Ocean waves

A periodic movement of seawater caused by wind, tide, and currents.
This category is also used for water waves.
Subtopics:
Tsunamis (27 items)

Related topics:

116 results listed alphabetically [list by similarity]
ALASKA1964_INUNDATION - Alaska 1964 Estimated Tsunami Inundation Line at Seaside, Oregon

This data set is a polyline shapefile representing the tsunami inundation line for the Alaska 1964 event based on observations and associated information obtained by Tom Horning (1997). The polyline was digitized from a line drawn by Tom Horning on an orthophoto taken in 1997.

Info
ALASKA1964_OBS - Alaska 1964 Tsunami Observations at Seaside, Oregon

This data set is a point shapefile representing observations of inundation and water levels from the Alaska 1964 event obtained by Tom Horning (1997). The geospatial dataset were derived from a spreadsheet provided by Bruce Jaffe.

Info
ALASKA1964_RUNUP - Alaska 1964 Tsunami Runup Heights at Seaside, Oregon (alaska1964_runup.shp)

This data set is a point shapefile representing tsunami inundation runup heights for the Alaska 1964 event based on observations and associated information obtained by Tom Horning (1997). The geospatial data was digitized from a points drawn by Tom Horning on an orthophoto taken in 1997.

Info
Bathymetric Grid for a Wave Exposure Model of Grand Bay, Mississippi

Coastal marshes are highly dynamic and ecologically important ecosystems that are subject to pervasive and often harmful disturbances, including shoreline erosion. Shoreline erosion can result in an overall loss of coastal marsh, particularly in estuaries with moderate- or high-wave energy. Not only can waves be important physical drivers of shoreline change they can also influence shore-proximal vertical accretion through sediment delivery. For these reasons, estimates of wave energy can provide a ...

Info
Climatological wave height, wave period and wave power along coastal areas of the East Coast of the United States and Gulf of Mexico

This U.S. Geological Survey data release provides data on spatial variations in climatological wave parameters (significant wave height, peak wave period, and wave power) for coastal areas along the United States East Coast and Gulf of Mexico. Significant wave height is the average wave height, from crest to trough, of the highest one-third of the waves in a specific time period. Peak wave period is the wave period associated with the most energetic waves in the wave spectrum in a specific time period. Wave ...

Info
Conductivity, temperature and depth time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska

Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, ...

Info
CTD_DATABASE - Cascadia tsunami deposit database

The Cascadia Tsunami Deposit Database contains data on the location and sedimentological properties of tsunami deposits found along the Cascadia margin. Data have been compiled from 52 studies, documenting 59 sites from northern California to Vancouver Island, British Columbia that contain known or potential tsunami deposits. Bibliographical references are provided for all sites included in the database. Cascadia tsunami deposits are usually seen as anomalous sand layers in coastal marsh or lake sediments. ...

Info
Current-velocity time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska

Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, ...

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration alternative for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs without restoration measures for storminess bins (ST1-ST4) and sea level rise scenarios (SL1-SL3).

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 2 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 3 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 4 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 5 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 6 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Final DEMs with restoration alternative 7 that extends Pelican Island simulated with ST2_SL1 and ST3_SL3 scenarios

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Forecast Evolution Model Inputs and Results: Initial DEMs with and without restoration alternatives R2-R7

The model input and output of topography and bathymetry values resulting from forecast simulations of coupled modeling scenarios occurring between 2015 and 2025 at Dauphin Island, Alabama, and described in U.S. Geological Survey (USGS) Open-File Report 2020–1001 (https://doi.org/10.3133/ofr20201001), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry, refer to Mickey and others (2020).

Info
Dauphin Island Decadal Hindcast Model Inputs and Results: Final DEM

The model output of bathymetry and topography values resulting from a deterministic simulation at Dauphin Island, Alabama, as described in USGS Open-File Report 2019–1139 (https://doi.org/10.3133/ofr20191139), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020).

Info
Dauphin Island Decadal Hindcast Model Inputs and Results: Initial DEM

The model input for the bathymetry and topography values resulting from a deterministic simulation at Dauphin Island, Alabama, as described in U.S. Geological Survey (USGS) Open-File Report 2019-1139 (https://doi.org/10.3133/ofr20191139), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to Mickey and others (2020).

