Lidar

Light detection and ranging, an airborne, spaceborne or ground-based laser-ranging technique commonly used for acquiring high-resolution topographic data.
Subtopics:
(none)

LIDAR images (8 items)
Related topics:

317 results listed by similarity [list alphabetically]
Lidar-Derived Bare-Earth XYZ for EAARL Coastal Topography—Cape Hatteras, North Carolina, Pre-Hurricane Isabel, 2003

ASCII XYZ data for Cape Hatteras, North Carolina, were produced from remotely sensed, geographically referenced elevation measurements collected pre-Hurricane Isabel on September 16, 2003 by the U.S. Geological Survey, in cooperation with the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground ...

Info
Lidar-Derived Digital Elevation Model (DEM) Mosaic for EAARL-B Submerged Topography-Saint Thomas, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation ...

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014

A digital elevation model (DEM) mosaic was produced for Anegada, British Virgin Islands, from remotely sensed, geographically referenced elevation measurements collected by Watershed Sciences, Inc. (WSI)/Quantum Spatial using an Optech Orion M300 (1064-nm wavelength) lidar sensor on January 21, 2014.

Info
Lidar-Derived Seamless (Bare Earth and Submerged) Point Cloud for Coastal Topography—Anegada, British Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
Lidar-Derived Classified Bare-Earth Point-Cloud for Coastal Topography—Fire Island, New York, 07 May 2012

Binary point-cloud data were produced for Fire Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. using an Optech Gemini lidar sensor flown on a Cessna 206 aircraft.

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Fire Island, New York, 07 May 2012

A digital elevation model (DEM) mosaic was produced for Fire Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. using an Optech Gemini lidar sensor flown on a Cessna 206 aircraft

Info
Lidar-Derived First-Surface Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Little Pine Island Bayou Corridor Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar ...

Info
Lidar Bathymetry Data of Cape Canaveral, Florida, (2014) in XYZ ASCII text file format

The Cape Canaveral Coastal System (CCCS) is a prominent feature along the Southeast U.S. coastline and is the only large cape south of Cape Fear, North Carolina. Most of the CCCS lies within the Merritt Island National Wildlife Refuge and included in its boundaries are the Cape Canaveral Air Force Station (CCAFS), NASA’s Kennedy Space Center (KSC), and a large portion of Canaveral National Seashore. The actual promontory of the modern cape falls within the jurisdictional boundaries of the CCAFS. These ...

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Little Pine Island Bayou Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar ...

Info
Lidar-Derived Classified Point-Cloud for Coastal Topography—Chandeleur Islands, Louisiana, 23-25 June 2016

Binary point-cloud data were produced for the Chandeleur Islands, Louisiana, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1-Unclassified, 2-Ground (includes model key ...

Info
Lidar-Derived Seamless Digital Elevation Model (DEM) Mosaic for Coastal Topography—Chandeleur Islands, Louisiana, 23-25 June 2016

A digital elevation model (DEM) mosaic was produced for the Chandeleur Islands, Louisiana, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1-Unclassified, 2-Ground (includes ...

Info
Lidar-derived First-Surface Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Canyonlands and Upper Neches River Corridor Units, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Canyonlands and Upper Neches River Corridor Units of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
Lidar-Derived Seamless (Bare Earth and Submerged) Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014

A seamless (bare earth and submerged) topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Canyonlands and Upper Neches River Corridor Units, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Canyonlands and Upper Neches River Corridor Units of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
Lidar-Derived Bare-Earth XYZ for EAARL Coastal Topography—Fire Island, New York, 2002

ASCII XYZ data for Fire Island, New York, was produced from remotely sensed, geographically referenced elevation measurements collected October 25 and November 8, 2002 by the U.S. Geological Survey, in cooperation with the National Park Service (NPS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL Coastal Topography—Fire Island, New York, 2002

A digital elevation model (DEM) mosaic for Fire Island, New York, was produced from remotely sensed, geographically referenced elevation measurements collected October 25 and November 8, 2002 by the U.S. Geological Survey, in cooperation with the National Park Service (NPS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted ...

Info
Lidar-Derived Classified Bare-Earth Point-Cloud for Coastal Topography—Assateague Island, Maryland and Virginia, Post-Hurricane Joaquin, 26 November 2015

Binary point-cloud data were produced for Assateague Island, Maryland and Virginia, post-Hurricane Joaquin, from remotely sensed, geographically referenced elevation measurements collected by Quantum Spatial using a Leica ALS70 (1064-nm wavelength) lidar sensor.

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Assateague Island, Maryland and Virginia, Post-Hurricane Joaquin, 26 November 2015

A digital elevation model (DEM) mosaic was produced for Assateague Island, Maryland and Virginia, post-Hurricane Joaquin, from remotely sensed, geographically referenced elevation measurements collected by Quantum Spatial using a Leica ALS70 (1064-nm wavelength) lidar sensor.

Info
Lidar-Derived Point Cloud for EAARL-B Submerged Topography–—Saint Thomas, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
Lidar-Derived Bare-Earth XYZ for EAARL Coastal Topography—Cape Hatteras, North Carolina, Post-Hurricane Isabel, 2003

ASCII XYZ data for Cape Hatteras, North Carolina, were produced from remotely sensed, geographically referenced elevation measurements collected post-Hurricane Isabel on September 21, 2003 by the U.S. Geological Survey, in cooperation with the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 Offshore in Eastern Long Island Sound and Westernmost Block Island Sound (ELISCOMB_4MBAT_UTM18.TIF, UTM Zone 18, NAD83)

The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ...

Info
4-m Grid of the Combined Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 Offshore in Eastern Long Island Sound and Westernmost Block Island Sound (ELISCOMB_GEO, Geographic, WGS84)

The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ...

Info
4-m Grid of the Combined Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 Offshore in Eastern Long Island Sound and Westernmost Block Island Sound (ELISCOMB_UTM, UTM Zone 18, NAD83)

The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ...

Info
30-m Hillshaded relief image produced from swath interferometric, multibeam, and lidar datasets (navd_bath_30m.tif GeoTIFF Image; UTM, Zone 19N, WGS 84)

These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ...

Info
30-m Topography and bathymetry grid produced from swath interferometric, multibeam, and lidar datasets (navd_bath_30m Esri binary grid, UTM Zone 19N, WGS84)

These data are qualitatively derived interpretive polygon shapefiles and selected source raster data defining surficial geology, sediment type and distribution, and physiographic zones of the sea floor from Nahant to Northern Cape Cod Bay. Much of the geophysical data used to create the interpretive layers were collected under a cooperative agreement among the Massachusetts Office of Coastal Zone Management (CZM), the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, the National Oceanic ...

