temperature, and water level collected in Puget Sound and Bellingham Bay, Washington, USA, 2018 to 2021
Pressure, conductivity, temperature, and water level relative the North American Vertical Datum of 1988 (NAVD88) were measured at seven locations in Puget Sound and Bellingham Bay, Washington, USA, from November 2, 2018 to June 4, 2021. These data were collected using submersible pressure-conductivity-temperature sensors mounted on piers to support studies of extreme water levels and flooding hazards in the region. |
Info |
Time-series oceanographic data collected off Makua, Kauai, USA, August 2016
Time-series data of water-surface elevation, wave height, water-column currents, temperature were acquired for 6 days off the north coast of the island of Kauai, Hawaii in support of a study on the coastal circulation patterns and groundwater input to the coral reefs of Makua. |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements from Crocker Reef, Florida, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification at Crocker Reef located along the Florida Keys Reef Tract, in Southeast Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 1 (OCSv1) deployed on the seafloor at Crocker Reef. The OCSv1 consists of five sensors ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Eastern Gulf of Mexico near Tampa Bay, Florida, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification in the Gulf of Mexico near the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 3 (OCSv3) deployed on the University of South Florida (USF), Coastal Ocean Monitoring and ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Eastern Gulf of Mexico near Tampa Bay, Florida, USA (Version 2.0)
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification in the Gulf of Mexico near the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 3 (OCSv3) deployed on the University of South Florida (USF), Coastal Ocean Monitoring and ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Middle Tampa Bay, Florida, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 2 (OCSv2) deployed on the seafloor in Tampa Bay. The OCSv2 consists of four sensors integrated into a Sea-Bird ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Middle Tampa Bay, Florida, USA (version 2.0, August 2019)
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 2 (OCSv2) deployed on the seafloor in Tampa Bay. The OCSv2 consists of four sensors integrated into a Sea-Bird ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Middle Tampa Bay, Florida, USA (version 3.0, March 2021)
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 2 (OCSv2) deployed on the seafloor in Tampa Bay. The OCSv2 consists of four sensors integrated into a Sea-Bird ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Middle Tampa Bay, Florida, USA (version 4.0, June 2022)
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System version 2 (OCSv2) deployed on the seafloor in Tampa Bay. The OCSv2 consists of four sensors integrated into a Sea-Bird ... |
Info |
Time Series of Autonomous Carbonate System Parameter Measurements in Tampa Bay, Florida, USA
This dataset contains carbonate system data collected by scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center to investigate the effects of carbon cycling, coastal and ocean acidification on the Tampa Bay estuary located in west central Florida, USA. These data were collected using an autonomous instrument called the Ocean Carbon System (OCS) deployed on the seafloor in Tampa Bay. The OCS consists of five sensors integrated into a Sea-Bird Scientific (Satlantic) ... |
Info |
Time-series of biogeochemical and flow data from a tidal salt-marsh creek, Sage Lot Pond, Waquoit Bay, Massachusetts, 2012-2016 (ver. 2.0, July 2023)
Extended time-series sensor data were collected between 2012 and 2016 in surface water of a tidal salt-marsh creek on Cape Cod, Massachusetts. The objective of this field study was to measure water chemical characteristics and flows, as part of a study to quantify lateral fluxes of dissolved carbon species between the salt marsh and estuary. Data consist of in-situ measurements including salinity, temperature, pH, dissolved oxygen, redox potential, fluorescent dissolved organic matter, turbidity, ... |
Info |
Tone-matched enhanced TIFF sidescan-sonar image from Boulder Basin, Lake Mead - UTM projection
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Tone-matched enhanced TIFF sidescan-sonar image from Overton Arm, Lake Mead - UTM projection
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Tone-matched enhanced TIFF sidescan-sonar image from Temple Basin and Iceberg Canyon, Lake Mead - UTM projection
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Tone-matched enhanced TIFF sidescan-sonar image from Virgin Basin, Lake Mead - UTM projection
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2018-12-02
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2018-12-02. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-06-03
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2019-11-12
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2019-11-12. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Topographic digital surface model (DSM) for Whiskeytown Lake and surrounding area, 2020-11-10
This portion of the data release presents a digital surface model (DSM) and hillshade of Whiskeytown Lake and the surrounding area derived from Structure from Motion (SfM) processing of aerial imagery acquired on 2020-11-10. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise and vegetation in the original ... |
Info |
Topographic point cloud for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05
This portion of the data release presents a topographic point cloud of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The point cloud was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. The point cloud has 206,323,353 points with an average point density of 929 points per-square meter. The point cloud is tiled to reduce individual file sizes and is grouped within a zip file for downloading. Each point in the point ... |
Info |
Topographic point cloud for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06
This portion of the data release presents topographic point clouds of the intertidal zone at Post Point, Bellingham Bay, WA. The point clouds were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. Two point clouds are presented with different resolutions: one point cloud (PostPoint_2019-06-06_pointcloud.zip) covers the entire survey area and has 145,653,2221 points with an average point density of 1,057 points per-square meter ... |
Info |
Topographic point cloud for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03
This portion of the data release presents topographic point clouds of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. The point clouds for Puget Creek and Dickman Mill Park contain 74,565,548 and 122,791,637 points, respectively, at an approximate point spacing of 1 point every 2 centimeters. Each point contains an explicit horizontal and vertical ... |
Info |
Topographic point cloud for the intertidal zone at West Whidbey Island, WA, 2019-06-04
This portion of the data release presents a topographic point cloud of the intertidal zone at West Whidbey Island, WA. The point cloud was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. The point cloud has 293,261,002 points with an average point density of 1,063 points per-square meter. The point cloud is tiled to reduce individual file sizes and is grouped within a zip file for downloading. Each point in the point cloud ... |
Info |
Topographic point cloud for the Liberty Island Conservation Bank Wildlands restoration site, Sacramento-San Joaquin Delta, California, 2018-10-23
This portion of the data release presents a topographic point cloud of the Liberty Island Conservation Bank Wildlands restoration site in the Sacramento-San Joaquin Delta, derived from structure-from-motion (SfM) processing of aerial imagery collected with an Unmanned Aerial System (UAS) on 2018-10-23. The point cloud contains 380,296,568 points at an approximate point density of 323 point per square-meter. Each point contains an explicit horizontal and vertical coordinate, color, intensity, and ... |
Info |
Topographic point cloud from UAS survey of the debris flow at South Fork Campground, Sequoia National Park, CA
This portion of the data release presents a topographic point cloud of the debris flow at South Fork Campground in Sequoia National Park. The point cloud was derived from structure-from-motion (SfM) photogrammetry using aerial imagery acquired during an uncrewed aerial systems (UAS) survey on 30 April 2024, conducted under authorization from the National Park Service. The raw imagery was acquired with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed autonomous ... |
Info |
Topographic point cloud of the Los Padres Reservoir delta, Carmel River valley, CA, 2017-11-01
This portion of the data release presents a topographic point cloud of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The point cloud was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The point cloud has 115,819,907 points with an average point density of 611 points per-square meter. Each point in the point cloud contains an explicit horizontal and vertical coordinate, color, ... |
Info |
Topographic point clouds from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, August 2017
This portion of the data release presents topographic point clouds of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The point clouds were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) on during low tide surveys on 7 and 8 August 2017. The point clouds from each survey are tiled into 1000 by 1000 meter tiles to reduce individual file sizes. The Fort Stevens point clouds have a ... |
Info |
Topographic point clouds from UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021
This portion of the data release presents topographic point clouds of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. The point clouds were derived from structure-from-motion (SfM) processing of aerial imagery collected with unoccupied aerial systems (UAS) on 2017-11-01 during low tide surveys on 22 and 23 July 2021. The point clouds from each survey are tiled into 500 by 500 meter tiles to reduce individual file sizes. The Fort Stevens point clouds ... |
Info |
Topographic survey data of Oxbow Reservoir, Placer County, California, October 2022
This portion of the data release presents topographic survey data of portions of Oxbow Reservoir in Placer County, California. These data were collected on 26 October 2022, when the reservoir was partially de-watered to allow repairs to the dam infrastructure following the Mosquito Fire. Although the gates of the dam were open during this time, significant portions of the reservoir site remained inaccessible to surveyors due to the continued flow of the Middle Fork American River. Consequently, these data ... |
Info |
Town Neck Beach, Massachusetts, 10 cm 2016-2017 Digital Elevation Models
Low-altitude (80-100 meters above ground level) Unmanned Aircraft Systems (UAS) imagery of Town Neck Beach in Sandwich, Massachusetts, were used in a structure-from-motion (SfM) photogrammetry workflow to create high-resolution topographic datasets. Imagery was collected at close to low tide on twelve days to observe changes in beach and dune morphology. Ground control points (GCPs), which are temporary targets on the ground located by using a real-time kinematic global navigation satellite system (RTK-GNSS ... |
Info |
Town Neck Beach, Massachusetts, 5 cm 2016-2017 Orthomosaics
Low-altitude (80-100 meters above ground level) Unmanned Aircraft Systems (UAS) imagery of Town Neck Beach in Sandwich, Massachusetts, were used in a structure-from-motion (SfM) photogrammetry workflow to create high-resolution topographic datasets. Imagery was collected at close to low tide on twelve days to observe changes in beach and dune morphology. Ground control points (GCPs), which are temporary targets on the ground located by using a real-time kinematic global navigation satellite system (RTK-GNSS ... |
Info |
Trackline navigation collected with a Reson 7160 Multibeam echosounder in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA (Esri polyline shapefile, UTM 8 WGS 84)
Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern ... |
Info |
Trackline navigation for 512i seismic-reflection data collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA, 2014 (Esri polyline shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
Trackline navigation for chirp, water-gun, and boomer seismic reflection data collected within the New York Bight by the U.S. Geological Survey (Esri polyline shapefile, Geographic, WGS84)
These data represent trackline navigation data seismic-reflection systems utilized during U.S. Geological Survey geophysical research cruises. |
Info |
Trackline navigation for Edgetech 4200 sidescan sonar data collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (Esri polyline shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
Trackline navigation for EdgeTech SB-512i chirp and multichannel sparker seismic-reflection data collected in 2013 by Coastal Planning & Engineering, Inc. for the Maryland Energy Administration offshore of the Delmarva Peninsula (polyline shapefiles)
Geologic structure and isopach maps were constructed by interpreting over 19,890 trackline kilometers of co-located multichannel boomer, sparker and chirp seismic reflection profiles from the continental shelf of the Delmarva Peninsula, including Maryland and Virginia state waters. In this region, Brothers and others (2020) interpret 12 seismic units and 11 regional unconformities. They interpret the infilled channels as Late Tertiary and Quaternary courses of the Susquehanna, Potomac, Rappahannock, York ... |
Info |
Trackline navigation for EdgeTech SB-512i chirp seismic-reflection data collected in 2014 by the U.S. Geological Survey offshore of Fire Island, NY (Esri polyline shapefile, GCS WGS 84)
The U.S. Geological Survey (USGS) conducted a geophysical and sampling survey in October 2014 that focused on a series of shoreface-attached ridges offshore of western Fire Island, NY. Seismic-reflection data, surficial grab samples and bottom photographs and video were collected along the lower shoreface and inner continental shelf. The purpose of this survey was to assess the impact of Hurricane Sandy on this coastal region. These data were compared to seismic-reflection and surficial sediment data ... |
Info |
Trackline navigation for EdgeTech SB-512i chirp seismic-reflection data collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (Esri polyline shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
Trackline navigation for EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Baltimore Canyon, mid-Atlantic margin (Esri polyline shapefile, Geographic, WGS 84, BC_tracklines.shp)
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
Trackline navigation for EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Norfolk Canyon, mid-Atlantic margin (Esri polyline shapefile, Geographic, WGS 84, NC_tracklines.shp)
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
Trackline navigation for EdgeTech SB-512i chirp seismic-reflection data collected in May 2012 by the U.S. Geological Survey within the Washington Canyon, mid-Atlantic margin (Esri polyline shapefile, Geographic, WGS 84, WC_tracklines.shp)
A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV ... |
Info |
Trackline navigation for EG&G Uniboom seismic-reflection data collected by the U.S. Geological Survey during field activities 1974-004-FA and 1975-003-FA offshore of the Delmarva Peninsula (polyline shapefiles)