Info
F4100300001D.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Gearhart

FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment. FIRMs also provide a basis for establishing flood insurance coverage premium rates offered through the National Flood Insurance Program (NFIP). These maps were published as paper documents, which have been scanned into image files (TIFF) as part of FEMA's FIRM modernization process. This is one of three scanned maps for the Seaside-Gearhart ...

Info
F4100320001.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Seaside 1

FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment. FIRMs also provide a basis for establishing flood insurance coverage premium rates offered through the National Flood Insurance Program (NFIP). These maps were published as paper documents, which have been scanned into image files (TIFF) as part of FEMA's FIRM modernization process. This is one of three scanned maps for the Seaside-Gearhart ...

Info
F4100320002C.TIF - FEMA Flood Insurance Rate Maps for the Seaside-Gearhart, Oregon, Area: Seaside 2

FEMA's Flood Insurance Rate Map (FIRM) depicts the spatial extent of Special Flood Hazard Areas (SFHAs) and other thematic features related to flood risk assessment. FIRMs also provide a basis for establishing flood insurance coverage premium rates offered through the National Flood Insurance Program (NFIP). These maps were published as paper documents, which have been scanned into image files (TIFF) as part of FEMA's FIRM modernization process. This is one of three scanned maps for the Seaside-Gearhart ...

Info
Ground temperature time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska

Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, ...

Info
hawaii_tsu - Tsunami Hazard Intensity Level in the coastal zone of Hawaii, Hawaii

Tsunami Hazard Intensity Level in the coastal zone of Hawaii, Hawaii

Info
hawaii_wav - High Wave Hazard Intensity Level in the coastal zone of Hawaii, Hawaii

High Wave Hazard Intensity Level in the coastal zone of Hawaii, Hawaii

Info
Hindcast (1981-2010) and projected (2011-2100) coastal storm events, including duration, wave conditions, and storm surges in the vicinity of Arey Lagoon and Barter Island, Alaska

Numerically modeled ocean storm conditions of hindcast (1981-2010) and projected (2011-2100) storm events in the nearshore region of Arey Lagoon, Alaska. Storms were identified from time-series of dynamically downscaled deep-water wave conditions using WaveWatch3 (WW3) and nearshore storm surges using the Deltares Delft3D model. A storm was defined as having offshore water wave heights >= 2 meters (m) and storm surges >=0 m. The data in this file provide a listing of individual storm dates, storm duration, ...

Info
Hydrodynamic and sediment transport data from San Pablo Bay (northern San Francisco Bay), 2011-2012

The U.S. Geological Survey Pacific Coastal and Marine Science Center collected data to investigate sediment dynamics in the shallows of San Pablo Bay in two deployments: February to March 2011 (ITX11) and May to June 2012 (ITX12). This data release includes time-series data and grain-size distributions from sediment grabs collected during the deployments. During each deployment, time series of current velocity, water depth, and turbidity were collected at several stations in the shallows, and one station in ...

Info
Idealized Antecedent Topography Sensitivity Study: Initial Baseline and Modified Profiles Modeled with XBeach

Antecedent topography is an important aspect of coastal morphology when studying and forecasting coastal change hazards. The uncertainty in morphologic response of storm-impact models and their use in short-term hazard forecasting and decadal forecasting is important to account for when considering a coupled model framework. Mickey and others (2020) provided a methodology to investigate uncertainty of profile response within the storm impact model, XBeach, related to varying antecedent topographies. A ...

Info
kauai_tsu - Tsunami Hazard Intensity Level in the coastal zone of Kauai, Hawaii

Tsunami Hazard Intensity Level in the coastal zone of Kauai, Hawaii

Info
kauai_wav - High Wave Hazard Intensity Level in the coastal zone of Kauai, Hawaii

High Wave Hazard Intensity Level in the coastal zone of Kauai, Hawaii

Info
lanai_tsu - Tsunami Hazard Intensity Level in the coastal zone of Lanai, Hawaii

Tsunami Hazard Intensity Level in the coastal zone of Lanai, Hawaii

Info
lanai_wav - High Wave Hazard Intensity Level in the coastal zone of Lanai, Hawaii

High Wave Hazard Intensity Level in the coastal zone of Lanai, Hawaii

Info
maui_tsu - Tsunami Hazard Intensity Level in the coastal zone of Maui, Hawaii

Tsunami Hazard Intensity Level in the coastal zone of Maui, Hawaii

Info
maui_wav - High Wave Hazard Intensity Level in the coastal zone of Maui, Hawaii