Info
10-m Bathymetry grid produced from lead-line and single-beam sonar soundings, swath interferometric, multibeam, and lidar datasets (bb_navd88_10m, Esri binary grid, UTM Zone 19N, WGS84)

Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ...

Info
Hillshaded-relief image produced from lead-line and single-beam sonar soundings, swath interferometric, multibeam, and lidar datasets (bb_navd88_hs_10m, Esri grid, UTM Zone 19N, WGS 84)

Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative ...

Info
10-m Bathymetry grid of Vineyard and western Nantucket Sounds produced from lead-line and single-beam sonar soundings, swath-interferometric, multibeam, and lidar datasets (Esri binary grid, UTM Zone 19N, WGS84)

Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ...

Info
10-m Hillshaded-relief image of Vineyard and western Nantucket Sounds produced from lead-line and single-beam sonar soundings, swath-interferometric, multibeam, and lidar datasets (TIFF image, UTM Zone 19N, WGS84)

Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and Western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a ...

Info
Terrestrial lidar data from northern Monterey Bay, California, September 2015

This part of the data release presents topography data from northern Monterey Bay, California collected in September 2015 with a terrestrial lidar scanner.

Info
Footprints of Lidar Datasets Published at the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center since 2001

U.S. Geological Survey (USGS) staff created geographic information system (GIS) footprints to show the extent of light detection and ranging (lidar) datasets published by the USGS St. Petersburg Coastal and Marine Science Center (USGS SPCMSC), since 2001. These lidar datasets were published as LAS, XYZ, or Digital Elevation Model (DEM) outputs of coastal, submerged and/or terrestrial topography in USGS Data Series (DS), Open-File Reports (OFR), and Data Releases (DR). Please see the publications listed in ...

Info
Topobathymetric Lidar Survey of Breton and Gosier Islands, Louisiana, January 16 and 18, 2014

This dataset contains binary point-cloud data, produced from remotely sensed, geographically referenced topobathymetric measurements collected by Photo Science, Inc., encompassing the Breton and Gosier Island, LA study areas. The original area of interest was buffered by 100 meters to ensure complete coverage, resulting in approximately 75 square miles of lidar data. The Breton Island Lidar project called for the planning, acquisition, processing, and derivative products of topobathymetric lidar data, ...

Info
Terrestrial lidar data from northern Monterey Bay, California, March 2015

This part of the data release presents topography data from northern Monterey Bay, California collected in March 2015 with a terrestrial lidar scanner.

Info
CENCAL_1998_2002 - Vectorized Shoreline of Central California Derived from 1998-2002 Lidar Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
Topographic Lidar Survey of Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana, July 12-14, 2013 -- Bare Earth Digital Elevation Models (DEMs)

A topographic lidar survey was conducted on July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana. The data were collected at a nominal pulse space of 1 meter (m) and processed to identify bare earth elevations. Bare earth Digital Elevation Models (DEMs) were generated based on these data. Photo Science, Inc., was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The bare earth DEMs are 32-bit floating point ERDAS ...

Info
Topographic Lidar Survey of Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana, July 12-14, 2013 -- Classified Point Data

A topographic lidar survey was conducted July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana. Lidar data exchange format (LAS) 1.2 formatted classified point data files were generated based on these data. Photo Science, Inc. was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The lidar data were collected at a nominal pulse spacing (NPS) of 1.0 meter (m). The horizontal projection and datum of the data are ...

Info
Topographic Lidar Survey of the Alabama, Mississippi, and Southeast Louisiana Barrier Islands, from September 5 to October 11, 2012 -- Bare Earth Digital Elevation Models

A topographic lidar survey was conducted from September 5 to October 11, 2012, for the barrier islands of Alabama, Mississippi and southeast Louisiana, including the coast near Port Fourchon. Most of the data were collected September 5-10, 2012, with a reflight conducted on October 11, 2012, to increase point density in some areas. The data were collected at a nominal pulse space of 1-meter (m) and processed to identify bare earth elevations. Bare earth Digital Elevation Models(DEMs) were generated based ...

Info
Topographic Lidar Survey of the Alabama, Mississippi, and Southeast Louisiana Barrier Islands, from September 5 to October 11, 2012 -- Classified Point Data

This Data Series Report contains lidar elevation data collected September 5 to October 11, 2012, for the barrier islands of Alabama, Mississippi and southeast Louisiana, including the coast near Port Fourchon. Most of the data were collected September 5-10, 2012, with a reflight conducted on October 11, 2012, to increase point density in some areas. Lidar data exchange format (LAS) 1.2 formatted point data files were generated based on these data. The point cloud data were processed to extract bare earth ...

Info
Topographic Lidar Survey of the Chandeleur Islands, Louisiana, February 6, 2012 -- Bare Earth DEMs

A topographic Lidar survey was conducted on February 6, 2012, over the Chandeleur Islands, Louisiana. The data were collected at a nominal pulse space of 0.5-meter (m) and processed to identify bare earth elevations. Bare earth digital elevation models (DEMs) were generated based on these data. Digital Aerial Solutions, LLC, was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The bare earth DEMs are 32-bit floating point ERDAS Imagine (IMG) files with a horizontal ...

Info
Topographic Lidar Survey of the Chandeleur Islands, Louisiana, February 6, 2012 -- Classified Point Data

This Data Series Report contains lidar elevation data collected February 6, 2012, over the Chandeleur Islands, Louisiana. LAS 1.2 formatted point data files were generated based on these data. The point cloud data were processed to extract bare earth data; therefore, the point cloud data are classified into only these classes: 1 and 17-unclassified, 2-ground, 9-water, and 10-breakline proximity. Digital Aerial Solutions, LLC, was contracted by the USGS to collect and process these data. The lidar data were ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar-extracted dune features

Dune crest and toe positions along a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York)using using airborne ...

Info
Terrestrial lidar data from northern Monterey Bay, California, March 2017

This part of the data release presents topography data from northern Monterey Bay, California collected in March 2017 with a terrestrial lidar scanner.

Info
Biscayne National Park LIDAR GeoTIFF

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne lidar to measure the submerged topography of the north Florida reef tract; secondarily, the data will be assessed ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar point-cloud data (LAS)

Binary point-cloud data were produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar and digital elevation model (DEM) tile index

This data represents the tile index for lidar data collected for the U.S. Geological Survey in November 2012 following Hurricane Sandy, which made landfall in the eastern United States on October 29th, 2012. The lidar LAS and derived-digital elevation model (DEM) data are divided into these tiles and filenames match the tile number. The index shows the extent of data collection (portions of the coastline of New York, Delaware, Maryland, Virginia, and North Carolina) and provides tile names to aid in ...