Geologic structure and isopach maps were constructed by interpreting over 19,890 trackline kilometers of co-located multichannel boomer, sparker and chirp seismic reflection profiles from the continental shelf of the Delmarva Peninsula, Maryland and Virginia. In this region, Brothers and others (2020) interpret 12 seismic units and 11 regional unconformities. They interpret the infilled channels as Late Tertiary and Quaternary courses of the Susquehanna, Potomac, Rappahannock, York and James Rivers and ... |
Info |
Trackline navigation for Klein 3000 sidescan sonar data collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA, 2014 (Esri polyline shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
Trackline navigation for Knudsen 3202 seismic-reflection data collected by the U.S. Geological Survey surrounding the eastern Elizabeth Islands and northern Martha's Vineyard, MA, 2011 (Esri polyline shapefile, GCS WGS 84, 2011-013-FA_Knudsen_tracklines.shp)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Trackline navigation for multi-channel seismic data collected by the U.S. Geological Survey on U.S. Atlantic Seaboard in 2014 (Geographic, WGS84, polyline shapefile 2014-011-FA_seistrk.shp)
In summer 2014, the U.S. Geological Survey conducted a 21-day geophysical program in deep water along the Atlantic continental margin by using R/V Marcus G. Langseth (Field Activity Number 2014-011-FA). The purpose of the seismic program was to collect multichannel seismic reflection and refraction data to determine sediment thickness. These data enable the United States to delineate its Extended Continental Shelf (ECS) along the Atlantic margin. The same data can also be used to understand large ... |
Info |
Trackline navigation for Multi-channel streamer seismic-reflection profiles collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA, 2014
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
Trackline navigation for multi-channel streamer seismic-reflection profiles collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (Esri polyline shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
Trackline navigation for swath interferometric bathymetry data collected in 2015 by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA (Esri polyline shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy in the fall of 2012. The U.S. Geological Survey conducted cruises during the summers of 2014 and 2015 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Geophysical data collected during the cruises include ... |
Info |
Trackline navigation for Swath interferometric data collected by the U.S. Geological Survey along the Delmarva Peninsula, MD and VA, 2014 (Esri polyline shapefile, GCS WGS 84)
The Delmarva Peninsula is a 220-kilometer-long headland, spit, and barrier island complex that was significantly affected by Hurricane Sandy. A U.S. Geological Survey cruise was conducted in the summer of 2014 to map the inner continental shelf of the Delmarva Peninsula using geophysical and sampling techniques to define the geologic framework that governs coastal system evolution at storm-event and longer timescales. Data collected during the 2014 cruise include swath bathymetry, sidescan sonar, chirp and ... |
Info |
Trackline navigation of chirp seismic-reflection data collected of the southern shore of Martha's Vineyard, MA, 2007 (ESRI POLYLINE SHAPEFILE, SEISMIC_TRKNAV.SHP)
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Trackline navigation of swath bathymetry collected by the U.S. Geological Survey off the southern shore of Martha's Vineyard, 2007 (ESRI POLYLINE SHAPEFILE, BATHY_TRKNAV.SHP)
The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation ... |
Info |
Tracklines derived from hourly navigation fixes for all four R/V FARNELLA Gulf of Mexico GLORIA cruises (GLORIATRACKS.SHP)
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. |
Info |
Tracklines for Chirp profiles collected during the 2002 MARION DUFRESNE cruise (02018) in the Gulf of Mexico (MD02CHIRPLN.SHP)
Since 1982, the U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the growing ... |
Info |
Tracklines for CHIRP seismic lines 1-5 collected during USGS GYRE cruise 99002 (L1_5LN.SHP)
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. A two week cruise aboard the R/V GYRE focused on mapping surficial sedimentary processes and their connection to the subsurface geology. The study area was on the upper continental slope in the northwestern Gulf of Mexico; an area of active ... |
Info |
Tracklines for multichannel seismic data collected by the USGS in the Atwater Valley area aboard the R/V GYRE Cruise G1-03-GM (03001) - AV_G103GM_LINES.SHP
This line shapefile contains navigation of the lines for the multichannel seismic survey that was conducted in the Atwater Valley area of the Gulf of Mexico during USGS cruise G1-03-GM aboard the R/V Gyre in the Gulf of Mexico in May, 2003. The purpose of this cruise was to collect multichannel seismic data in support of USGS and Department of Energy gas hydrate studies. About 253 km of data were collected along 35 short lines in and around lease block Atwater Valley 14 on the floor of the Mississippi ... |
Info |
Tracklines for multichannel seismic data collected by the USGS in the Keathley Canyon area aboard the R/V GYRE (KC_G103GM_LINES.SHP)
The line shapefile contains the trackline navigation for the Keathley Canyon multichannel seismic survey collected during USGS cruise G1-03-GM aboard the R/V Gyre in the Gulf of Mexico in May, 2003. The purpose of this cruise was to collect multichannel seismic data in support of USGS and Department of Energy gas hydrate studies. About 786 km of data were collected along 59 lines in and around lease block Keathley Canyon 195. |
Info |
Tracklines for seismic-reflection data collected during R/V GYRE cruise 97006 (G97_1MNLINE.SHP)
Since 1982 the, U.S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep parts of the Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these data sets have already been published, but the growing ... |
Info |
Tracklines of a multibeam survey of the Hudson Shelf Valley carried out in 1996 (polyline shapefile, geographic, WGS 84)
The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, ... |
Info |
Tracklines of a multibeam survey of the Hudson Shelf Valley carried out in 1998 (polyline shapefile, geographic, WGS 84)
The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, ... |
Info |
Tracklines of a multibeam survey of the Hudson Shelf Valley carried out in 2000 (polyline shapefile, geographic, WGS 84)
The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, ... |
Info |
Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1996 (polyline shapefile, geographic, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1998 (polyline shapefile, geographic, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 2000 (polyline shapefile, geographic, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the ... |
Info |
Tracklines of a multibeam survey of the sea floor offshore of Fire Island Inlet, New York, in 1998 (polyline shapefile, geographic, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
Tracklines of a multibeam survey of the sea floor offshore of Moriches Inlet, New York, in 1998 (polyline shapefile, geographic, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
Tracklines of a multibeam survey of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (polyline shapefile, geographic, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
Tracklines of a multibeam survey of the sea floor of the Atlantic Beach artificial reef (polyline shapefile, geographic, WGS 84)
The Atlantic Beach artificial reef, located on the sea floor 3 nautical miles south of Atlantic Beach, New York in about 20 meters water depth, was built to create habitat for marine life. The reef was originally created by placing heavy materials such as tires, automobile bodies and other vehicles, barges, and rock from a dredging project on the sea floor. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship ... |
Info |
Tracklines of a multibeam survey of the sea floor of the Hudson Canyon region carried out in 2002 (polyline shapefile, geographic, WGS 84)
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and ... |
Info |
Tracklines of a multibeam survey of the sea floor of the Sandy Hook artificial reef (polyline shapefile, geographic, WGS 84)
The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the ... |
Info |
Tracklines of a multibeam survey of the sea floor southwest of Montauk Point, New York, in 1998 (polyline shapefile, geographic, WGS 84)
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, ... |
Info |
Tracklines of Chirp Seismic Lines 15 Through 27 for USGS Cruise GYRE 99002 (L15_27LN.SHP)
This GIS overlay is a component of the U.S. Geological Survey, Woods Hole Science Center's, Gulf of Mexico GIS database. The Gulf of Mexico GIS database is intended to organize and display USGS held data and provide on-line (WWW) access to the data and/or metadata. A two week cruise aboard the R/V GYRE focused on mapping surficial sedimentary processes and their connection to the subsurface geology. The study area was on the upper continental slope in the northwestern Gulf of Mexico; an area of active ... |
Info |
Tracklines of chirp seismic-reflection data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (seismic_trk_06015.shp, polylines)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Tracklines of chirp seismic-reflection data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (seismic_trk_07007.shp, polylines)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Tracklines of Klein 3000 sidescan sonar data collected by the U.S. Geological Survey within Vineyard Sound and Buzzards Bay, MA, 2011 (Esri polyline shapefile, Geographic WGS 84, 2011-013-FA_Klein3k_tracklines.shp)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Tracklines of multichannel boomer seismic reflection data collected by the U.S. Geological Survey in Vineyard Sound and Buzzards Bay, MA, 2010 (Esri polyline shapefile, Geographic WGS 84, 2010-047-FA_Boomer_tracklines.shp)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Tracklines of multichannel boomer seismic reflection data collected by the U.S. Geological Survey in Vineyard Sound, MA, 2011 (Esri polyline shapefile, Geographic WGS 84, 2010-100-FA_Boomer_tracklines.shp)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Tracklines of Multichannel Seismics Survey Collected During USGS Cruise M1-98-GM (GOM98LINE.SHP)
Shapefile showing tracklines of Multichannel Seismics Survey Collected During USGS Cruise M1-98-GM. This cruise was to the Mississippi Canyon region of the Gulf of Mexico, and data were collected along 555 km of tracklines. During June 1998 and April 1999, the U.S. Geological Survey (USGS) conducted two research cruises in the northern Gulf of Mexico to acquire high-resolution seismic reflection data across the upper and middle continental slope as part of an investigation of the seismic character, ... |
Info |
Tracklines of sidescan sonar data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (sidescan_trk_06015.shp, polylines)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Tracklines of side-scan sonar data collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (sidescan_trk_07007.shp, polylines)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency side-scan sonar, and ... |
Info |
Tracklines of sidescan sonar data collected by the U.S. Geological Survey - St. Petersburg Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010 (ESRI polyline shapefile, 10cct02_k3900_Tracklines.shp)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Tracklines of sidescan sonar data collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Elizabeth Islands, MA, 2010 (2010-003-FA_Klein3k_tracklines.shp, ESRI polyline shapefile)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Tracklines of sidescan sonar data collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010 (ESRI polyline shapefile, 2010-012-FA_k3k_Tracklines.shp)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Tracklines of Sidescan-Sonar Survey conducted within Gulf of Farallones, 1989, by the U.S. Geological Survey
In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques ... |
Info |
Tracklines of swath bathymetry collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (bathy_trk_06015.shp, polylines)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Tracklines of swath bathymetry collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2007 (bathy_trk_07007.shp, polylines)
In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an ... |
Info |
Tracklines of swath bathymetry collected by the U.S. Geological Survey offshore of the Grand Strand, South Carolina (BATHY_TRK, Polyline)
In 1999, the USGS, in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this geologic framework and ... |
Info |
Tracklines of swath bathymetry collected by the U.S. Geological Survey - St. Petersburg Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010 (ESRI polyline shapefile, 10cct02_subx_Tracklines.shp)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Tracklines of swath bathymetry collected by the U.S. Geological Survey surrounding Muskeget Channel, MA, 2010 (Esri polyline shapefile, Geographic WGS 84, tracklines_2010_072_FA.shp)
These data were collected in a collaboration between the Woods Hole Oceanographic Institution and the U.S. Geological Survey (USGS). The primary objective of this program was to collect baseline bathymetry for Muskeget Channel, Massachusetts, and identify areas of morphologic change within and around the channel. Repeat surveys in select areas were collected one month apart to monitor change. These data were collected to support an assessment of the effect on sediment transport that a tidal instream energy ... |
Info |
Tracklines of swath bathymetry collected by the U.S. Geological Survey surrounding the eastern Elizabeth Islands and northern Martha's Vineyard, MA, 2011 (Esri polyline shapefile, Geographic WGS 84, All_Swath_tracklines.shp)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Tracklines of swath bathymetry collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Elizabeth Islands, MA, 2010 (2010-003-FA_Swath_tracklines.shp, ESRI polyline shapefile)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Tracklines of swath bathymetry collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010 (ESRI polyline shapefile, 2010-012-FA_subx_Tracklines.shp)
In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), ... |
Info |
Transect Lines for Assateague Island, Maryland and Virginia
Assessing the physical change to shorelines and wetlands is critical in determining the resiliency of wetland systems that protect adjacent habitat and communities. The wetland and back-barrier shorelines of Assateague Island, located in Maryland and Virginia, changed as a result of wave action and storm surge that occurred during Hurricane Sandy, which made landfall on October 29, 2012. The impact of Hurricane Sandy will be assessed and placed in its historical context to understand the future ... |
Info |
Transect Lines for the Undeveloped Areas of New Jersey's Barrier Islands (projected, UTM Zone 18N (NAD83))
Assessing the physical change to shorelines and wetlands is critical in determining the resiliency of wetland systems that protect adjacent habitat and communities. The wetland and back-barrier shorelines of New Jersey changed as a result of wave action and storm surge that occurred during Hurricane Sandy, which made landfall on October 29, 2012. The impact of Hurricane Sandy will be assessed and placed in its historical context to understand the future vulnerability of wetland systems. Making these ... |
Info |
Transects_BackBarrier.shp - Digital Shoreline Analysis System version 4.3 Transects with Linear Regression Rate Calculations for the Back-Barrier (North-Facing) coast of Dauphin Island, Alabama.