High Wave Hazard Intensity Level in the coastal zone of Maui, Hawaii

Info
Modeled and Observed Weekly Mean Wave Height for Validation of a Wave Exposure Model of Grand Bay, Mississippi

Coastal marshes are highly dynamic and ecologically important ecosystems that are subject to pervasive and often harmful disturbances, including shoreline erosion. Shoreline erosion can result in an overall loss of coastal marsh, particularly in estuaries with moderate- or high-wave energy. Not only can waves be important physical drivers of shoreline change, they can also influence shore-proximal vertical accretion through sediment delivery. For these reason, estimates of wave energy can provide a ...

Info
Modeled surface waves from winds in South San Francisco Bay

A model application using the phase-averaged wave model SWAN was developed to simulate wind waves in South San Francisco Bay, California, between May 30, 2021, and May 19, 2022. This data release describes the development of the model application, provides input files suitable for running the model using Delft3D version 4.04.01, and includes output from the model simulations in netCDF format.

Info
molo_tsu - Tsunami Hazard Intensity Level in the coastal zone of Molokai, Hawaii

Tsunami Hazard Intensity Level in the coastal zone of Molokai, Hawaii

Info
molo_wav - High Wave Hazard Intensity Level in the coastal zone of Molokai, Hawaii

High Wave Hazard Intensity Level in the coastal zone of Molokai, Hawaii

Info
Multichannel seismic-reflection data acquired off the coast of southern California - Part A 1997, 1998, 1999, and 2000

Multichannel seismic-reflection (MCS) data were collected in the California Continental Borderland as part of southern California Earthquake Hazards Task. Five data acquisition cruises conducted over a six-year span collected MCS data from offshore Santa Barbara, California south to the Exclusive Economic Zone boundary with Mexico. The primary mission was to map late Quaternary deformation as well as identify and characterize fault zones that have potential to impact high population areas of southern ...

Info
Near-bed velocity measurements in Monterey Bay during arrival of the 2010 Chile Tsunami

On February 27, 2010, a tsunami originating near Chile arrived in Monterey Bay, California. This data release comprises two hours of pressure and near-bed velocity data spanning the largest tsunami waves. At the time, the U.S. Geological Survey Pacific Coastal and Marine Science Center had a remotely-controlled instrumented platform deployed adjacent to the Santa Cruz Municipal Wharf (mean depth 9 m) for collecting hydrodynamic and sediment transport data. In anticipation of the arrival of the tsunami, ...

Info
Nearshore parametric wave setup future projections (2020-2050) for the North and South Carolina coasts

This dataset presents alongshore wave setup timeseries for the North and South Carolina coastlines. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to cross-shore transects spaced at ...

Info
Nearshore parametric wave setup future projections (2020-2050) for the U.S. Atlantic coast

This dataset presents alongshore wave setup timeseries for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to ...

Info
Nearshore parametric wave setup hindcast data (1979-2019) for the North and South Carolina coasts

This dataset presents alongshore wave setup timeseries for the North and South Carolina coastlines. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to cross-shore transects spaced at ...

Info
Nearshore parametric wave setup hindcast data (1979-2019) for the U.S. Atlantic coast

This dataset presents alongshore wave setup timeseries for three states (Virginia, Georgia, and Florida) along the U.S. Atlantic coast. Wave setup was modelled using parameterization for open coast sandy beaches as presented in Stockdon and others (2006). The parameterization relates onshore wave setup to offshore wave conditions and beach characteristics. Wave conditions were extracted at approximately the 10 m depth contour and reverse shoaled to the deep-water condition. These data were then matched to ...

Info
oahu_tsu - Tsunami Hazard Intensity Level in the coastal zone of Oahu, Hawaii

Tsunami Hazard Intensity Level in the coastal zone of Oahu, Hawaii

Info
oahu_wav - High Wave Hazard Intensity Level in the coastal zone of Oahu, Hawaii

High Wave Hazard Intensity Level in the coastal zone of Oahu, Hawaii

Info
Observations of tsunami and runup heights in Santa Cruz Harbor and surrounding beaches from the 2022 Hunga Tonga-Hunga Ha'apai tsunami

The 14 January 2022 eruption of Tonga Hunga-Tonga Ha'apai volcano generated tsunamis that impacted the west coast of the United States on the morning of 15 January 2022. This data release presents runup heights and tsunami heights collected by the U.S. Geological Survey (USGS) and the California Geological Survey (CGS) during surveys at the Santa Cruz Harbor and beaches in Santa Cruz County, California, on January 19th and 20th, 2022 (USGS Field Activity 2022-607-FA). Evidence of tsunami inundation included ...