Info
NORCAL2002 - Vectorized Shoreline of Northern California Derived from 2002 Lidar Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
EAARL Topography-Assateague Island National Seashore-Lidar GeoTIFF

LiDAR is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging LiDAR is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne LiDAR to measure the topography of Assateague Island National Seashore land features. Elevation measurements were ...

Info
SOCAL_1998 - Vectorized Shoreline of Southern California Derived from 1998 Lidar Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2014: Ground Based Lidar (1-Meter Digital Elevation Model)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, NC collaborated to gather alongshore ground-based lidar beach topography at Fire Island, NY. This high-resolution elevation dataset was collected on April 1, 2014, and is part of the USGS's ongoing beach monitoring effort under Hurricane Sandy Supplemental Project GS2-2B. This USGS Data Release includes the resulting processed elevation ...

Info
Seafloor character from lidar data-Santa Barbara Channel

Seafloor character was derived from interpretations of lidar data available for the mainland coast within the study area from the California State Waters Mapping Program (Johnson and others, 2012; Johnson and others, 2013a; Johnson and others, 2013b; Johnson and others, 2013c). The number of substrate classes was reduced because rugosity could not be derived for all areas. References Cited: Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L ...

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2014: Ground Based Lidar (ASCII XYZ Point Data)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, NC collaborated to gather alongshore ground-based lidar beach topography at Fire Island, NY. This high-resolution elevation dataset was collected on April 1, 2014, and is part of the USGS's ongoing beach monitoring effort under Hurricane Sandy Supplemental Project GS2-2B. This USGS Data Release includes the resulting processed elevation ...

Info
Beach Topography— Terrestrial-Based Lidar Beach Topography of Fire Island, New York, June 2014

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Florida and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collaborated to gather alongshore terrestrial-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on June 11, 2014, to characterize beach topography and document ongoing beach evolution and recovery, and is part of the ongoing beach monitoring within the ...

Info
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, June 2014

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Florida and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collaborated to gather alongshore terrestrial-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on June 11, 2014, to characterize beach topography and document ongoing beach evolution and recovery, and is part of the ongoing beach monitoring within the ...

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2013: Ground Based Lidar (1-Meter Digital Elevation Model)

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida and the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, collaborated to gather alongshore ground-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on April 10, 2013, to characterize beach topography following substantial erosion that occurred during Hurricane Sandy, which made landfall on October 29, 2012, and multiple, ...

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2013: Ground Based Lidar (ASCII XYZ Point Data)

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida and the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, collaborated to gather alongshore ground-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on April 10, 2013, to characterize beach topography following substantial erosion that occurred during Hurricane Sandy, which made landfall on October 29, 2012, and multiple, ...

Info
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, May 2015

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collected terrestrial-based light detection and ranging (T-lidar) elevation data at Fire Island, New York. The data were collected on May 18, 2015 as part of the ongoing beach monitoring within Hurricane Sandy Supplemental Project GS2-2B, and will be used to document and assess the morphological storm response and post-storm ...

Info
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, May 2015

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collected terrestrial-based light detection and ranging (T-lidar) elevation data at Fire Island, New York. The data were collected on May 18, 2015 as part of the ongoing beach monitoring within Hurricane Sandy Supplemental Project GS2-2B, and will be used to document and assess the morphological storm response and post-storm ...

Info
Terrestrial lidar data from northern Monterey Bay, California, March 2016

This part of the data release presents topography data from northern Monterey Bay, California collected in March 2016 with a terrestrial lidar scanner.

Info
Terrestrial lidar data from northern Monterey Bay, California, September 2017

This part of the data release presents topography data from northern Monterey Bay, California collected in September 2017 with a terrestrial lidar scanner.

Info
Terrestrial lidar data from northern Monterey Bay, California, October 2016

This part of the data release presents topography data from northern Monterey Bay, California collected in October 2016 with a terrestrial lidar scanner.

Info
Image showing bathymetry data for the coastal region of Rincon, Puerto Rico (rincon_lidar.tif)

These data were collected by the SHOALS (Scanning Hydrographic Operational Airborne Lidar Survey) system which consists of an airborne laser transmitter/receiver capable of measuring 400 soundings per second. The system operates from a deHavilland DHC-6 Twin Otter flying at altitudes between 200 and 400 meters with a ground speed of about 100 knots. The SHOALS system also includes a ground-based data processing system for calculating acurate horizontal position and water depth. Lidar is an acronym for ...

Info
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442 and H11225 offshore of Niantic, Connecticut (NIANTIC_GEO, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442 and H11225 Offshore of Niantic, CT (NIANTIC_MBLIDAR_GEO.TIF, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441, H11442, H11224, and H11225 offshore of New London and Niantic, Connecticut (NLNB_GEO, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442, H11441, H11224, and H11225 Offshore of New London and Niantic, CT (NLNB_MBLIDAR_GEO.TIF, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441, H11442, H11224, and H11225 offshore of New London and Niantic, Connecticut (NLNB_UTM, UTM Zone 18, NAD83)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
4-m Grid of Combined Multibeam and LIDAR Bathymetry from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441 and H11224 offshore of New London, Connecticut (NLONDON_GEO, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11441 and H11224 Offshore of New London, CT (NLONDON_MBLIDAR_GEO.TIF, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. ...

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11224, H11225, H11250, H11251, H11252, H11361, H11441, H11442, H11445, H11446, H11997, H11999, H12012, and H12013 offshore in eastern Long Island Sound and westernmost Block Island Sound (ELISCOMB_4MBAT_GEO.TIF, Geographic, WGS84)

The USGS, in cooperation with NOAA and the Connecticut DEP, is producing detailed maps of the seafloor in Long Island Sound. The current phase of this cooperative research program is directed toward analyzing how bathymetric relief relates to the distribution of sedimentary environments and benthic communities. As part of this program, digital terrain models (DTMs) from bathymetry collected as part of NOAA's hydrographic charting activities are converted into ESRI raster grids and imagery (primarily of 2-m ...

Info
Orthomosaic images of the middle and lower Elwha River, Washington, 2012 to 2017

This dataset presents 28 georeferenced orthomosaic images of the middle and lower reaches of the Elwha River. Each mosaic image was created by stitching together thousands of individual photographs that were matched based on numerous unique tie points shared by the photographs. The individual photographs were taken by a plane-mounted camera during multiple flights over the study area spanning 2012 to 2017. Because each mosaic is orthogonal to the earth's surface and is georeferenced to real-world ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-50 Years From 2011 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-50 Years From 2011 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—50 Years From 2014 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—50 Years From 2014 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-75 Years From 2001 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-75 Years From 2001 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-75 Years From 2011 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-75 Years From 2011 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—75 Years From 2014 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—75 Years From 2014 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2002: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2002: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL-B Topography-Big Thicket National Preserve: Beaumont and Lower Neches River Units, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
EAARL-B Topography-Big Thicket National Preserve: Beaumont and Lower Neches River Units, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental ...