Rates of shoreline change for Dauphin Island, Alabama were generated for three analysis periods, using two different shoreline proxy datasets. Mean High Water line (MHW) shorelines were generated from 14 lidar datasets (1998-2014) and Wet Dry Line (WDL) shorelines were digitized from ten sets of georeferenced aerial images (1940-2015). Rates of change were generated for three groups of shorelines: MHW (lidar), WDL (aerial) and MHW and WDL shorelines combined. These data will aid in developing an ... |
Info |
Transects_OpenOcean.shp - Digital Shoreline Analysis System version 4.3 Transects with Linear Regression Rate Calculations for the Open Ocean coast of Dauphin Island, Alabama.
Rates of shoreline change for Dauphin Island, Alabama were generated for three analysis periods, using two different shoreline proxy datasets. Mean High Water line (MHW) shorelines were generated from 14 lidar datasets (1998-2014) and Wet Dry Line (WDL) shorelines were digitized from ten sets of georeferenced aerial images (1940-2015). Rates of change were generated for three groups of shorelines: MHW (lidar), WDL (aerial) and MHW and WDL shorelines combined. These data will aid in developing an ... |
Info |
Transgressive Contours--Bolinas to Pescadero, California
This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in "TransgressiveContours_BolinasToPescadero.zip," which is accessible from https://pubs.usgs.gov/ds/781/BolinasToPescadero/data_catalog_BolinasToPescadero.html. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Bolinas and Pescadero was generated from ... |
Info |
Transgressive Contours--Pigeon Point to Monterey, California
This part of DS 781 presents data for the transgressive contours for the depth-to-transition map of the Pigeon Point to Monterey, California, map region. The vector file is included in T "TransgressiveContours_PigeonPointToMonterey.zip," which is accessible from https://doi.org/10.5066/F7N29V0Z. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the limit of California’s State Waters between Pigeon Point and southern Monterey Bay was ... |
Info |
Transgressive Contours--Point Conception to Hueneme Canyon, California
This part of DS 781 presents data for the transgressive contours for the Point Conception to Hueneme Canyon, California, region. The vector file is included in "TransgressiveContours_PointConceptionToHuenemeCanyon.zip," which is accessible from https://doi.org/10.5066/F7891424. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Conception and Hueneme Canyon was generated from seismic-reflection ... |
Info |
Transgressive Contours—Point Sur to Point Arguello, California
This part of DS 781 presents data for the transgressive contours of the Point Sur to Point Arguello, California, region. The vector data file is included in the “TransgressiveContours_PointSurToPointArguello.zip,” which is accessible from https://doi.org/10.5066/P97CZ0T7. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Point Sur and Point Arguello was generated from seismic-reflection data ... |
Info |
Transgressive Contours--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected ... |
Info |
Transgressive Contours--Punta Gorda to Point Arena, California
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected ... |
Info |
Transgressive Contours--Salt Point to Drakes Bay, California
This part of DS 781 presents data for the transgressive contours for the Salt Point to Drakes Bay, California, region. The vector file is included in "TransgressiveContours_SaltPointToDrakesBay.zip," which is accessible from https://pubs.usgs.gov/ds/781/SaltPointToDrakesBay/data_catalog_SaltPointToDrakesBay.html. As part of the USGS's California State Waters Mapping Project, a 20-m grid of depth to the transgressive surface of the last glacial maximum was generated for the areas within the 3-nautical mile ... |
Info |
Transgressive contours--Santa Barbara Channel, California
This part of DS 781 presents data for the transgressive contours for the Santa Barbara Channel, California, region. The vector file is included in "TransgressiveContours_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Project, a 50-m-resolution grid of depth to the transgressive surface of the Last Glacial Maximum within California State Waters between Refugio Beach ... |
Info |
Tropical Storm Bill Assessment of Potential Coastal-Change Impacts: NHC Advisory 2, 0900 AM UTC MON JUN 16 2015
This dataset defines storm-induced coastal erosion hazards for the Texas and Louisiana coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Bill in June 2015. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ... |
Info |
Tropical Storm Colin Assessment of Potential Coastal Change Impacts: NHC Advisory 4, 0500 AM EDT MON JUN 06 2016
This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Colin in June 2016. Storm-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision ... |
Info |
Tropical Storm Gordon Assessment of Potential Coastal Change Impacts: NHC Advisory 8, 0700 AM CDT TUE SEP 04 2018
This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Gordon in September 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the ... |
Info |
Tropical Storm Hermine Assessment of Potential Coastal Change Impacts: NHC Advisory 20, 0500 AM EDT FRI SEP 02 2016
This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Hermine in September 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: ... |
Info |
Tyndall_2022_MBES: High-resolution Geophysical Data Collected in June 2022 Near Tyndall Air Force Base, Panama City, Florida
An Ellipsoidally Referenced Survey (ERS) using two Teledyne Reson SeaBat T50-P multibeam echosounders, in dual-head configuration, was conducted by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) nearshore Tyndall Air Force Base, Panama City, Florida, from June 20-30, 2022. This dataset, Tyndall_2022_MBES_xyz.zip, includes the processed elevation point data (x,y,z), as derived from a 1-meter (m) bathymetric grid, and the dataset Tyndall_2022_MBES_Backscatter.zip ... |
Info |
u171gm.m77t - MGD77 data file for Geophysical data from field activity UGEOLEG_1 (U-1-71-GM) in Bay of Campeche, Gulf of Mexico from 05/27/1971 to 06/21/1971
Single-beam bathymetry, gravity, and magnetic data along with transit satellite navigation data was collected as part of field activity UGEOLEG_1 (U-1-71-GM) in Bay of Campeche, Gulf of Mexico from 05/27/1971 to 06/21/1971, http://walrus.wr.usgs.gov/infobank/u/u171gm/html/u-1-71-gm.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/u/u171gm/html/u-1-71-gm ... |
Info |
u271gm.m77t - MGD77 data file for Geophysical data from field activity U-2-71-GM in East Margin Yucatan Peninsula from 06/23/1971 to 07/08/1971
Single-beam, bathymetry, gravity, and magnetic data along with transit satellite navigation data was collected as part of the U.S. Geological Survey cruise U271GM. in East Margin Yucatan Peninsula from 06/23/1971 to 07/08/1971, http://walrus.wr.usgs.gov/infobank/u/u271gm/html/u-2-71-gm.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/u/u271gm/html/u-2-71-gm ... |
Info |
u371cb.m77t - MGD77 data file for geophysical data from field activity UGEOLEG_3 (U-3-71-CB) in Eastern Greater Antilles, Caribbean from 07/17/1971 to 08/04/1971
Single-beam bathymetry, gravity, and magnetic data along with transit satellite navigation data was collected as part of field activity UGEOLEG_3 (U-3-71-CB) in Eastern Greater Antilles, Caribbean from 07/17/1971 to 08/04/1971, http://walrus.wr.usgs.gov/infobank/u/u371cb/html/u-3-71-cb.meta.html The geophysical source was a Knudsen 12 kHz 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity ... |
Info |
u471cb.m77t - MGD77 data file for Geophysical data from field activity UGEOLEG_4 (U-4-71-CB) in Venezuela, Caribbean Sea from 08/18/1971 to 10/01/1971
Single-beam bathymetry,gravity, and magnetic data along with transit satellite navigation data was collected as part of field activity UGEOLEG_4 (U-4-71-CB) in Venezuela, Caribbean Sea from 08/18/1971 to 10/01/1971, http://walrus.wr.usgs.gov/infobank/u/u471cb/html/u-4-71-cb.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/u/u471cb/html/u-4-71-cb.bath.html ... |
Info |
u571af.m77t: MGD77T data file for Geophysical data from field activity 71005 (U-5-71-AF) in Continental Margin Liberia from 10/30/1971 to 11/20/1971
Single-beam bathymetry, gravity, and magnetic data along with transit satellite navigation data was collected as part of field activity 71005 (U-5-71-AF) in Continental Margin Liberia from 10/30/1971 to 11/20/1971, http://walrus.wr.usgs.gov/infobank/u/u571af/html/u-5-71-af.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/u/u571af/html/u-5-71-af.bath.html ... |
Info |
u671at.m77t - MGD77 data file for Geophysical data from field activity 71006 (U-6-71-AT) in Liberia to Puerto Rico, Atlantic Ocean from 11/24/1971 to 12/09/1971
Single-beam bathymetry, gravity, and magnetic data along with DGPS navigation data was collected as part of field activity 71006 (U-6-71-AT) in Liberia to Puerto Rico, Atlantic Ocean from 11/24/1971 to 12/09/1971, http://walrus.wr.usgs.gov/infobank/u/u671at/html/u-6-71-at.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/u/u671at/html/u-6-71-at.bath.html ... |
Info |
u771pr.m77t - MGD77 data file for Geophysical data from field activity 71007 (U-7-71-PR) in Puerto Rico from 12/11/1971 to 12/15/1971
Single-beam bathymetry data along with transit satellite navigation data was collected as part of field activity 71007 (U-7-71-PR) in Puerto Rico from 12/11/1971 to 12/15/1971, http://walrus.wr.usgs.gov/infobank/u/u771pr/html/u-7-71-pr.meta.html These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/u/u771pr/html/u-7-71-pr.bath.html into MGD77T format provided by the NOAA ... |
Info |
Ultra-short baseline - navigation points and tracklines for Applied Acoustics EasyTrack Nexus 2 USBL data collected for ROV Global Explorer during USGS field activity 2017-001-FA.