Info
Oceanographic measurements obtained offshore of the Elwha River delta in coordination with the Elwha River Restoration Project, Washington, USA, 2010-2014

Time-series data of velocity, pressure, turbidity, conductivity, and temperature were collected near the mouth of the Elwha River, Washington, USA, from December 2010 through October 2014, for the Department of Interior’s Elwha River Restoration project. As part of this project, the U.S. Geological Survey studied the effects of renewed sediment supplies on the coastal ecosystems before, during, and following the removal of two dams, Elwha and Glines Canyon, from the Elwha River. Removal of the dams ...

Info
Ocean wave time-series data along the Alaska coast simulated with a global-scale numerical wave model under the influence of CMIP6 wind and sea ice fields

This dataset presents projected hourly time-series of wave heights, wave periods, incident wave directions and directional spreading at distinct points along the open coast of Alaska for the years 2020 through 2050. The projections were developed by running the National Oceanic and Atmospheric Administration’s (NOAA’s) WAVEWATCHIII model. Wind and sea ice fields from seven different Global Climate or General Circulation Models from the CMIP6 High-Resolution Model Intercomparison Project were used to ...

Info
Ocean wave time-series data along the U.S. Atlantic, Gulf of Mexico, and Puerto Rico coasts simulated with a global-scale numerical wave model under the influence of CMIP6 wind and sea ice fields

This dataset presents projected hourly time-series of wave heights, wave periods, incident wave directions, and directional spreading at distinct points along the U.S. Atlantic, Gulf of Mexico, and Puerto Rico coasts for the years 2020 through 2050. The projections were developed by running the National Oceanic and Atmospheric Administration’s (NOAA’s) WAVEWATCHIII model. Wind and sea ice fields from seven different Global Climate or General Circulation Models from the CMIP6 High-Resolution Model ...

Info
Ocean wave time-series data along the U.S. West Coast and surrounding Hawai’i simulated with a global-scale numerical wave model under the influence of CMIP6 wind and sea ice fields

This dataset presents projected hourly time-series of wave heights, wave periods, incident wave directions, and directional spreading at distinct points along the U.S. West Coast and surrounding Hawai’i for the years 2020 through 2050. The projections were developed by running the National Oceanic and Atmospheric Administration’s (NOAA’s) WAVEWATCHIII model. Wind and sea-ice fields from seven different Global Climate or General Circulation Models from the CMIP6 High-Resolution Model Intercomparison ...

Info
Ocean wave time-series data surrounding Hawai’i and U.S. territories in the Pacific Ocean simulated with a global-scale numerical wave model under the influence of CMIP6 wind and sea ice fields

This dataset presents projected hourly time-series of wave heights, wave periods, incident wave directions, and directional spreading at distinct points surrounding Hawai’i and U.S. territories in the Pacific Ocean, for the years 2020 through 2050. The projections were developed by running the National Oceanic and Atmospheric Administration’s (NOAA’s) WAVEWATCHIII model. Wind and sea ice fields from seven different Global Climate or General Circulation Models from the CMIP6 High-Resolution Model ...

Info
Ofu, American Samoa, wave and water level data, 2020

Time series data of wave height and water surface elevation were acquired for 399 days at four locations on the southern reef of Ofu, American Samoa, in support of a study on submarine groundwater dynamics on this reef within the National Park of American Samoa’s Ofu Unit. The relative placement of sensors on the reef were as follows: OFU20E03 – mid reef at East site; OFU20E04 – inner reef at East site; OFU20W03 – mid reef at West site; OFU20W04 – inner reef at West site.

Info
PROBZONES - Generalized 100- and 500-year flood zones for Seaside, Oregon, determined by probabilistic tsunami hazard analysis

PROBZONES is a generalized polygon layer outlining areas in the Seaside-Gearhart, Oregon, area subject to the 100-year and 500-year flood as determined by probabilistic tsunami hazard analysis (PTHA).