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 29, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 29, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B) ...

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

A bare-earth topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging ...

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

A first-surface topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ...

Info
EAARL-B Topography-Big Thicket National Preserve: Lance Rosier Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed ...

Info
EAARL-B Topography-Big Thicket National Preserve: Lance Rosier Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
EAARL-B Topography-Big Thicket National Preserve: Lower Neches River Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Topography-Big Thicket National Preserve: Lower Neches River Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Topography-Big Thicket National Preserve: Menard Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging ...

Info
EAARL-B Topography-Big Thicket National Preserve: Menard Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging ...

Info
EAARL-B Topography-Big Thicket National Preserve: Neches Bottom and Jack Lore Baygall Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Neches Bottom and Jack Lore Baygall Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Topography-Big Thicket National Preserve: Neches Bottom and Jack Lore Baygall Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Neches Bottom and Jack Lore Baygall Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

A bare-earth topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 25, 26, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed ...

Info
EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

A first-surface topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 25, 26, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
EAARL-B Topography-Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 23, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL ...

Info
EAARL-B Topography—Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 23, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, 2010: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Tropical Storm Bonnie (July 2010 tropical storm), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, 2010: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Tropical Storm Bonnie (July 2010 tropical storm), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography—Chandeleur Islands, Louisiana, 4-5 September 2010: Seamless (Bare Earth and Submerged)

ASCII XYZ point-cloud data for the Chandeleur Islands in Louisiana were produced from remotely sensed, geographically referenced elevation measurements collected on September 4 and 5, 2010 by the U.S. Geological Survey. Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ...

Info
EAARL Coastal Topography—Chandeleur Islands, Louisiana, 12-13 February 2011: Seamless (Bare Earth and Submerged)

ASCII XYZ point-cloud data for the Chandeleur Islands in Louisiana were produced from remotely sensed, geographically referenced elevation measurements collected on February 12 and 13, 2011 by the U.S. Geological Survey. Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high ...

Info
EAARL-B Submerged Topography—Crocker Reef, Florida, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Crocker Reef, Florida, were produced from remotely sensed, geographically referenced elevation measurements collected on April 13 and 22, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL-B Submerged Topography—Crocker Reef, Florida, 2014

A submerged topography digital elevation model (DEM) mosaic for a portion of the submerged environs of Crocker Reef, Florida, was produced from remotely sensed, geographically referenced elevation measurements collected on April 13 and 22, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation ...

Info
Seafloor Elevation Change From 2016 to 2017 at Crocker Reef, Florida Keys-Impacts From Hurricane Irma

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes at Crocker Reef near Islamorada, Florida (FL), within a 33.6 square-kilometer area following the landfall of Hurricane Irma in September 2017. USGS staff used light detection and ranging (lidar)-derived data acquired by the National Oceanic and Atmospheric Administration (NOAA) between July 21 and November 21, 2016 and USGS multibeam data collected between October 10 and ...

Info
EAARL Coastal Topography-Northern Gulf of Mexico

ASCII xyz point cloud data were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS) and National Air and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams ...

Info
EAARL Topography-Vicksburg National Millitary Park 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system ...

Info
EAARL Topography-Jean Lafitte National Historical Park and Preserve 2006

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Jean Lafitte National Historical Park and Preserve in Louisiana was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL ...

Info
EAARL Topography-Vicksburg National Millitary Park 2008: Bare Earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system ...

Info
EAARL Coastal Topography-Fire Island National Seashore 2007

A bare earth/first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Fire Island National Seashore in New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ...

Info
EAARL Topography-Natchez Trace Parkway 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DSM) of a portion of the Natchez Trace Parkway in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system ...

Info
EAARL Coastal Topography-Sandy Hook 2007

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Gateway National Recreation Area's Sandy Hook Unit in New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar ...

Info
EAARL Submerged Topography-U.S. Virgin Islands 2003

A submerged topography elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the U.S. Virgin Islands was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted ...

Info
EAARL Coastal Topography--Northeast Barrier Islands 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard ...

Info
EAARL Coastal Topography--Northeast Barrier Islands 2007: Bare Earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an ...

Info
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ...

Info
EAARL Topography--George Washington Birthplace National Monument 2008

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the George Washington Birthplace National Monument in Virginia was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a ...

Info
EAARL Coastal Topography-St. John, U.S. Virgin Islands 2003: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of St. John, U.S. Virgin Islands was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted ...

Info
EAARL Coastal Topography--Pearl River Delta 2008: Bare Earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the University of New Orleans (UNO), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging ...

Info
EAARL Coastal Topography--Pearl River Delta 2008: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the University of New Orleans (UNO), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ...

Info
ATM Coastal Topography--Alabama 2001

A first surface elevation map was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a twin-otter or P3 aircraft and incorporates a green-wavelength laser ...

Info
ATM Coastal Topography--Florida 2001: Western Panhandle

A first surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Florida 2001: Eastern Panhandle

A first surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, 2008: First Surface

A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, 2008: Bare Earth

A bare-earth elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ...

Info
ATM Coastal Topography--Texas, 2001: UTM Zone 14

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Texas, 2001: UTM Zone 15

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Mississippi, 2001

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
ATM Coastal Topography--Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength ...

Info
EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: First Surface

A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an ...

Info
EAARL Coastal Topography and Imagery--Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

A digital elevation map (also known as a Digital Elevation Model, or DEM) of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: Seamless (Bare Earth and Submerged)

A seamless (bare-earth and submerged) elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system ...

Info
EAARL Coastal Topography--Chandeleur Islands, Louisiana, 2010: Bare Earth

A bare-earth digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Chandeleur Islands, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft ...

Info
EAARL Coastal Topography--Gateway National Recreation Area, New Jersey and New York, 2009

A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Gateway National Recreation Area in New Jersey and New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Frances, 2004: First Surface

A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Frances, 2004: Bare Earth

A bare-earth digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

A digital elevation model (DEM) of a portion of the Mississippi and Alabama barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ...

Info
EAARL Coastal Topography--Sandy Hook Unit, Gateway National Recreation Area, New Jersey, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Sandy Hook Unit of the Gateway National Recreation Area in New Jersey, post-Nor'Ida (November 2009 nor'easter) was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Fire Island National Seashore, New York, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Fire Island National Seashore in New York, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography and Imagery--Assateague Island National Seashore, Maryland and Virginia, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Assateague Island National Seashore in Maryland and Virginia, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

A digital elevation model (DEM) of a portion of the eastern Louisiana barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Maryland and Delaware, post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the eastern Maryland and Delaware coastline, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: First Surface

A digital elevation model (DEM) of a portion of the National Park Service Southeast Coast Network's Cape Hatteras National Seashore in North Carolina, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system ...