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and ... |
Info |
Underwater temperature data collected from off-shore coral reefs of the Florida Keys, U.S.A. (Version 2)
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (http://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. Coral reef organisms are very sensitive to high and low water-temperature extremes. It is critical to precisely know water temperatures experienced by corals and associated plants and animals that live in the dynamic nearshore environment to document thresholds in temperature tolerance. This ... |
Info |
Underwater temperature data collected from off-shore coral reefs of the Florida Keys, U.S.A. (Version 3)
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. Coral reef organisms are very sensitive to high and low water-temperature extremes. It is critical to precisely know water temperatures experienced by corals and associated plants and animals that live in the dynamic nearshore environment to document thresholds in temperature tolerance. This ... |
Info |
Underwater temperature data collected from off-shore coral reefs of the Florida Keys, U.S.A. (Version 4)
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. Coral reef organisms are very sensitive to high and low water-temperature extremes. It is critical to precisely know water temperatures experienced by corals and associated plants and animals that live in the dynamic nearshore environment to document thresholds in temperature tolerance. This ... |
Info |
Underwater temperature data collected from off-shore coral reefs of the Florida Keys, U.S.A. (Version 5)
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. Coral reef organisms are very sensitive to high and low water-temperature extremes. It is critical to precisely know water temperatures experienced by corals and associated plants and animals that live in the dynamic nearshore environment to document thresholds in temperature tolerance. This ... |
Info |
Underwater temperature data collected from off-shore coral reefs of the Florida Keys, U.S.A. (Version 6)
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. Coral reef organisms are very sensitive to high and low water-temperature extremes. It is critical to precisely know water temperatures experienced by corals and associated plants and animals that live in the dynamic nearshore environment to document thresholds in temperature tolerance. This ... |
Info |
Underwater temperature on off-shore coral reefs of the Florida Keys, U.S.A. (Version 7)
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. Coral reef organisms are very sensitive to high and low water-temperature extremes. It is critical to precisely know water temperatures experienced by corals and associated plants and animals that live in the dynamic nearshore environment to document thresholds in temperature tolerance. This ... |
Info |
Underwater temperature on off-shore coral reefs of the Florida Keys, U.S.A. (Version 8)
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. Coral reef organisms are very sensitive to high and low water-temperature extremes. It is critical to precisely know water temperatures experienced by corals and associated plants and animals that live in the dynamic nearshore environment to document thresholds in temperature tolerance. This ... |
Info |
Underwater temperature on off-shore coral reefs of the Florida Keys, U.S.A. (Version 9)
The U.S. Geological Survey (USGS) Coral Reef Ecosystems Studies (CREST) project (https://coastal.er.usgs.gov/crest/) provides science that helps resource managers tasked with the stewardship of coral reef resources. Coral reef organisms are very sensitive to high and low water-temperature extremes. Therefore, it is critical to precisely know water temperatures experienced by corals and associated plants and animals that live in the dynamic nearshore environment to document thresholds in temperature ... |
Info |
Undrained shear strength of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the ... |
Info |
Undrained shear strength of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
Unenhanced TIFF Sidescan-Sonar Mosaic of Boulder Basin - Lake Mead, Nevada: Geographic Coordinates (BBASIN_UNGEOG.TIF)
Lake Mead is a large interstate reservoir located in the Mojave Desert of southeastern Nevada and northwestern Arizona. It was impounded in 1935 by the construction of Hoover Dam and is one of a series of multi-purpose reservoirs on the Colorado River. The lake extends 183 km from the mouth of the Grand Canyon to Black Canyon, the site of Hoover Dam, and provides water for residential, commercial, industrial, recreational, and other non-agricultural users in communities across the southwestern United ... |
Info |
Uninterpolated swath bathymetry collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center surrounding the nearshore of the Elizabeth Islands, MA, 2010 (ei_2hm_nofill, ESRI grd)
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish ... |
Info |
Unique common mid-point (cmp) navigation for multi-channel seismic data collected by the U.S. Geological Survey on U.S. Atlantic Seaboard in 2014 (Geographic, WGS84, point shapefile 2014-011-FA_mcscmp.shp)
In summer 2014, the U.S. Geological Survey conducted a 21-day geophysical program in deep water along the Atlantic continental margin by using R/V Marcus G. Langseth (Field Activity Number 2014-011-FA). The purpose of the seismic program was to collect multichannel seismic reflection and refraction data to determine sediment thickness. These data enable the United States to delineate its Extended Continental Shelf (ECS) along the Atlantic margin. The same data can also be used to understand large ... |
Info |
Unique shot point navigation for chirp seismic data collected in Indian River Bay, Delaware, April 13, 2010, on U.S. Geological Survey Field Activity 2010-006-FA (IR_SEISNAV.SHP, Geographic, WGS 84)
A geophysical survey to delineate the fresh-saline groundwater interface and associated sub-bottom sedimentary structures beneath Indian River Bay, Delaware, was carried out in April 2010. This included surveying at higher spatial resolution in the vicinity of a study site at Holts Landing, where intensive onshore and offshore studies were subsequently completed. The total length of continuous resistivity profiling (CRP) survey lines was 145 kilometers (km), with 36 km of chirp seismic lines surveyed around ... |
Info |
Unique shot point navigation for Edgetech SB-424 chirp subbottom profiler data collected by the U.S. Geological Survey in Moultonborough Bay, Lake Winnipesaukee, New Hampshire in 2005 (Geographic, WGS 84, Esri point shapefile, 2005-004-FA_CHIRPSHT.SHP)
In freshwater bodies of New Hampshire, the most problematic aquatic invasive plant species is Myriophyllum heterophyllum or variable leaf water-milfoil. Once established, variable leaf water-milfoil forms dense beds that can alter the limnologic characteristics of a waterbody, impacting natural lacustrine communities and their habitats. Variable leaf water-milfoil infestations also disrupt recreational uses of waterbodies and have negatively affected swimming, boating, fishing, and property values in and ... |
Info |
Unique shot point navigation for EdgeTech SB-512i and SB-424 chirp seismic-reflection data collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_SeismicShot_unique shapefile, Geographic, WGS84)
These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine ... |
Info |
Unprocessed aerial imagery from 10 January 2021 coastal survey of Central California.
This is a set of 1896 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 10 June 2019 coastal survey of Central California.
This is a set of 5042 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 10 October 2023 coastal survey of Central California.
This is a set of 3929 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 10 September 2018 coastal survey of Central California.
This is a set of 5846 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 11 January 2021 coastal survey of Central California.
This is a set of 3796 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 11 March 2019 coastal survey of Central California.
This is a set of 1967 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 11 October 2023 coastal survey of Central California.
This is a set of 4930 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12-13 September 2022 coastal survey of Central California.
This is a set of 3661 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 12 February 2024 coastal survey of Southern California.
This is a set of 2032 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 12 January 2023 coastal-landslides survey of Central California.
This is a set of 11207 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 12 January 2024 coastal survey of Central California.
This is a set of 1965 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12 March 2022 coastal survey of Central California.
This is a set of 2098 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 12 May 2017 coastal survey of Central California.
This is a set of 628 oblique aerial photogrammetric images and their derivatives, collected from SeaCliff Beach to Fort Ord with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12 October 2023 coastal survey of Southern California.
This is a set of 2013 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Port Hueneme with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 13 June 2017 coastal survey of Central California.
This is a set of 757 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 13 March 2023 coastal survey of Central California.
This is a set of 2195 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 13 October 2018 coastal survey of Northern California to Washington.
This is a set of 11805 oblique aerial photogrammetric images and their derivatives, collected from OR-WA border to Mussel Rock CA with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 13 September 2018 coastal survey of Southern California.
This is a set of 2062 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 October 2019 coastal survey of Central California.
This is a set of 3777 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 October 2020 coastal survey of Central California.
This is a set of 1982 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 September 2016 coastal survey of Central California.
This is a set of 1600 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 September 2024 earthquakes survey of Central California.
This is a set of 4599 vertical aerial photogrammetric images and their derivatives, collected from Lonoak vicinity with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by ... |
Info |
Unprocessed aerial imagery from 16 January 2023 coastal survey of Central California.
This is a set of 2763 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 16 March 2023 coastal survey of Central California.
This is a set of 2915 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 17 June 2024 coastal survey of Central California.
This is a set of 5140 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 17 March 2023 coastal survey of Central California.
This is a set of 2077 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 17 May 2017 coastal survey of Central California.
This is a set of 3045 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 August 2024 coastal survey of Central California.
This is a set of 2003 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 December 2017 coastal survey of Central California.
This is a set of 2948 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 December 2021 coastal survey of Central California.
This is a set of 4722 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 March 2024 coastal survey of Southern California.
This is a set of 2076 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 18 September 2020 coastal survey of Southern California.
This is a set of 1968 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 April 2020 coastal survey of Central California.
This is a set of 2889 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 April 2023 thomas-fire survey of Southern California.
This is a set of 3086 vertical aerial photogrammetric images and their derivatives, collected from Montecito with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 19 April 2024 coastal survey of Northern California to Washington.
This is a set of 14032 oblique aerial photogrammetric images and their derivatives, collected from Hoh Head to Cape Mendocino with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 March 2020 coastal survey of Central California.
This is a set of 4835 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 May 2017 coastal survey of Central California.
This is a set of 3164 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 1 December 2016 coastal survey of Central California.
This is a set of 3234 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 February 2023 coastal survey of Central California.
This is a set of 2943 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 January 2023 coastal survey of Central California.
This is a set of 2076 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 January 2024 coastal survey of Central California.
This is a set of 2876 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 June 2023 coastal survey of Oregon and Washington.
This is a set of 10139 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 March 2017 coastal survey of Southern California.
This is a set of 2979 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Ventura with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 20 December 2016 coastal survey of Central California.
This is a set of 3036 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 20 January 2020 coastal survey of Central California.
This is a set of 3072 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 20 January 2022 coastal survey of Central California.
This is a set of 2066 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 21 December 2017 coastal survey of Central California.
This is a set of 2072 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 22 February 2017 coastal survey of Central California.
This is a set of 4808 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Lucia with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 December 2023 coastal survey of Central California.
This is a set of 4772 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2017 landslides survey of Central California.
This is a set of 5954 oblique aerial photogrammetric images and their derivatives, collected from San Francisco Bay area with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2019 coastal survey of Central California.
This is a set of 4734 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2024 coastal survey of Central California.
This is a set of 2323 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2024 coastal survey of Southern California.
This is a set of 2371 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 23 January 2018 Thomas-fire survey of Southern California.
This is a set of 4838 oblique aerial photogrammetric images and their derivatives, collected from Montecito with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 23 January 2023 coastal survey of Central California.
This is a set of 5039 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 24 February 2024 coastal survey of Central California.
This is a set of 3059 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 25 January 2017 coastal survey of Central California.
This is a set of 4521 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Cape San Martin with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 25 January 2020 coastal survey of Central California.
This is a set of 1880 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 25 September 2016 coastal survey of Oregon and Washington.
This is a set of 1712 oblique aerial photogrammetric images and their derivatives, collected from Cape Falcon to Cascade Head with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 January 2016 coastal survey of Central California.
This is a set of 1836 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 January 2017 landslides survey of Central California.
This is a set of 4889 oblique aerial photogrammetric images and their derivatives, collected from San Francisco Bay area with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 June 2017 coastal survey of Central California.
This is a set of 5069 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 March 2021 coastal survey of Central California.
This is a set of 5626 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 October 2023 coastal survey of Central California.
This is a set of 2869 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 September 2016 coastal survey of Central California.
This is a set of 1569 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ano Nuevo with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 27 December 2017 coastal survey of Southern California.
This is a set of 2392 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Santa Barbara with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 27 May 2017 coastal survey of Central California.
This is a set of 642 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 28 August 2022 coastal survey of Washington.
This is a set of 4116 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 28 May 2018 coastal survey of Central California.
This is a set of 3550 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 28 September 2016 coastal survey of Southern California.