Info
Projected open water seasons using four global climate models for 2011 to 2100 fronting Arey Lagoon and Barter Island, Alaska

Estimated start date, end date, and duration of open water at a location fronting Barter Island, Alaska derived from projected sea ice extents in 4 global climate models: MIROC5, BCC-CSM1.1, INM-CM4, and GFDL-ESM2M. Starting and ending dates are when sea ice retreated or is projected to retreat offshore by more than 80 kilometers fronting Barter Island. Projected coastal storm events were derived by downscaling atmospheric conditions of the RCP 4.5 climate scenario with the MIROC5 global climate model (GCM) ...

Info
Radiocarbon data from coastal wetlands on the Hawaiian islands of Kaua'i, O'ahu, and Hawai'i

This portion of the data release presents radiocarbon age data from 66 samples collected from Anahola Valley (Kaua'i), Kahana Valley (O'ahu), and Pololu Valley (Hawai'i). Sample ages were determined by the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. The data are provided in a comma-delimited spreadsheet (.csv).

Info
RBR sensor pressure and tidal data for two sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from April 2019 through January 2020

To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ...

Info
RBR sensor wave data for two sites in the coastal marsh at Grand Bay National Estuarine Research Reserve, Mississippi, from April 2019 through January 2020

To better understand sediment deposition in marsh environments, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) selected four study sites (Sites 5, 6, 7, and 8) along the Point Aux Chenes Bay shoreline of the Grand Bay National Estuarine Research Reserve (GNDNERR), Mississippi. These datasets were collected to serve as baseline data prior to the installation of a living shoreline (a subtidal sill). Each site consisted of five plots located along a ...

Info
sand_tsu - Tsunami Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii

Tsunami Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii

Info
sand_wav - High Wave Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii

High Wave Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii

Info
Sea-surface water temperature time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska

Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, ...

Info
Sediment grain-size distributions of three carbonate sand layers in Anahola Valley, Kaua'i, Hawai'i (ver. 2.0, July 2023)

This portion of the data release presents sediment grain-size data from samples collected from Anahola Valley, Kaua`i, Hawai`i in November, 2015 (USGS Field Activity 2015-671-FA). 63 sand and mud samples were taken from sediment cores that were collected using a Russian corer (a hand-held, side-filling peat auger) from two site locations. Site locations were determined using a hand-held global navigation satellite system, GNSS. The grain-size distributions of samples were determined using standard ...

Info
Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami elevation model of Half Moon Bay, California

A high-resolution raster dataset of simulated maximum tsunami elevations in Half Moon Bay, California, based on the Science Application for Risk Reduction (SAFRR) tsunami scenario

Info
Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami elevation model of Oakland/Alameda, California

A high-resolution raster dataset of simulated maximum tsunami elevations in the Oakland and Alameda area of California based on the Science Application for Risk Reduction (SAFRR) tsunami scenario

Info
Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami velocity model of Half Moon Bay, California

A high-resolution raster dataset of simulated maximum tsunami velocities in Half Moon Bay, California, based on the Science Application for Risk Reduction (SAFRR) tsunami scenario.

Info
Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami velocity model of Oakland/Alameda, California

A high-resolution raster dataset of simulated maximum tsunami velocities in the Oakland and Alameda area of California based on the Science Application for Risk Reduction (SAFRR) tsunami scenario.

Info
Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami velocity model of Santa Cruz, California

A high-resolution raster dataset of simulated maximum tsunami velocities in Santa Cruz, California, based on the Science Application for Risk Reduction (SAFRR) tsunami scenario.

Info
Summary statistics for the central Beaufort Sea coast, Alaska

A nested spectral wave model (Simulating Waves WAves Nearshore [SWAN]; Booij and others, 1999) was deployed for the central Beaufort Sea coast of Alaska to simulate waves for the period from 1979 to 2019. Results in the form of spatial summary statistics, describing wave parameters, wind speed and sea-ice area cover for the intermediate grid (see Overview Image on main page of data release), are provided. Further information can be found in Nederhoff and others (2021).

Info
The Massachusetts Bay Internal Wave Experiment, August 1998: Data Report

This data report presents oceanographic observations made in Massachusetts Bay in August 1998 as part of the Massachusetts Bay Internal Wave Experiment (MBIWE98). MBIWE98 was carried out to characterize large-amplitude internal waves in Massachusetts Bay and to investigate the possible resuspension and transport of bottom sediments caused by these waves. This data report presents a description of the field program, an overview of the data through summary plots and statistics, and the time-series data in ...