Info
EAARL Coastal Topography and Imagery--Fire Island National Seashore, New York, 2009

A digital elevation model (DEM) of a portion of the Fire Island National Seashore in New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL Coastal Topography--Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: Bare Earth

A digital elevation model (DEM) of a portion of the Cape Hatteras National Seashore in North Carolina, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground ...

Info
EAARL Coastal Topography-Cape Canaveral, Florida, 2009: First Surface

A digital elevation model (DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, ...

Info
EAARL Coastal Topography--Northern Outer Banks, North Carolina, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the northern North Carolina coastline beachface, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Topography--Potato Creek Watershed, Georgia, 2010

A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on February 27, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
EAARL Topography--Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010

A digital elevation model (DEM) of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area (bathymetry was irresolvable) using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: Bare Earth

A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2010

A digital elevation model (DEM) of a portion of the Assateague Island National Seashore in Maryland and Virginia was produced from remotely sensed, geographically referenced elevation measurements collected cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area on March 19 and 24, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL Coastal Topography--Virginia, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Virginia coastline beachface, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The EAARL sensor ...

Info
EAARL Coastal Topography--Alligator Point, Louisiana, 2010

A digital elevation model (DEM) of a portion of Alligator Point, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's ...

Info
EAARL Coastal Topography--Central Wetlands, Louisiana, 2010

A digital elevation model (DEM) of a portion of the Central Wetlands, Louisiana was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on March 4 and 5, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser ...

Info
EAARL Coastal Topography--North Shore, Lake Pontchartrain, Louisiana, 2010

A digital elevation model (DEM) of a portion of the north shore of Lake Pontchartrain, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on February 28, March 1, and March 5, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. ...

Info
EAARL Coastal Topography and Imagery--Western Louisiana, Post-Hurricane Rita, 2005: First Surface

ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the Louisiana coastline, post-Hurricane Rita (September 2005 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Digital elevation model (DEM)

A DEM was produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virgina, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

Derived products of a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virgina, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors. Post ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

Dune features (dune crest and toe elevations) and mean-high-water shoreline data for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science and Woolpert using using airborne lidar sensors. Binary point-cloud ...

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Mean-high-water shoreline

Mean-high-water (MHW) shoreline for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines were derived from lidar data collected following Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th). Data were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically-referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, ...

Info
EAARL-B Coastal Topography--Eastern New Jersey, Hurricane Sandy, 2012: First Surface

ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the New Jersey coastline, pre- and post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ...

Info
EAARL-B Submerged Topography—Barnegat Bay, New Jersey, pre-Hurricane Sandy, 2012

American Standard Code for Information Interchange XYZ and binary point-cloud data, as well as a digital elevation model for part of Barnegat Bay, New Jersey, pre-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL-B Submerged Topography—Barnegat Bay, New Jersey, post-Hurricane Sandy, 2012–2013

American Standard Code Information Interchange XYZ and binary point-cloud data, as well as a digital elevation model for part of Barnegat Bay, New Jersey, post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to ...

Info
EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

American Standard Code Information Interchange XYZ and binary point-cloud data, as well as a seamless (bare-earth and submerged) digital elevation model for part of Fire Island, New York, pre-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system ...

Info
EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

This shapefile was produced from 53 2-kilometer by 2-kilometer tile extents of remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface ...

Info
EAARL-B Coastal Topography--Chandeleur Islands, Louisiana, 2012: Seamless (Bare Earth and Submerged) (.shp file)

This shapefile was produced from 52 2-kilometer by 2-kilometer tile extents of remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency ...

Info
Projected Seafloor Elevation Change and Relative Sea Level Rise Along the Florida Reef Tract from Miami to Boca Chica Key 25, 50, 75, and 100 Years from 2016

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes along the Florida Reef Tract (FRT) from Miami to Boca Chica Key, Florida. Changes in seafloor elevation were calculated from the 1930s to 2016 using digitized hydrographic sheet sounding data and light detection and ranging (lidar)-derived digital elevation models (DEMs) acquired by the National Oceanic and Atmospheric Administration (NOAA) in 2016 and 2017. Most of the ...

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Bradenton Beach to Clearwater Beach, Florida Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Gulf of Mexico from Bradenton Beach to Clearwater Beach, Florida for data collected at various times between 1998 and 2010.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Bradenton Beach to Clearwater Beach, Florida Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Gulf of Mexico from Bradenton Beach to Clearwater Beach, Florida for data collected at various times between 1998 and 2010.

Info
EAARL Coastal Topography--Dauphin Island, Alabama, Post-Hurricane Katrina, 2005: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
EAARL Coastal Topography--Dauphin Island, Alabama, Post-Hurricane Katrina, 2005: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The ...

Info
Coastal Topography-Upper Florida Keys Reef Tract, Florida, 26-30 June 2016

Binary point-cloud data were produced for a portion of the upper Florida Keys reef tract, Florida, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1-Unclassified, 2-Ground ...

Info
Coastal Topography-Upper Florida Keys Reef Tract, Florida, 26-30 June 2016

A digital elevation model (DEM) mosaic was produced for a portion of the upper Florida Keys reef tract, Florida, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1 ...

Info
Coastal Topography—Long Island, New York, Post-Hurricane Irene, 30 August 2011

Binary point-cloud data were produced for Long Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Woolpert, Inc. using an Leica ALS50-II lidar sensor flown on a Cessna 404 aircraft. These data were collected post-Hurricane Irene on August 30, 2011.

Info
Coastal Topography—Long Island, New York, Post-Hurricane Irene, 30 August 2011

A digital elevation model (DEM) mosaic was produced for Long Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Woolpert, Inc. using an Leica ALS50-II lidar sensor flown on a Cessna 404 aircraft. These data were collected post-Hurricane Irene on August 30, 2011.

Info
Seafloor Elevation Change From 2004 to 2016 at Looe Key, Florida Keys

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes at Looe Key near Big Pine Key, Florida (FL), within a 16.4 square-kilometer area between 2004 and 2016. USGS staff used light detection and ranging (lidar)-derived data acquired by the U.S. Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of eXpertise (JALBTCX) between December 1 and 31, 2004 (USACE-JALBTCX) and the National Oceanic and ...

Info
Seafloor Elevation Change From 2016 to 2017 at Looe Key, Florida Keys-Impacts From Hurricane Irma (version 2.0)

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes at Looe Key near Big Pine Key, Florida (FL), within a 19.7 square-kilometer area following Hurricane Irma's landfall in September 2017. USGS staff used light detection and ranging (lidar)-derived data acquired by the National Oceanic and Atmospheric Administration (NOAA) between July 21 and November 21, 2016 and USGS multibeam data collected December 12-17, 2017 (Fredericks ...