This is a set of 2671 oblique aerial photogrammetric images and their derivatives, collected from ptConception to Ventura with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 28 September 2017 coastal survey of Oregon and Washington.
This is a set of 2060 oblique aerial photogrammetric images and their derivatives, collected from OR-WA border to Nestucca River OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 28 September 2022 coastal survey of Southern California.
This is a set of 2032 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 29 August 2022 coastal survey of Oregon and Washington.
This is a set of 2413 oblique aerial photogrammetric images and their derivatives, collected from Taholah WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 August 2022 coastal survey of Washington.
This is a set of 4281 oblique and near nadir aerial photogrammetric images and their derivatives, collected from Elwha river mouth to Ediz Hook CG with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the ... |
Info |
Unprocessed aerial imagery from 29 December 2023 coastal survey of Central California.
This is a set of 1821 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 January 2018 coastal survey of Central California.
This is a set of 5365 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 January 2021 coastal survey of Central California.
This is a set of 4919 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 March 2018 coastal survey of Central and southern California.
This is a set of 1160 oblique aerial photogrammetric images and their derivatives, collected from Mud Creek Slide to Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera ... |
Info |
Unprocessed aerial imagery from 29 November 2019 coastal survey of Central California.
This is a set of 1782 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Davenport with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 March 2016 coastal survey of Central California.
This is a set of 1309 oblique aerial photogrammetric images and their derivatives, collected from Santa Cruz to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 March 2022 coastal survey of Southern California.
This is a set of 2212 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 March 2023 coastal survey of Central California.
This is a set of 1839 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 October 2022 coastal survey of Southern California.
This is a set of 1108 oblique aerial photogrammetric images and their derivatives, collected from Santa Rosa Island with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by ... |
Info |
Unprocessed aerial imagery from 30 November 2019 coastal survey of Central California.
This is a set of 1444 oblique aerial photogrammetric images and their derivatives, collected from Davenport to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 30 October 2024 coastal survey of Southern California.
This is a set of 2135 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 30 September 2020 coastal survey of Central California.
This is a set of 3862 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 31 August 2024 coastal survey of Washington.
This is a set of 6976 oblique aerial photogrammetric images and their derivatives, collected from Juan de Fuca Strait to Grays Harbor with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 31 May 2017 coastal survey of Central California.
This is a set of 410 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 31 October 2019 coastal survey of Central California.
This is a set of 1911 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 3 August 2020 coastal survey of Oregon and Washington.
This is a set of 2324 oblique aerial photogrammetric images and their derivatives, collected from Taholah WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 3 March 2021 coastal survey of Central California.
This is a set of 2049 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 3 March 2023 coastal survey of Central California.
This is a set of 2758 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 3 October 2024 coastal survey of Central California.
This is a set of 1962 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 3 September 2020 coastal survey of Oregon and Washington.
This is a set of 2158 oblique aerial photogrammetric images and their derivatives, collected from NW WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 4-5 November 2020 CZU-fire survey of Central California.
This is a set of 11776 near-nadir aerial photogrammetric images and their derivatives, collected from CZU fire with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 4 August 2020 coastal survey of Washington.
This is a set of 645 oblique aerial photogrammetric images and their derivatives, collected from Elwha river mouth to Ediz Hook CG with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 4 February 2022 coastal survey of Central California.
This is a set of 2269 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 4 March 2019 coastal survey of Central California.
This is a set of 2541 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 April 2017 coastal survey of Central California.
This is a set of 5044 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Cape San Martin with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 5 February 2016 coastal survey of Central California.
This is a set of 3494 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 January 2023 coastal survey of Central California.
This is a set of 2105 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 January 2024 coastal survey of Southern California.
This is a set of 2061 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 5 July 2020 coastal survey of Central California.
This is a set of 1890 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 5 June 2018 coastal survey of Central California.
This is a set of 1533 oblique aerial photogrammetric images and their derivatives, collected from Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 6 April 2023 coastal survey of Central California.
This is a set of 2374 vertical aerial photogrammetric images and their derivatives, collected from Half Moon Bay to Santa Cruz with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 April 2024 coastal survey of Central California.
This is a set of 2286 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 January 2023 coastal-landslides survey of Central California.
This is a set of 8762 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 July 2024 coastal survey of Washington.
This is a set of 7809 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 6 May 2020 coastal survey of Southern California.
This is a set of 2167 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 7 March 2018 coastal survey of Central California.
This is a set of 5355 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 7 March 2024 coastal survey of Central California.
This is a set of 2161 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 February 2023 coastal survey of Central California.
This is a set of 1939 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 June 2023 coastal survey of Central California.
This is a set of 2123 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 March 2016 coastal survey of Central California.
This is a set of 2753 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 March 2017 coastal survey of Central California.
This is a set of 5642 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 March 2023 coastal survey of Southern California.
This is a set of 2006 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 8 May 2017 coastal survey of Central California.
This is a set of 1975 oblique aerial photogrammetric images and their derivatives, collected from Pedro Point to Sunset Beach with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 September 2021 coastal survey of Central California.
This is a set of 2678 oblique aerial photogrammetric images and their derivatives, collected from PigeonPt to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 9 December 2015 coastal survey of Central California.
This is a set of 1132 oblique aerial photogrammetric images and their derivatives, collected from Capitola to Pajaro Dunes with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 9 February 2024 coastal survey of Central California.
This is a set of 4787 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 9 June 2022 coastal survey of Central California.
This is a set of 4595 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 9 March 2020 coastal survey of Central California.
This is a set of 1979 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Upper Florida Keys 1930s-2002 Seafloor Elevation Stability Models, Maps, and Tables
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the 1930’s and 2002 in the Upper Florida Keys (UFK) from Triumph Reef to Pickles Reef within a 234.2 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Yates and others (2017a) derived from an elevation-change analysis between two elevation datasets acquired in the ... |
Info |
Upper Florida Keys 2002-2016 Seafloor Elevation Stability Models, Maps, and Tables
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2002 and 2016 in the Upper Florida Keys (UFK) from Triumph Reef to Pickles Reef within a 242.4 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Murphy and others (2021) derived from an elevation-change analysis between two elevation datasets acquired in ... |
Info |
Upper Florida Keys-Seafloor elevation change in Maui, St. Croix, St. Thomas, and the Florida Keys
Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves and erosion but projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by measuring ... |
Info |
Upstream sediment contributions to Lake Mills on the Elwha River, Washington, 1926 to 2016
Sediment inputs to Lake Mills, on the Elwha River, Washington, were measured from 1927 to 2016. These measurements represent the annual total sediment load, in tonnes per year, that were input into Lake Mills and partially trapped by Glines Canyon dam. The sediment was allowed to erode and be transported down-river by the removal of the Glines Canyon and Elwha dams during 2011 to 2014. The measurements were taken as part of a study investigating the river channel's morphological responses to the removal of ... |
Info |
Uranium-Thorium Ages for Late Holocene Corals from the Southeast Florida Nearshore Ridge Complex
This data release (Modys and others, 2023a) compiles Uranium-Thorium (U-Th) dating data for late Holocene coral samples collected from the Nearshore Ridge Complex (NRC) off Pompano Beach, Southeast Florida (SEFL). The samples were collected under Scientific Activity Licenses (SAL) from the Florida Fish and Wildlife Conservation Commission (SAL-18-1659A-SRP) and with permission from Broward County Environmental Protection and Growth Management. |
Info |
U.S. Geological Survey East Coast Sediment Texture Database (2014, ECSTDB2014.SHP)
This sediment database contains location, description, and texture of samples taken by numerous marine sampling programs. Most of the samples are from the Atlantic Continental Margin of the United States, but some are from as diverse locations as Lake Baikal, Russia, the Hawaiian Islands region, Puerto Rico, the Gulf of Mexico, and Lake Michigan. The database presently contains data for over 27,000 samples, which includes texture data for approximately 3800 samples taken or analyzed by the Atlantic ... |
Info |
U.S. Geological Survey East Coast Sediment Texture Database (ECSTDB2011.SHP, 2011)
This sediment database contains location, description, and texture of samples taken by numerous marine sampling programs. Most of the samples are from the Atlantic Continental Margin of the United States, but some are from as diverse locations as Lake Baikal, Russia, the Hawaiian Islands region, Puerto Rico, the Gulf of Mexico, and Lake Michigan. The database presently contains data for over 26,000 samples, which includes texture data for approximately 3800 samples taken or analyzed by the Atlantic ... |
Info |
U.S. Geological Survey Oceanographic Time Series Data Collection
The oceanographic time series data collected by U.S. Geological Survey scientists and collaborators are served in an online database at http://stellwagen.er.usgs.gov/index.html. These data were collected as part of research experiments investigating circulation and sediment transport in the coastal ocean. The experiments (projects, research programs) are typically one month to several years long and have been carried out since 1975. New experiments will be conducted, and the data from them will be added to ... |
Info |
USGS Arctic Ocean Carbon Cruise 2010: Discrete Lab data
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
USGS Arctic Ocean Carbon Cruise 2011: Discrete Lab data
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
USGS Arctic Ocean Carbon Cruise 2011: Discrete Underway data
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic ... |
Info |
USGS Arctic Ocean Carbon Cruise 2012: Discrete Underway Laboratory data
Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent; however, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon ... |
Info |
USGS CoastCam at DUNEX: Intrinsic and Extrinsic Calibration Data (Camera 1)