Info
TIDESTATIONS - Pacific Northwest Water-Level Stations and Tidal Datum Distributions

This geospatial data set depicts the locations of National Ocean Service water-level stations to determine tidal datum distributions with the Seaside, Oregon, region.

Info
Time series data of oceanographic conditions from La Parguera, Puerto Rico, 2017-2018 Coral Reef Circulation and Sediment Dynamics Experiment

Time-series data of water surface elevation, waves, currents, temperature, and salinity collected between 17 May 2017 and 17 Jan 2018 off the southwest coast of Puerto Rico in support of a study on circulation and sediment transport dynamics over coral reefs. The data are available in NetCDF format, grouped together in zip files by instrument site location. A README.txt file details the files contained within each zip, including the file names, type of data collected, instrument that collected the data, ...

Info
Time-series data of water surface elevation, waves, currents, temperature, and turbidity collected between November 2017 and March 2018 off the west coast of Maui, Hawaii, USA

Time-series data of water surface elevation, waves, currents, temperature, and turbidity collected between November 2017 and March 2018 off the west coast of Maui, Hawaii, USA. The data are available in NetCDF format, grouped together in zip files by instrument site location. These data support a modeling study on the effects of potential watershed restoration on decreasing sediment loads to adjacent reefs (Storlazzi and others, 2023).

Info
Time-series data on currents, waves, and turbidity off Santa Cruz, CA, 2014-2015

Time series data of water surface elevation, wave height, currents, and turbidity were acquired during the winters of 2014-2015 and 2015-2016 in support of a study on the morphological change of rippled scour depressions off Santa Cruz, CA. One set of instruments (SCW) was mounted at the end of Santa Cruz Municipal Wharf during both winters. Another set of instruments (M1T) was deployed offshore in Monterey Bay each winter; the two offshore winter locations were different, but each were about 0.5 km ...

Info
Time series for the central Beaufort Sea coast, Alaska

Time series output from a spectral wave model (Simulating Waves WAves Nearshore [SWAN]; Booij and others 1999), implemented for the central Beaufort Sea coast of Alaska from 1979 to 2019, are provided. The variables include significant wave heights, mean wave periods, mean wave directions, wave steepness, and orbital velocities. Additionally, water depths, x (east-west) and y (north-south) components of the wind, and sea ice concentrations are provided. Further information can be found in Nederhoff and ...

Info
Time-series measurements of oceanographic and water quality data collected at Thompsons Beach and Stone Harbor, New Jersey, USA, September 2018 to September 2019 and March 2022 to May 2023

In October 2012, Hurricane Sandy made landfall in the Northeastern U.S., affecting ecosystems and communities of 12 states. In response, the National Fish and Wildlife Federation (NFWF) and the U.S. Department of Interior (DOI) implemented the Hurricane Sandy Coastal Resiliency Program, which funded various projects designed to reduce future impacts of coastal hazards. These projects included marsh, beach, and dune restoration, aquatic connectivity, and living shoreline installation, among others. To ...

Info
Time-series measurements of oceanographic and water quality data collected in the Herring River, Wellfleet, Massachusetts, USA, November 2018 to November 2019

Restoration in the tidally restricted Herring River Estuary in Wellfleet, MA benefits from understanding pre-restoration sediment transport conditions. Submerged sensors were deployed at four sites landward and seaward of the Herring River restriction to measure water velocity, water quality, water level, waves, and seabed elevation. These data will be used to evaluate sediment dynamics and geomorphic change and inform marsh modeling efforts over tidal and seasonal timescales.

Info
Time-series oceanographic data from the National Park of American Samoa, Tutuila, American Samoa, 2015

Time-series data of water surface elevation, wave height, and water column currents, temperature, and salinity were acquired for 150 days between 13 April and 14 July 2015 off the north coast of the island of Tutuila, American Samoa in support of a study on the coastal circulation patterns within and in the vicinity of the National Park of American Samoa.

Info
TSUNAMI_DEPOSITS - Tsunami Deposits at Seaside, Oregon

This data set is a point shapefile representing tsunami deposits within the Seaside, Oregon region obtained by Brooke Fiedorowicz and Curt Peterson in 1997 and Bruce Jaffe, Curt Peterson, and Robert Peters in 2004. The geospatial dataset were derived from spreadsheets provided by Bruce Jaffe.