Info
Massachusetts Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes for Massachusetts for data collected at various times between 2000 and 2013.

Info
Massachusetts raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Northeast Atlantic Ocean for Massachusetts for data collected at various times between 2000 and 2013

Info
Projected Seafloor Elevation Change and Relative Sea Level Rise Surrounding Maui, Hawaii 25, 50, 75, and 100 Years from 1999

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes surrounding Maui, Hawaii. Changes in seafloor elevation were calculated using historical bathymetric point data from the 1960s (see Yates and others, 2017a) and light detection and ranging (lidar)-derived data acquired in 1999 (NOAA, 2013) using methods outlined in Yate and others (2017b). An elevation change analysis between the 1960s and 1999 data was performed to quantify ...

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Salvo to Duck, North Carolina Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives features of beach morphology from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Atlantic Ocean from Salvo to Duck, North Carolina for data collected at various times between 1996 and 2012.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Salvo to Duck, North Carolina Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives features of beach morphology from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Atlantic Ocean from Salvo to Duck, North Carolina for data collected at various times between 1996 and 2012.

Info
New Jersey Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes for New Jersey for data collected at various times between 2007 and 2014.

Info
New Jersey raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Northeast Atlantic Ocean for New Jersey for data collected at various times between 2007 and 2014

Info
EAARL Topography-Dry Tortugas National Park

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne lidar to measure the submerged topography of the Dry Tortugas reef tract and Subaerail topography of land features ...

Info
EAARL Bare Earth Topography-Fire Island National Seashore

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft ...

Info
EAARL Topography-Fire Island National Seaashore

A first return elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft ...

Info
EAARL Topography-Thomas Stone National Historic Site

A first surface elevation map (also known as a Digital Elevation Model or DEM) of Thomas Stone National Historic Site was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an ...

Info
EAARL Topography - Gateway National Recreation Area

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Gateway National Recreation Area was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an ...

Info
EAARL Topography George Washington Birthplace National Monument

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of George Washington Birthplace National Monument was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), the National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted ...

Info
EAARL Topography-Cape Cod National Seashore

Elevation maps (also known as Digital Elevation Models or DEMs) of Cape Cod National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Massachusetts, over Cape Cod National Seashore using the NASA Experimental Advanced Airborne Research LiDAR (EAARL), a pulsed ...

Info
EAARL Topography-Gulf Islands National Seashore-Mississippi

Abstract: Elevation maps (also known as Digital Elevation Models or DEMs) of Gulf Islands National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Florida, Mississippi and Texas, over Gulf Islands National Seashore, using the NASA Experimental Advanced ...

Info
EAARL Topography-Sagamore Hill National Historic Site

Elevation maps (also known as Digital Elevation Models or DEMs) of the Sagamore Hill National Historic Site were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in New York, over the Sagamore Hill National Historic Site using the NASA Experimental Advanced Airborne Research ...

Info
EAARL Submarine Topography-Florida Keys National Marine Sanctuary

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through its subsequent fluorescence. Airborne ranging Lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high spatial density. The USGS in cooperation with NASA, NOAA, and NPS is using airborne Lidar to measure the submerged topography of the northern Florida reef tract; secondarily, the data will ...

Info
EAARL Topography-Gulf Islands National Seashore-Florida

Elevation maps (also known as Digital Elevation Models or DEMs) of Gulf Islands National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Florida, Mississippi and Texas, over Gulf Islands National Seashore, using the NASA Experimental Advanced Airborne Research ...

Info
EAARL Topography-Padre Island National Seashore

Elevation maps (also known as Digital Elevation Models or DEMs) of Padre Island National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Texas, over Padre Island National Seashore, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed ...

Info
EAARL Submarine Topography-Northern Florida Keys Reef Tract

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through its subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high spatial density. The USGS, in cooperation with NASA and NPS, is using airborne lidar to measure the submerged topography of the Northern Florida Keys Reef Tract (NFKRT); secondarily, the ...

Info
EAARL Bare Earth Topography-Colonial National Historical Park

Elevation maps (also known as Digital Elevation Models or DEMs) of Colonial National Historical Park were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ASCII text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each surface. Elevation measurements were collected in Virginia, over Colonial National Historical Park, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a ...

Info
Seafloor Elevation and Volume Change Analyses from 2016 to 2019 Along the Florida Reef Tract, USA

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes along the Florida Reef Tract (FRT) from Miami to Marquesas Keys within a 939.4 square-kilometer area between 2016 and 2019. USGS staff used light detection and ranging (lidar)-derived data acquired by the National Oceanic and Atmospheric Administration (NOAA) during two separate lidar surveys. The first is dataset is referenced as "2016 lidar" data and was collected between ...

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Miami to Jupiter, Florida Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Atlantic Ocean from Miami to Jupiter, Florida for data collected at various times between 1999 and 2009.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Miami to Jupiter, Florida Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Atlantic Ocean from Miami to Jupiter, Florida for data collected at various times between 1999 and 2009.

Info
EAARL-B Topography—Suncook River, New Hampshire, 5-6 November 2013: Seamless (Bare Earth and Submerged)

Binary point-cloud data for part of the Suncook River in New Hampshire were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey. Elevation measurements were collected over the area on November 5 and 6, 2013 using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and ...

Info
EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced ...

Info
Projected Seafloor Elevation Change and Relative Sea Level Rise Near St. Croix, U.S. Virgin Islands 25, 50, 75, and 100 Years from 2014

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes near Buck Island and St. Croix, U.S. Virgin Islands. Changes in seafloor elevation were calculated using historical bathymetric point data from the 1980s (see Yates and others, 2017a) and light detection and ranging (lidar)-derived data acquired in 2014 (NOAA, 2015) using methods outlined in Yates and others (2017b). An elevation change analysis between the 1980s and 2014 ...

Info
EAARL-B Submerged Topography—Saint Croix, U.S. Virgin Islands, 2014

A submerged topography digital elevation model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a ...

Info
EAARL-B Submerged Topography—Saint Thomas, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne ...

Info
EAARL-B Submerged Topography--Saint Thomas, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation ...

Info
Projected Seafloor Elevation Change and Relative Sea Level Rise Near St. Thomas, U.S. Virgin Islands 25, 50, 75, and 100 Years from 2014

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes near St. Thomas, U.S. Virgin Islands. Changes in seafloor elevation were calculated using historical bathymetric point data from the 1960s and 1970s (see Yates and others, 2017a) and light detection and ranging (lidar)-derived elevation data acquired in 2014 (NOAA, 2015) using methods outlined in Yates and others (2017b). An elevation change analysis between the historical ...