Two digital video cameras were temporarily installed at the U.S. Fish and Wildlife Service (USFWS) Pea Island National Wildlife Refuge (PINWR) in North Carolina (NC), as part of the DUring Nearshore Event eXperiment (DUNEX). DUNEX was a collaborative community-led experiment that took place in the fall of 2021 along the Outer Banks of NC, with the goal of improving the understanding, observational techniques, and predictive capabilities for extreme storm processes and impacts within the coastal environment. ... |
Info |
USGS CoastCam at DUNEX: Intrinsic and Extrinsic Calibration Data (Camera 2)
Two digital video cameras were temporarily installed at the U.S. Fish and Wildlife Service (USFWS) Pea Island National Wildlife Refuge (PINWR) in North Carolina (NC), as part of the DUring Nearshore Event eXperiment (DUNEX). DUNEX was a collaborative community-led experiment that took place in the fall of 2021 along the Outer Banks of NC, with the goal of improving the understanding, observational techniques, and predictive capabilities for extreme storm processes and impacts within the coastal environment. ... |
Info |
USGS CoastCam at DUNEX: Timestack Imagery and Coordinate Data (Camera 1)
Two digital video cameras were temporarily installed at the U.S. Fish and Wildlife Service (USFWS) Pea Island National Wildlife Refuge (PINWR) in North Carolina (NC), as part of the DUring Nearshore Event eXperiment (DUNEX). DUNEX was a collaborative community-led experiment that took place in the fall of 2021 along the Outer Banks of NC, with the goal of improving the understanding, observational techniques, and predictive capabilities for extreme storm processes and impacts within the coastal environment. ... |
Info |
USGS CoastCam at DUNEX: Timestack Imagery and Coordinate Data (Camera 2)
Two digital video cameras were temporarily installed at the U.S. Fish and Wildlife Service (USFWS) Pea Island National Wildlife Refuge (PINWR) in North Carolina (NC), as part of the DUring Nearshore Event eXperiment (DUNEX). DUNEX was a collaborative community-led experiment that took place in the fall of 2021 along the Outer Banks of NC, with the goal of improving the understanding, observational techniques, and predictive capabilities for extreme storm processes and impacts within the coastal environment. ... |
Info |
USGS CoastCam at Isla Verde, Puerto Rico: 2018-2019 GNSS Topography Survey Data
This data release presents the post-processed Global Navigation Satellite System (GNSS) ground-survey data acquired during the installation of the Argus camera at Isla Verde, Puerto Rico. The data contains topographic survey data collected during the installation of the camera. Data were collected on foot by a person equipped with a GNSS antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ). The GNSS measurements were made using Post-Processed Kinematic (PPK) corrections ... |
Info |
USGS CoastCam at Isla Verde, Puerto Rico: 2018-2019 Intrinsic and Extrinsic Calibration Data
A digital video camera was installed at Isla Verde, Puerto Rico (PR) and faced northeast along the beach. Every hour during daylight hours, daily from February 1, 2019, to July 15, 2019, the camera collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The camera is part of a U.S. Geological Survey (USGS) research ... |
Info |
USGS CoastCam at Isla Verde, Puerto Rico: 2018-2019 Timestack Imagery and Coordinate Data
A digital video camera was installed at Isla Verde Beach in San Juan, Puerto Rico (PR) and faced northeast along the beach. Every hour during daylight hours, daily from February 1, 2019, to July 15, 2019, the camera collected raw video and produced snapshots and time-averaged image products. One such product is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup timestacks store the ... |
Info |
USGS CoastCam at Madeira Beach, Florida: Timestack Imagery and Coordinate Data
A digital video camera was installed at Madeira Beach, Florida (FL) and faced west along the beach. Every hour during daylight hours, daily from 2017 to 2022, the camera collected raw video and produced snapshots and time-averaged image products. One such product is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup timestacks store the red, green, and blue or monochrome pixel ... |
Info |
USGS CoastCam at Sand Key, Florida: Intrinsic and Extrinsic Calibration Data (Camera 1)
Two digital video cameras were installed at Sand Key, Florida (FL), facing south (camera 1) and north (camera 2) along the beach. Every hour during daylight hours, the cameras collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements.. The cameras are part of a U.S. Geological Survey (USGS) research project to study the ... |
Info |
USGS CoastCam at Sand Key, Florida: Intrinsic and Extrinsic Calibration Data (Camera 2)
Two digital video cameras were installed at Sand Key, Florida (FL), facing south (camera 1) and north (camera 2) along the beach. Every hour during daylight hours, the cameras collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The images included in this data release were collected by camera 2 (c2) from May 29, ... |
Info |
USGS CoastCam at Sand Key, Florida: Timestack Imagery and Coordinate Data (Camera 2)
Two digital video cameras were installed at Sand Key, Florida (FL), facing south (camera 1) and north (camera 2) along the beach. Every hour during daylight hours, daily from 2018 to 2022, the cameras collected raw video and produced snapshots and time-averaged image products. For camera 2, one such product that is created is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup ... |
Info |
USGS CoastCam at Tres Palmas, Rincón, Puerto Rico: Intrinsic and Extrinsic Calibration Data
A digital video camera was installed at Tres Palmas, Rincón, Puerto Rico (PR) and faced west to view the beach and water offshore. Every hour during daylight hours, daily from August 27, 2019 to March 10, 2020, the camera collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The camera is part of a U.S. Geological ... |
Info |
USGS CoastCam at Tres Palmas, Rincón, Puerto Rico: Timestack Imagery and Coordinate Data
A digital video camera was installed at Tres Palmas, Rincón, Puerto Rico (PR) and faced west along the beach. Every hour during daylight hours, daily from August 27, 2019, to March 10, 2020, the camera collected raw video and produced snapshots and time-averaged image products. One such product is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup timestacks store the red, green, ... |
Info |
USGS CoastCam at Waiakāne, Moloka'i, Hawai'i: 2018 GNSS Topography Survey Data
This data release presents the post-processed global navigation satellite system (GNSS) ground-survey data acquired during the installation of the Argus camera at Waiakāne, Moloka'i, Hawai'i. The data contains topographic survey data collected during the installation of the camera. Data were collected on foot by a person equipped with a GNSS antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ). The GNSS measurements were made using Post-Processed Kinematic (PPK) ... |
Info |
USGS CoastCam at Waiakāne, Moloka'i, Hawai'i: 2018 Intrinsic and Extrinsic Calibration Data
A digital video camera was installed at Waiakāne, Moloka'i, Hawai'i (HI) and faced west along the beach. Every hour during daylight hours, daily from June 26, 2018, to September 20, 2018, the camera collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The camera is part of a U.S. Geological Survey (USGS) research ... |
Info |
USGS CoastCam at Waiakāne, Moloka'i, Hawai'i: 2018 Timestack Imagery and Coordinate Data
A digital video camera was installed at Waiakāne, Moloka'i, Hawai'i (HI) and faced west along the beach. Every hour during daylight hours, daily from June 26, 2018, to September 20, 2018, the camera collected raw video and produced snapshots and time-averaged image products. One such product is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup timestacks store the red, green, and ... |
Info |
USGS Collection of Sea Bottom Photographs from the Stellwagen Bank National Marine Sanctuary Region (JPEG images)
The U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region from 1994 to 2004. The mapped area is approximately 3,700 square km (1,100 square nm) in size and was subdivided into 18 quadrangles. Several series of sea floor maps of the region based on multibeam sonar surveys have been published. In addition, 2,628 seabed ... |
Info |
USGS Cruise 95009 Sidescan Sonar Data Files
SIDESCAN SONAR AND NAVIGATION FIELD DATA COLLECTED DURING MS MS Coastal 95009 (1 - 14 August, 1995). This CD-ROM (Compact Disc-Read Only Memory) has been produced in accordance with the ISO 9660 CD-ROM Standard and is therefore capable of being read on any computing platform that has appropriate CD-ROM driver software installed. Access to the data and information contained on this CD-ROM was developed using the HyperText Markup Language (HTML) utilized by the World Wide Web (WWW) project. Development of ... |
Info |
USGS Cruise 96005 Sidescan Sonar Data Files
This CD-ROM contains copies of the navigation and field sidescan sonar data collected during USGS Cruise 96005, conducted during 1 -14 June, 1996. The cruise was a collaborative field program between researchers at Coastal Carolina University and the USGS, Coastal and Marine Geology Program, Woods Hole Field Center. The CD-ROM was produced in accordance with the ISO 9660 standard. An area 3 to 15 meters was surveyed using an 100 kHz sidescan-sonar system and tracklines are spaced so that data coverages ... |
Info |
USGS Cruise 97009 Sidescan Sonar Data Files
This CD-ROM contains digital high resolution sidescan sonar data collected during the USGS Cruise 97009 aboard the R/V MS MS Coastal. This CD-ROM (Compact Disc-Read Only Memory) has been produced in accordance with the ISO 9660 CD-ROM Standard and is therefore capable of being read on any computing platform that has appropriate CD-ROM driver software installed. Access to the data and information contained on this CD-ROM was developed using the HyperText Markup Language (HTML) utilized by the World Wide ... |
Info |
USGS Cruise ALPH98013 Sidescan Sonar Data Files
This CD-ROM contains digital high resolution sidescan-sonar data collected during USGS cruise ALPH98013 aboard the F/V Alpha & Omega II. The coverage lies within the New York Bight Apex, offshore the Long Island and New Jersey coasts. This CD-ROM (Compact Disc-Read Only Memory) has been produced in accordance with the ISO 9660 CD-ROM Standard and is therefore capable of being read on any computing platform that has appropriate CD-ROM driver software installed. Access to the data and information contained on ... |
Info |
USGS Cruise SEAX95007 Sidescan Sonar Data Files
This CD-ROM contains digital high resolution sidescan-sonar data collected during USGS cruise SEAX95007 aboard the R/V Seaward Explorer. The coverage lies within the New York Bight Apex, offshore of the Long Island and New Jersey coasts. This CD-ROM (Compact Disc-Read Only Memory) has been produced in accordance with the ISO 9660 CD-ROM Standard and is therefore capable of being read on any computing platform that has appropriate CD-ROM driver software installed. Access to the data and information contained ... |
Info |
USGS Seafloor Mapping ALPH 98013 Chirp Subbottom Data offshore of the New York - New Jersey metropolitan area
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ALPH 98013 cruise. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed. |
Info |
USGS Seafloor Mapping ALPH 98013 Water Gun Data offshore of the New York - New Jersey metropolitan area, collected in 1998
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ALPH 98013 cruise. The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems ... |
Info |
USGS Seafloor Mapping ATSV 99044 Chirp Data off Myrtle Beach, South Carolina
This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ATSV 99044 cruise. The coverage is the nearshore of the northern South Carolina. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems ... |
Info |
USGS Seafloor Mapping CORLISS 98014 Seismic Data
This CD-ROM contains digital high resolution seismic-reflection and bathymetric data collected during the USGS CORLISS 98014 cruise during Aug. 25 to Sept. 15, 1998. The study area covers the Columbia River estuary, Willapa Bay, and the inner shelf off southern Washington. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format ... |
Info |
USGS Seafloor Mapping DIAN 97032 Chirp Subbottom Data offshore of the New York - New Jersey metropolitan area
This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97032 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ... |
Info |
USGS T-3 enhanced thermal data from T-3 Ice Island, 1963-73
The T-3 (Fletcher's) Ice Island in the Arctic Ocean was the site of a scientific research station re-established by the Naval Arctic Research Laboratory starting in 1962. Starting in 1963, the USGS acquired marine heat flow data and coincident sediment cores at sites in Canada Basin, Nautilus Basin, Mendeleev Ridge, and Alpha Ridge as the ice island drifted in the Amerasian Basin. At least 584 heat flow penetrations were attempted, and data were reported at 356 of these. This dataset is the enhanced version ... |
Info |
USGS T-3 Original Thermal Gradient, Thermal Conductivity, and Heat Flow Data from T-3 Ice Island, 1963-73
The T-3 (Fletcher's) Ice Island in the Arctic Ocean was the site of a scientific research station re-established by the Naval Arctic Research Laboratory starting in 1962. Starting in 1963, the USGS acquired marine heat flow data and coincident sediment cores at sites in Canada Basin, Nautilus Basin, Mendeleev Ridge, and Alpha Ridge as the ice island drifted in the Amerasian Basin. At least 584 heat flow penetrations were attempted, and data were reported at 356 of these. This dataset is the digital version ... |