Info
Water-level, wind-wave, and suspended-sediment concentration (SSC) time-series data from Liberty Island (station LWA), Sacramento-San Joaquin Delta, California, 2015-2017

Water depth and turbidity time-series data were collected in Little Holland Tract (LHT) from 2015 to 2017. Depth (from pressure) was measured in high-frequency (6 or 8 Hz) bursts. Burst means represent tidal stage, and burst data can be used to determine wave height and period. The turbidity sensors were calibrated to suspended-sediment concentration measured in water samples collected on site. The calibration and fit parameters for all of the turbidity sensors used in the study are tabulated and provided ...

Info
Water-level, wind-wave, and suspended-sediment concentration (SSC) time-series data from Little Holland Tract (station HWA), Sacramento-San Joaquin Delta, California, 2015

Water depth and turbidity time-series data were collected in Little Holland Tract (LHT) in 2015. Depth (from pressure) was measured in high-frequency (6 or 8 Hz) bursts. Burst means represent tidal stage, and burst data can be used to determine wave height and period. The turbidity sensors were calibrated to suspended-sediment concentration measured in water samples collected on site. The calibration and fit parameters for all of the turbidity sensors used in the study are tabulated and provided with the ...

Info
Water-level, wind-wave, and suspended-sediment concentration (SSC) time-series data from Little Holland Tract (station HWC), Sacramento-San Joaquin Delta, California, 2015-2017

Water depth and turbidity time-series data were collected in Little Holland Tract (LHT) from 2015 to 2017. Depth (from pressure) was measured in high-frequency (6 or 8 Hz) bursts. Burst means represent tidal stage, and burst data can be used to determine wave height and period. The turbidity sensors were calibrated to suspended-sediment concentration measured in water samples collected on site. The calibration and fit parameters for all of the turbidity sensors used in the study are tabulated and provided ...

Info
Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Liberty Island Conservation Bank (station WVA), Sacramento-San Joaquin Delta, California, 2017

Water depth, turbidity, and current velocity time-series data were collected in Liberty Island Conservation Bank (WVA) in 2017. The turbidity sensors were not calibrated to suspended-sediment concentration at this location. Typically, each zip folder for a deployment period contains two data files from a velocimeter and one data file from a CTD, each of which include data from an optical backscatter sensor.

Info
Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Liberty Island (station LVB), Sacramento-San Joaquin Delta, California, 2015-2017

Water depth, turbidity, and current velocity time-series data were collected in Liberty Island from 2015 to 2017. Depth (from pressure) and velocity were measured in high-frequency (8 Hz) bursts. Burst means represent tidal stage and currents, and burst data can be used to determine wave height, period, and direction, and wave-orbital velocity. The turbidity sensors were calibrated to suspended-sediment concentration measured in water samples collected on site. The calibration and fit parameters for all of ...

Info
Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Little Holland Tract (station HVB), Sacramento-San Joaquin Delta, California, 2015-2017

Water depth, turbidity, and current velocity time-series data were collected in Little Holland Tract from 2015 to 2017. Depth (from pressure) and velocity were measured in high-frequency (8 Hz) bursts. Burst means represent tidal stage and currents, and burst data can be used to determine wave height, period, direction, and wave-orbital velocity. The turbidity sensors were calibrated to suspended-sediment concentration measured in water samples collected on site. The calibration and fit parameters for all ...

Info
Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Little Holland Tract (station HVD), Sacramento-San Joaquin Delta, California, 2016

Water depth, turbidity, and current velocity time-series data were collected in Little Holland Tract in 2016. Depth (from pressure) and velocity were measured in high-frequency (8 Hz) bursts. Burst means represent tidal stage and currents, and burst data can be used to determine wave height, period, and direction, and wave-orbital velocity. The turbidity sensors were calibrated to suspended-sediment concentration measured in water samples collected on site. The calibration and fit parameters for all of the ...

Info
Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Little Holland Tract (station HVE), Sacramento-San Joaquin Delta, California, 2016

Water depth, turbidity, and current velocity time-series data were collected in Little Holland Tract in 2016. Depth (from pressure) and velocity were measured in high-frequency (8 Hz) bursts. Burst means represent tidal stage and currents, and burst data can be used to determine wave height, period, direction, and wave-orbital velocity. The turbidity sensors were calibrated to suspended-sediment concentration measured in water samples collected on site. The calibration and fit parameters for all of the ...