Info
Transects_BackBarrier.shp - Digital Shoreline Analysis System version 4.3 Transects with Linear Regression Rate Calculations for the Back-Barrier (North-Facing) coast of Dauphin Island, Alabama.

Rates of shoreline change for Dauphin Island, Alabama were generated for three analysis periods, using two different shoreline proxy datasets. Mean High Water line (MHW) shorelines were generated from 14 lidar datasets (1998-2014) and Wet Dry Line (WDL) shorelines were digitized from ten sets of georeferenced aerial images (1940-2015). Rates of change were generated for three groups of shorelines: MHW (lidar), WDL (aerial) and MHW and WDL shorelines combined. These data will aid in developing an ...

Info
Continuous terrain model for water circulation studies, Barnegat Bay, New Jersey (10 meter resolution, 32-bit GeoTIFF, UTM 18, WGS 84)

Water quality in the Barnegat Bay estuary along the New Jersey coast is the focus of a multidisciplinary research project begun in 2011 by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. This narrow estuary is the drainage for the Barnegat Bay watershed and flushed by just three inlets connecting it to the Atlantic Ocean, is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen-depletion events. The scale of ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cedar Island, VA, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cedar Island, VA, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cedar Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Edwin B. Forsythe NWR, NJ, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Edwin B. Forsythe NWR, NJ, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Edwin B. Forsythe NWR, NJ, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Rockaway Peninsula, NY, 2010

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Rockaway Peninsula, NY, 2012

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Rockaway Peninsula, NY, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Assateague Island, MD & VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Assawoman Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cape Hatteras, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cape Lookout, NC, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Coast Guard Beach, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Cobb Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Fisherman Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Metompkin Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Monomoy Island, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Myrtle Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Parramore Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Parker River, MA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Rhode Island National Wildlife Refuge, RI, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Ship Shoal Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Smith Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
ElevMHW: Elevation adjusted to local mean high water: Wreck Island, VA, 2014

Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, March 2015

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in March 2015. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at a ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, September and October 2015

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in September and October 2015. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, March 2016

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in March 2016. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at a ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, September and October 2016

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in September and October 2016. Bathymetry data were collected using a personal watercraft (PWC) and small boat, each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, March 2017

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in March 2017. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted at a ...

Info
Digital elevation models (DEMs) of northern Monterey Bay, California, September 2017

This part of the data release presents digital elevation models (DEMs) derived from bathymetry and topography data of northern Monterey Bay, California collected in September 2017. Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam echosounders and survey-grade global navigation satellite system (GNSS) receivers. Topography data were collected on foot with GNSS receivers mounted on backpacks and with an all-terrain vehicle (ATV) using a GNSS receiver mounted ...

Info
San Francisco Bay-Delta bathymetric/topographic digital elevation model(DEM)

A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This DEM is the result of collaborative efforts of the U.S. Geological Survey (USGS) and the California Department of Water Resources (DWR). The base of the DEM is from a 10-m DEM released in 2004 and updated in 2005 (Foxgrover and others, 2005) that used Environmental Systems Research Institute(ESRI), ArcGIS Topo to Raster module to interpolate ...

Info
Digital elevation models (DEMs) of the lower Elwha River, Washington, water year 2013 to 2016

Digital elevation models (DEMs) of the lower Elwha River, Washington, were created by synthesizing lidar and PlaneCam Structure-from-Motion (SfM) data. Lidar and still digital photographs were collected by airplane during surveys from 2012 to 2016. The digital photographs were used to create a SfM digital surface model. Each DEM represents the ending conditions for that water year (for example, the 2013 DEM represents conditions at approximately September 30, 2013). The final DEMs, presented here, were ...

Info
Digital elevation model (DEM) of the Cache Slough Complex, Sacramento-San Joaquin Delta, California

This metadata describes a digital elevation model (DEM) created from bathymetric and topographic data collected between 2004 and 2019 in the Cache Slough Complex (CSC), northern Sacramento-San Joaquin Delta, California. We merged the newly collected bathymetric and topographic data presented in this data release (DOI:10.5066/P9AQSRVH) with 2019 surveys by the California Department of Water Resources (DWR), 2017 USGS Sacramento Delta Lidar, and 2004 bathymetry data from the Army Corp of Engineers. Small gaps ...

Info
Digital elevation model (DEM) of the Sacramento River Deep Water Ship Channel (DWSC), Sacramento-San Joaquin Delta, California

This metadata describes a digital elevation model (DEM) created from bathymetric and topographic data collected between 2017 and 2019 in the Sacramento River Deep Water Ship Channel (DWSC), northern Sacramento-San Joaquin Delta, California. We merged the newly collected bathymetric and topographic data presented in this data release (DOI:10.5066/P9AQSRVH) with 2019 surveys by the California Department of Water Resources (DWR) and 2017 USGS Sacramento Delta Lidar, to produce a seamless digital elevation ...

Info
Seamless topo-bathy digital elevation model (DEM) of Arey Lagoon, Alaska

A seamless topographic-bathymetric digital elevation model for an area around Arey Lagoon, Alaska created from a combination of lidar elevation data collected in 2009, single-beam bathymetric data collected in 2011, and NOS sounding data collected in 1948.

Info
Footprints and producers of source data used to create central portion of the high-resolution (1 m) San Francisco Bay, California, digital elevation model (DEM)

Polygon shapefile showing the footprint boundaries, source agency origins, and resolutions of compiled bathymetric digital elevation models (DEMs) used to construct a continuous, high-resolution DEM of the central portion of San Francisco Bay.

Info
Footprints and producers of source data used to create northern portion of the high-resolution (1 m) San Francisco Bay, California, digital elevation model (DEM)

Polygon shapefile showing the footprint boundaries, source agency origins, and resolutions of compiled bathymetric digital elevation models (DEMs) used to construct a continuous, high-resolution DEM of the northern portion of San Francisco Bay.

Info
Digital elevation model (DEM) of northern San Francisco Bay, California, created using bathymetry data collected between 1999 and 2016 (MLLW)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the northern portion of San Francisco Bay, which includes San Pablo Bay, Carquinez Strait, and portions of Suisun Bay, was constructed from bathymetric surveys collected from 1999 to 2016. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and ...

Info
Digital elevation model (DEM) of northern San Francisco Bay, California, created using bathymetry data collected between 1999 and 2016 (NAVD88)

A 1-m resolution, continuous surface, bathymetric digital elevation model (DEM) of the northern portion of San Francisco Bay, which includes San Pablo Bay, Carquinez Strait, and portions of Suisun Bay, was constructed from bathymetric surveys collected from 1999 to 2016. In 2014 and 2015 the California Ocean Protection Council (OPC) contracted the collection of bathymetric surveys of large portions of San Francisco Bay. A total of 93 surveys were collected using a combination of multibeam and ...