Info |
USGS Thermal Tower Reef Camera Timestack, Papaloloa, Ofu, American Samoa
A digital thermal camera was installed at Papaloloa reef on Ofu, American Samoa and faced west along the beach. Every minute from February 3, 2020, to August 1, 2020, the camera collected raw radiometric snapshot images. The camera is part of a U.S. Geological Survey (USGS) research project to study the effects of temperature on coral reef health. USGS researchers analyzed the timestack imagery collected from this camera to remotely sense information such as submarine groundwater discharge and temperature ... |
Info |
Using fossilized charcoal to corroborate the Everglades fire history geodatabase
Fire in the Everglades National Park (ENP) has historically been influential in shaping the Everglades ecosystem. As a result, ENP has been documenting fire events since 1948, and these data have been incorporated into an Esri ArcGIS geodatabase (Smith, T.J. III, and others, 2015). According to this geodatabase, 757,078 hectares of wetlands burned from 1948 to 2011. The main type of vegetation that has burned is comprised of palustrine and estuarine wetlands; however, there are areas in ENP that are ... |
Info |
U.S. Naval Oceanographic Office Cores (BOCKMAN65 shapefile)
The results of the sediment size analysis performed by the U.S.Naval Oceanographic Office Geological Laboratory for six Phleger gravity cores are presented in this data layer. Some of the data in this set were originally released as part of the Deck 41 Database available from the National Geophysical Data Center. The attribute for sediment classification was added by the compilers to make these size data more useful for mapping the regional surficial sediment distribution. |
Info |
usSEABED: Offshore Surficial-Sediment Database for Samples Collected within the United States Exclusive Economic Zone
Since the second half of the 20th century, there has been an increase in scientific interest, research effort, and information gathered on the geologic sedimentary character of the continental margins of the United States. Data and information from thousands of sources have increased our scientific understanding of the geologic origins of the margin surface but rarely have those data been combined into a unified database. Initially, usSEABED was created by the U.S. Geological Survey (USGS), in cooperation ... |
Info |
Vegetation survey in a coastal marsh at the Grand Bay National Estuarine Research Reserve, Mississippi
To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve, Mississippi (GNDNERR). These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ... |
Info |
Velocity_all: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_all_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_GBI: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_GBI_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_na: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Velocity_na_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Vertical chemical profiles collected across haloclines in the water column of the Ox Bel Ha cave network within the coastal aquifer of the Yucatan Peninsula in January 2015 and January 2016
Natural cave passages penetrating a coastal aquifer in the Yucatan Peninsula (Mexico) were accessed to test the hypothesis that chemoclines associated with salinity gradients (haloclines) within the flooded cave networks of the karst subterranean estuary are sites of methane oxidation. Two field trips were carried out to the fully-submerged cave system located 6.6 km inland from the coastline in January 2015 and January 2016. Vertical chemical profiles across the water column haloclines were obtained using ... |
Info |
Vibracore locations collected in 2014 from Barnegat Bay, New Jersey
In response to the 2010 Governor’s Action Plan to clean up the Barnegat Bay–Little Egg Harbor (BBLEH) estuary in New Jersey, the U.S. Geological Survey (USGS) partnered with the New Jersey Department of Environmental Protection in 2011 to begin a multidisciplinary research project to understand the physical controls on water quality in the bay. Between 2011 and 2013, USGS scientists mapped the geological and morphological characteristics of the seafloor of the BBLEH estuary using a suite of geophysical ... |
Info |
Videos and tracklines along which bottom video was collected in Little Egg Inlet and offshore the southern end of Long Beach Island, NJ, during USGS Field Activity 2018-049-FA (MP4 video files and polyline shapefile)
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg ... |
Info |
Video transects of the sea floor collected by the U.S. Geological Survey on Stellwagen Bank during six surveys aboard the R/V Auk, May 2016 to April 2019
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Video transects of the sea floor collected by the U.S. Geological Survey on Stellwagen Bank during three surveys aboard the R/V Auk, September 2020 to August 2021
These data are a part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. The work was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate species ... |
Info |
Video transects of the sea floor in the Stellwagen Bank National Marine Sanctuary region (sbnmsallvid.shp)
This data set contains polylines showing extents of video transects documenting seabed characteristics in the Stellwagen Bank National Marine Sanctuary Region off Boston, Massachusetts, an area of approximately 1100 nautical square miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2013-044-FA, aboard the R/V Auk, November 5, 15, and 21, 2013
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2014-015-FA, aboard the R/V Auk, May 22-23 and 29-30, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2014-055-FA, aboard the R/V Auk, September 23 and 24, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2014-066-FA, aboard the R/V Auk, November 10, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2014-070-FA, aboard the R/V Auk, December 12, 2014
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2015-017-FA, aboard the R/V Auk, May 18-19, 29, and June 3, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2015-074-FA, aboard the R/V Auk, December 1, 2015
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2016-004-FA, aboard the R/V Auk, January 28, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2016-038-FA, aboard the R/V Auk, Sept. 16 and 19, 2016
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2017-009-FA, aboard the R/V Auk, Jan. 30, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2017-030-FA, aboard the R/V Auk, May 18-23, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2017-044-FA, aboard the R/V Auk, September 12-14, 2017
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Video transects of the sea floor on Stellwagen Bank during U.S. Geological Survey field activity 2019-008-FA, aboard the R/V Auk, July 30, 31, and August 1, 2019
This field activity is part of the effort to map geologic substrates of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts. The overall goal is to develop high-resolution (1:25,000) interpretive maps, based on multibeam sonar data and seabed sampling, showing surficial geology and seabed sediment dynamics. This cruise was conducted in collaboration with the Stellwagen Bank National Marine Sanctuary, and the data collected will aid research on the ecology of fish and invertebrate ... |
Info |
Visual description sheets of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the ... |
Info |
Visual description sheets of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
Water-column environmental variables and accompanying discrete CTD measurements collected off California and Oregon during NOAA cruise SH-18-12 (USGS field activity 2018-663-FA) from October to November 2018 (ver. 3.0, July 2022)
Various water column variables, including salinity, dissolved inorganic nutrients, pH, total alkalinity, dissolved inorganic carbon, radio-carbon isotopes were measured in samples collected using a Niskin-bottle rosette at selected depths from sites offshore of California and Oregon from October to November 2018 during NOAA cruise SH-18-12 on the R/V Bell M. Shimada (USGS field activity 2018-663-FA). CTD (Conductivity Temperature Depth) data were also collected at each depth that a Niskin-bottle sample was ... |
Info |
Water-column environmental variables and accompanying discrete CTD measurements collected off California and Oregon during NOAA Ship Lasker R-19-05 (USGS field activity 2019-672-FA) from October to November 2019 (ver. 2.0, July 2022)
Various water column variables, including salinity, dissolved inorganic nutrients, pH, total alkalinity, dissolved inorganic carbon, radio-carbon isotopes were measured in samples collected using a Niskin-bottle rosette at selected depths from sites offshore of California and Oregon from October to November 2019 during NOAA Ship Lasker R-19-05 (USGS field activity 2019-672-FA). CTD (Conductivity Temperature Depth) data were also collected at each depth that a Niskin-bottle sample was collected and are ... |
Info |
Water-column environmental variables and accompanying discrete CTD measurements collected offshore the U.S. Mid- and South Atlantic (ver. 2.0, July 2022)
Various water column variables, including salinity, dissolved inorganic nutrients, dissolved inorganic carbon, and radio-carbon isotopes were measured in samples collected using a Niskin-bottle rosette at selected depths from deepwater sites offshore the US Mid- and South Atlantic from September 2017 to April 2019. CTD (Conductivity Temperature Depth) data were also collected at each depth that a Niskin-bottle sample was collected and are presented along with the water sample data during the following five ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM01
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM03
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM04
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September ... |
Info |
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11CEV02
The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17 ... |
Info |
Water content analyses of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the ... |
Info |
Water content and grain density analyses of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to ... |
Info |
Water_Level_all: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water_Level_all_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water level and salinity data for four sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from October 2016 through October 2017
To understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites in the Grand Bay National Estuarine Research Reserve, Mississippi (GNDNERR). Each site consisted of four plots located along a transect perpendicular to the marsh-estuary shoreline at 5-meter (m) increments (5, 10, 15, and 20 m from the shoreline). Each plot contained four net sedimentation tiles (NST) that were secured ... |
Info |
Water level and velocity measurements from the 2012 University of Western Australia Fringing Reef Experiment (UWAFRE)
This data release contains water level and velocity measurements from wave runup experiments performed in a laboratory flume setting. Wave-driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef-fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms. The 2012 University of Western Australia Fringing Reef ... |
Info |
Water level data for four sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from October 2018 through January 2020
To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ... |
Info |
Water_Level_GBI: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water_Level_GBI_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water_Level_na: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water_Level_na_SLR: Modeling the effects of large-scale interior headland restoration on tidal hydrodynamics and salinity transport in an open coast, marine-dominant estuary: model input and results
Using version 20.1_19 of the Discontinuous-Galerkin Shallow Water Equations Model (DG-SWEM) (Kubatko and others, 2006), astronomic tides and salinity transport were simulated at Grand Bay, Alabama (AL), under scenarios of interior headland restoration and sea level rise, as described in Passeri and others (2023). The two-dimensional DG-SWEM model can be applied to coastal and estuarine systems to solve for time-dependent hydrodynamic circulation and salinity transport. The DG-SWEM model uses the ADCIRC ... |
Info |
Water normalized geochemistry data for marine ferromanganese crusts and phosphorite minerals in the Southern California Borderland
Ferromanganese crust and phosphorite minerals were collected using remotely operated vehicles in the Southern California Borderland during two separate research cruises – NOAA Ocean Exploration Trust cruise NA124 onboard the E/V Nautilus in 2020, and Schmidt Ocean Institute cruise FK210726 onboard the R/V Falkor in 2021. Ferromanganese crust and phosphorite samples were described and subsampled for geochemical analysis at the USGS Pacific Coastal and Marine Science Center. Geochemical analyses were ... |
Info |
Water quality in the Elwha River estuary, Washington, from 2006 to 2014.
This portion of the data release presents water column dissolved nutrient concentration data and water quality parameters from samples collected in the Elwha River estuary, Washington, in 2006, 2007, 2013, and 2014 (USGS Field Activities L-15-13-PS, L-24-13-PS, T-R5-13-PS, T-R6-13-PS, T-RA-14-PS, 2014-614-FA, 2014-628-FA, 2014-633-FA, 2014-666-FA). Water column samples were collected by hand in acid-washed opaque bottles from multiple locations. Water quality was measured using a handheld Hydolab Data Sonde ... |
Info |
Wave buoy time series measurements collected at Madeira Beach, Florida
Spotter buoys were deployed at Madeira Beach, Florida at site MB1, located 30.9 kilometers (km) offshore and at 21.0-meters (m) depth (27.71652, -83.09532) from August 2021 to October 2023. These wave buoys were connected to underwater sensors through a Smart Mooring, and measured wave parameters, pressure, and water temperature. |
Info |
Wave model input files (ver. 2.0, November 2024)
Provided here are the required input files to run a standalone wave model (Simulating Waves Nearshore [SWAN]; Booij and others, 1999) on eleven model domains from the Canada-U.S. border to Norton Sound, Alaska. The model runs create a downscaled wave database (DWDB) which, can be used to reconstruct hindcast, historical, or projected time series at each point in the model domains (see Engelstad and others, 2023 for further information on reconstruction of time-series). The model forcing files consist of ... |
Info |
Wave observations from bottom-mounted pressure sensors along the West side of Whidbey Island, Washington from Dec 2018 to Jan 2020
RBRduo pressure and temperature sensors mounted on aluminum frames, were moored in shallow (4-9 m) water depths along the West side of Whidbey Island, Washington, to measure wave heights and periods. Continuous pressure fluctuations were transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals. |
Info |
Wave observations from bottom-mounted pressure sensors in Bellingham Bay, Washington from Dec 2017 to Jan 2018
RBRduo pressure and temperature sensors (early 2015 generation), mounted on aluminum frames, were moored in shallow (< 6 m) water depths in Bellingham Bay, Washington, to capture wave heights and periods. Continuous pressure fluctuations are transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals. |
Info |
Wave observations from bottom-mounted pressure sensors in Skagit Bay, Washington from Dec 2017 to Feb 2018
RBRduo pressure and temperature sensors (early 2015 generation), mounted on aluminum frames, were moored in shallow (< 6 m) water depths in Skagit Bay to capture wave heights and periods. Continuous pressure fluctuations are transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals. |
Info |
Wave Scenario Grid with Proposed Sediment Borrow Pit 3 of Breton Island, Louisiana: Model Input Grid 4 with Pit 3 Configuration
The Simulating WAves Nearshore (SWAN) wave model input grid 4 bathymetry with pit 3 configuration (G4_P3_grid.shp) and output of significant wave height, dominant wave period, and mean wave direction resulting from simulation of wave scenarios at Breton Island, LA, as described in USGS Open-File Report 20151055 are provided here. |
Info |
Weekly Wind Speed and Frequency for a Wave Exposure Model of Grand Bay, Mississippi
Coastal marshes are highly dynamic and ecologically important ecosystems that are subject to pervasive and often harmful disturbances, including shoreline erosion. Shoreline erosion can result in an overall loss of coastal marsh, particularly in estuaries with moderate- or high-wave energy. Not only can waves be important physical drivers of shoreline change, they can also influence shore-proximal vertical accretion through sediment delivery. For these reason, estimates of wave energy can provide a ... |
Info |
West Florida Shelf sonde (temperature, conductivity, salinity, pH) data collected from a continuous surface water flow-through system in August 2013
The United States Geological Survey (USGS) is studying the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises on the West Florida Shelf and northern Gulf of Mexico regions aboard the research vessel (R/V) Weatherbird II or Bellows, ships of opportunity led by Dr. Kendra Daly, of the University of South Florida (USF) in July and August, ... |
Info |
Wetland-Change Data Derived from Landsat Imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1984 to 2015: Land-cover Change Analysis
This U.S. Geological Survey (USGS) data release includes geospatial datasets that were created for the analysis of Virginia and Maryland Atlantic coastal wetland changes over time. Wetland change was determined by assessing two metrics: wetland persistence and land-cover switching. Because seasonal water levels, beach width, and vegetation differences can affect change analyses, only images acquired during the spring (March, April, and May) were included in the wetland-change metrics (N=10). Land-cover ... |
Info |
Wetland-Change Data Derived from Landsat Imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1984 to 2015: Wetland Persistence Analysis
This U.S. Geological Survey (USGS) data release includes geospatial datasets that were created for the analysis of Virginia and Maryland Atlantic coastal wetland changes over time. Wetland change was determined by assessing two metrics: wetland persistence and land-cover switching. Because seasonal water levels, beach width, and vegetation differences can affect change analyses, only images acquired during the spring (March, April, and May) were included in the wetland-change metrics (N=10). To assess ... |
Info |
Wetland Paleoecological Study of Coastal Louisiana: Sediment Cores and Diatom Samples Dataset
Wetland sediment data was collected from coastal Louisiana as part of a pilot study to develop a diatom-based proxy for past wetland water chemistry and the identification of sediment deposits for tropical storms. The complete dataset includes forty-six surface sediment samples and nine sediment cores. The surface sediment samples were collected in fresh to brackish marsh throughout the southwest Louisiana Chenier Plain and are located coincident with Coastwide Reference Monitoring System (CRMS). Sediment ... |
Info |
Wetland Paleoecological Study of Coastal Louisiana: Surface Sediment and Diatom Calibration Dataset
Wetland sediment data was collected from coastal Louisiana as part of a pilot study to develop a diatom-based proxy for past wetland water chemistry and the identification of sediment deposits for tropical storms. The complete dataset includes forty-six surface sediment samples and nine sediment cores. The surface sediment samples were collected in fresh to brackish marsh throughout the southwest Louisiana Chenier plain and are located coincident with Coastwide Reference Monitoring System (CRMS). Sediment ... |
Info |
Wetland Paleoecological Study of Coastal Louisiana: X-radiographs
Wetland sediment data was collected from coastal Louisiana as part of a pilot study to develop a diatom-based proxy for past wetland water chemistry and the identification of sediment deposits for tropical storms. The complete dataset includes forty-six surface sediment samples and nine sediment cores. The surface sediment samples were collected in fresh to brackish marsh throughout the southwest Louisiana Chenier plain and are located coincident with Coastwide Reference Monitoring System (CRMS). Sediment ... |
Info |
Woods Hole Oceanographic Institute's Martha's Vineyard Coastal Observatory component locations (ESRI POINT SHAPEFILE, MVCO)
The Woods Hole Oceanographic Institution has built the Martha's Vineyard Coastal Observatory (MVCO) near South Beach in Edgartown, Massachusetts. The project was initiated by scientists in the Coastal and Ocean Fluid Dynamics Laboratory (COFDL) at WHOI, who will use the observatory to study coastal atmospheric and oceanic processes. Specifically, the observatory is expected to: * Provide a local climatology for intensive, short duration field campaigns. * Further facilitate regional studies of coastal ... |
Info |
XBeach Bottom Friction Scenarios: Model Inputs and Results for Hurricane Ivan Constant Land Friction Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), various bottom friction scenarios were simulated for hurricanes Ivan (2004) and Katrina (2005) at Dauphin Island, Alabama as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) time series. Model inputs ... |
Info |
XBeach Bottom Friction Scenarios: Model Inputs and Results for Hurricane Ivan Default Friction Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), various bottom friction scenarios were simulated for hurricanes Ivan (2004) and Katrina (2005) at Dauphin Island, Alabama as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) time series. Model inputs ... |
Info |
XBeach Bottom Friction Scenarios: Model Inputs and Results for Hurricane Ivan Initial Elevations
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), various bottom friction scenarios were simulated for hurricanes Ivan (2004) and Katrina (2005) at Dauphin Island, Alabama as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) time series. Model inputs ... |
Info |
XBeach Bottom Friction Scenarios: Model Inputs and Results for Hurricane Ivan Spatially Varying Friction Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), various bottom friction scenarios were simulated for hurricanes Ivan (2004) and Katrina (2005) at Dauphin Island, Alabama as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) time series. Model inputs ... |
Info |
XBeach Bottom Friction Scenarios: Model Inputs and Results for Hurricane Katrina before Hurricane Ivan Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), various bottom friction scenarios were simulated for hurricanes Ivan (2004) and Katrina (2005) at Dauphin Island, Alabama as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) time series. Model inputs ... |
Info |
XBeach Bottom Friction Scenarios: Model Inputs and Results for Hurricane Katrina Constant Land Friction Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), various bottom friction scenarios were simulated for hurricanes Ivan (2004) and Katrina (2005) at Dauphin Island, Alabama as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) time series. Model inputs ... |
Info |
XBeach Bottom Friction Scenarios: Model Inputs and Results for Hurricane Katrina Default Friction Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), various bottom friction scenarios were simulated for hurricanes Ivan (2004) and Katrina (2005) at Dauphin Island, Alabama as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) time series. Model inputs ... |
Info |
XBeach Bottom Friction Scenarios: Model Inputs and Results for Hurricane Katrina Initial Elevations
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), various bottom friction scenarios were simulated for hurricanes Ivan (2004) and Katrina (2005) at Dauphin Island, Alabama as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) time series. Model inputs ... |
Info |
XBeach Bottom Friction Scenarios: Model Inputs and Results for Hurricane Katrina Spatially Varying Friction Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), various bottom friction scenarios were simulated for hurricanes Ivan (2004) and Katrina (2005) at Dauphin Island, Alabama as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) time series. Model inputs ... |
Info |
X-radiographs of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the ... |
Info |
X-ray diffraction data for ferromanganese crusts from seamounts within the Tuvalu Exclusive Economic Zone
Ferromanganese crusts were collected via dredge from seamounts within the Tuvalu Exclusive Economic Zone in the Pacific Ocean during cruise RR1310 funded by the National Science Foundation aboard the R/V Roger Revelle in 2013. USGS scientists requested these ferromanganese crust samples from the Oregon State University Marine and Geology Repository where they had been archived. Ferromanganese crust samples were sent to USGS for subsampling and x-ray diffraction analyses. Powder x-ray diffraction data for ... |
Info |
X-ray diffraction data for heat treated samples of hydrothermal minerals from seamounts within the Tuvalu Exclusive Economic Zone
A sample of hydrothermally mineralized foraminifera ooze (D28A) was collected via dredge from a seamount within the Tuvalu Exclusive Economic Zone in the Pacific Ocean during cruise RR1310 funded by the National Science Foundation aboard the R/V Roger Revelle in 2013. USGS scientists requested these ferromanganese crust samples from the Oregon State University Marine and Geology Repository where they had been archived. Ferromanganese crust samples were sent to USGS for subsampling and x-ray diffraction ... |
Info |
X-ray diffraction data for rock samples from Von Damm vent field, Mid-Cayman Rise
This portion of the data release presents X-ray diffractograms of rock samples collected from Von Damm vent field, Mid-Cayman Rise, in the Caribbean Sea. These data were collected in 2020 (USGS Field Activity 2020-602-FA). Location information for the sample is included in each Attribute Definition of this metadata file. |
Info |
X-ray diffraction data (XRD) for ferromanganese crusts, nodules, coated cobbles, and sediments from seamounts in the Papahanaumokuakea Marine National Monument
Powder x-ray diffraction data (XRD) for samples are provided in this portion of the data release. Ferromanganese crusts, nodules, coated cobbles, and push core sediments were collected via ROV from seamounts off the coast of Hawaii and within the Papahanaumokuakea Marine National Monument (PMNM) in the Pacific Ocean during E/V Nautilus expeditions NA134 and NA138 in 2021 and 2022, respectively. Samples were sent to USGS for subsampling and x-ray diffraction analyses. Location information for the samples is ... |
Info |
X-ray diffraction data (XRD) for sediment subsamples from push cores from Loki's Castle and Favne vent fields, Mohns Ridge
This portion of the data release presents X-ray diffractograms of sediment subsamples from push cores collected from Loki's Castle and Favne vent fields, on the Mohns Ridge, in the Norwegian Sea. These data were collected in 2018 and 2019 (USGS Field Activity 2018-691-DD and 2019-624-FA). Location information for the sample is included in each Attribute Definition of this metadata file, as well as in the geochemical data table (LokisMohns_marine_mineral_geochemistry.csv) of this multi-table data release. |
Info |
X-ray fluorescence (XRF) scans of push cores from Loki's Castle and Favne vent fields, Mohns Ridge, geochem mode
This portion of the data release presents X-ray fluorescence (XRF) data from push cores collected from Loki's Castle and Favne vent fields, on the Mohns Ridge, in the Norwegian Sea. These data were collected in 2018 and 2019 (USGS Field Activity 2018-691-DD and 2019-624-FA). The XRF data were collected with the sensor in "geochem" mode and are provided in comma-delimited files (.csv). |
Info |
X-ray fluorescence (XRF) scans of push cores from Loki's Castle and Favne vent fields, Mohns Ridge, soil mode
This portion of the data release presents X-ray fluorescence (XRF) data from push cores collected from Loki's Castle and Favne vent fields, on the Mohns Ridge, in the Norwegian Sea. These data were collected in 2018 and 2019 (USGS Field Activity 2018-691-DD and 2019-624-FA). The XRF data were collected with the sensor in “soil” mode and are provided in comma-delimited files (.csv). |
Info |
X-ray Fluorescence (XRF) scans of vibracores collected in Ozette Lake, Washington, in 2019.
Sediment cores were collected in Ozette Lake, Washington, in 2019, and cores were scanned using X-ray fluorescence (XRF). These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
X-ray Fluorescence (XRF) scans of vibracores from Searsville Lake, Jasper Ridge Biological Preserve, Stanford, California
This portion of the data release presents X-ray Flourescence (XRF) data from vibracores collected from Searsville Lake, a reservoir in Jasper Ridge Biological Preserve, Stanford, California in October 2018 (USGS Field Activity 2018-682-FA). The XRF data are provided in comma-delimited files (.csv), one per core. |
Info |
XYZ point data - Post Hurricane Sandy Beach Profile Survey Fire Island Inlet to Moriches Inlet 2013
The U.S. Army Corps of Engineers(USACE) contracted a beach survey of Fire Island, New York from September 17–October 6, 2013, for the purpose of planning a beach reconstruction project following Hurricane Sandy. This dataset contains elevation data of subaerial morphology and nearshore bathymetry collected using real time kinematic global positioning system (RTK-GPS) and hydrography techniques. The data were provided to the U.S. Geological Survey(USGS) to contribute to an existing monitoring dataset of ... |
Info |
YSI water quality data from August 2015 from Dauphin Island and the surrounding areas.
Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ... |
Info |