Info
Bathymetry Hillshade--Hueneme Canyon and Vicinity, California

This part of DS 781 present the shaded-relief bathymetry map of the Hueneme Canyon and Vicinity map area, California. The raster data file for the shaded-relief map is included in "BathymetryHS_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A ...

Info
Bathymetry--Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for the bathymetry map of the Hueneme Canyon and Vicinity map area, California. The raster data file for the bathymetry map is included in "Bathymetry_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan ...

Info
Contours--Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for the bathymetric contours of the Hueneme Canyon and Vicinity map area, California. The vector data file is included in "Contours_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter, R.W ...

Info
Curvature--Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for the curvature map of the Hueneme Canyon and vicinity map area, California. The raster data file is included in "Curvature_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter, R.W., ...

Info
Slope—Hueneme Canyon and Vicinity, California

This part of DS 781 presents data for the curvature map of the Hueneme Canyon and vicinity map area, California. The raster data file is included in "Curvature_HuenemeCanyon.zip," which is accessible from https://pubs.usgs.gov/ds/781/HuenemeCanyon/data_catalog_HuenemeCanyon.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Kvitek, R.G., Greene, H.G., Krigsman, L.M., Endris, C.A., Clahan, K.B., Sliter, R.W., ...

Info
CENCAL1853_1910 - Vectorized Shoreline of Central California Derived from 1853-1910 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL1929_1942 - Vectorized Shoreline of Central Califonia Derived from 1929-1942 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL1945_1976 - Vectorized Shoreline of Central California Derived from 1945-1976 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL_BASELINE - Offshore Baseline for Central California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_BIASVALUES - Central California Shoreline Bias Values

The USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. These shorelines were used to calculate long-term and short-term change rates in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS ...

Info
CENCAL_INTERSECTS_LT - Long-Term Transect-Shoreline Intersection Points for Central California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_INTERSECTS_ST - Short-Term Transect-Shoreline Intersection Points for Central California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_TRANSECTS_LT - Long-Term Shoreline Change Rates for Central California Generated at a 50 m Transect Spacing, 1853-2002

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_TRANSECTS_ST - Short-Term Shoreline Change Rates for Central California Generated at a 50m Transect Spacing, 1971-1998

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL1854_1880 - Vectorized Shoreline of Northern California from 1854-1880 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
NORCAL1928_1936 - Vectorized Shoreline of Northern California Derived from 1928-1936 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a compilation of data from one or ...

Info
NORCAL1952_1971 - Vectorized Shoreline of Northern California Derived from 1952-1971 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
NORCAL_BASELINES - Offshore Baseline for Northern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL_BIASVALUES - Northern California Shoreline Bias Values

The USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. These shorelines were used to calculate long-term and short-term change rates in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS ...

Info
NORCAL_INTERSECTS_LT - Long-Term Transect-Shoreline Intersection Points for Northern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL_INTERSECTS_ST - Short-Term Transect-Shoreline Intersection Points for Northern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL_TRANSECTS_LT - Long-Term Shoreline Change Rates for Northern California Generated at a 50 m Transect Spacing, 1854-2002

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL_TRANSECTS_ST - Short-Term Shoreline Change Rates for Northern California Generated at a 50m Transect Spacing, 1952-2002

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
SOCAL1852_1889 - Vectorized Shoreline of Southern California Derived from 1852-1889 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
SOCAL1920_1934 - Vectorized Shoreline of Southern California Derived from 1920-1934 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
SOCAL_1971_1976 - Vectorized Shoreline of Southern California Derived from 1971-1976 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
SOCAL_BASELINE - Offshore Baseline for Southern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
SOCAL_BIASVALUES - Southern California Shoreline Bias Values

The USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. These shorelines were used to calculate long-term and short-term change rates in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS ...

Info
SOCAL_INTERSECTS_LT - Long-Term Transect-Shoreline Intersection Points for Southern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
SOCAL_INTERSECTS_ST - Short-Term Transect-Shoreline Intersection Points for Southern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
SOCAL_TRANSECTS_LT - Long-Term Shoreline Change Rates for Southern California Generated at a 50m Transect Spacing, 1852-1998

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
SOCAL_TRANSECTS_ST - Short-Term Shoreline Change Rates for Southern California Generated at a 50m Transect Spacing, 1971-1998

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography-Louisiana, Alabama, and Florida, June 2008

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
EAARL Coastal Topography-Louisiana, Alabama, and Florida, June 2008

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-100 Years From 2001 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-100 Years From 2001 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-100 Years From 2011 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-100 Years From 2011 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—100 Years From 2014 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—100 Years From 2014 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ...

Info
Seafloor elevation change from the 1930s to 2016 along the Florida Reef Tract, USA

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes along the Florida Reef Tract (FRT) from Miami to Key West within a 982.4 square-kilometer area. USGS staff calculated changes in seafloor elevation from the 1930’s to 2016 using digitized historical hydrographic surveys (H-sheets) acquired by the U.S. Coast and Geodetic Survey (USC&GS) in the 1930’s and light detection and ranging (lidar)-derived digital elevation models ...

Info
Seafloor elevation change from 2002 to 2016 in the Upper Florida Keys

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify bathymetric changes in the Upper Florida Keys (UFK) from Triumph Reef to Pickles Reef within a 242.4 square-kilometer area. USGS staff calculated changes in seafloor elevation from 2002 to 2016 using light detection and ranging (lidar)-derived data acquired by the USGS in 2001 and 2002 and lidar-derived data acquired by the National Oceanic and Atmospheric Administration (NOAA) in 2016 and 2017. ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-25 Years From 2001 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-25 Years From 2001 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-25 Years From 2011 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Big Pine Key to Marquesas Key, Florida-25 Years From 2011 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along Key West, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida-25 Years From 2014 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Deerfield Beach to Homestead, Florida—25 Years From 2014 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation for several sites along the Florida Reef Tract, Florida (FL) including the shallow seafloor along the coast of Miami, FL. USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-50 Years From 2001 Based on Historical Rates of Mean Elevation Change

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ...

Info
Projected Seafloor Elevation Along the Florida Reef Tract From Port St. Lucie to Marquesas Key, Florida-50 Years From 2001 Based on Historical Rates of Mean Erosion

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by projecting future regional-scale changes in seafloor elevation along the Florida Reef Tract, Florida (FL). USGS staff used historical bathymetric point data from the 1930's (National Oceanic and Atmospheric Administration (NOAA) Office of Coast Survey, see Yates and others, 2017) and light ...

Info