Info
Water pressure/depth and turbidity time-series data from CHC13 Marsh and mudflat stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth and turbidity time-series data from CHC14 Marsh and mudflat stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth and turbidity time-series data from CHC16 Marsh and mudflat stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from CHC13 Bay channel station in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from CHC13 Bay shallows stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from CHC13 Tidal creek stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from CHC14 Bay channel station in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from CHC14 Bay shallows stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from CHC14 Tidal creek stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from CHC16 Bay channel stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from CHC16 Bay shallows stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from CHC16 Tidal creek stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from SPA14 Bay shallows stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from SPB14 Bay shallows stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from SPC14 Bay shallows stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Water pressure/depth, velocity, and turbidity time-series data from SPD15 Bay shallows stations in San Pablo Bay and China Camp Marsh, California

Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay ...

Info
Wave and wind projections along United States coasts

Coastal managers and ocean engineers rely heavily on projected average and extreme wave conditions for planning and design purposes, but when working on a local or regional scale, are faced with much uncertainty as changes in the global climate impart spatially varying trends. Future storm conditions are likely to evolve in a fashion that is unlike past conditions and is ultimately dependent on the complicated interaction between the Earth’s atmosphere and ocean systems. Despite a lack of available data ...

Info
Wave model grids and bathymetry for the central Beaufort Sea coast, Alaska

The required grid and bathymetry files to run a nested spectral wave model (Simulating Waves WAves Nearshore [SWAN]; Booij and others, 1999) for the central Beaufort Sea coast of Alaska are provided. A three-level SWAN nesting grid with grid resolutions of 5000 meters, 1000 meters, and 200 meters for the overall, intermediate and detail grids, respectively (see included Browse Graphic) has been developed. For this purpose, available local bathymetry (Coastal Frontiers Corporation, 2014; Kasper and others, ...

Info
Wave model input files

Provided here are the required input files to run a standalone wave model (Simulating Waves WAves Nearshore [SWAN]; Booij and others, 1999) on eleven model domains from the Canada-U.S. border to Norton Sound, Alaska to create a downscaled wave database (DWDB). The DWDB, in turn, can be used to reconstruct hindcast (1979-2019) and projected (2020-2050) time series at each point in the model domains see Engelstad and others, 2023 for further information on reconstruction of time-series. The model forcing ...

Info
Wave observations from bottom-mounted pressure sensors in Bellingham Bay, Washington from Dec 2017 to Jan 2018

RBRduo pressure and temperature sensors (early 2015 generation), mounted on aluminum frames, were moored in shallow (< 6 m) water depths in Bellingham Bay, Washington, to capture wave heights and periods. Continuous pressure fluctuations are transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals.

Info
Wave observations from bottom-mounted pressure sensors in Skagit Bay, Washington from Dec 2017 to Feb 2018

RBRduo pressure and temperature sensors (early 2015 generation), mounted on aluminum frames, were moored in shallow (< 6 m) water depths in Skagit Bay to capture wave heights and periods. Continuous pressure fluctuations are transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals.

Info
Wave power on marsh units in Connecticut salt marshes

This data release contains coastal wetland synthesis products for the state of Connecticut. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, wave power, and exposure potential to environmental health stressors are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change ...

Info
Wave thrust values at point locations along the shorelines of Chesapeake Bay, Maryland and Virginia

This product provides spatial variations in wave thrust along shorelines in the Chesapeake Bay. Natural features of relevance along the Bay coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features ...

Info
Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island

This product provides spatial variations in wave thrust along shorelines in Massachusetts and Rhode Island. Natural features of relevance along the State coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the ...

Info
Wave time-series data collected in 2009 offshore of Wainwright, Alaska

Time series wave data were collected offshore of Wainwright, Alaska, from August 24 to October 02, 2009 (UTC). Measurements were collected using a 1 MHz NortekTM AWAC acoustic Doppler current profiler mounted on a frame in approximately 10 m of water. The instrument was mounted to the frame at 0.55 m off the bottom of the seafloor, and collected data in 8.53-minute bursts at 2 Hz. Significant wave heights (Hs), maximum significant wave heights (Hmax), peak and mean wave periods (Tp and Tm, respectively), ...

Info
Wave time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska

Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, ...

Info
Wave time-series: ERA5 hindcast period 1979-2019 - U.S. Canada border to Bering Strait

Modeled wave time series data are presented for the hindcast period of 1979 to 2019 from the U.S. Canada border to the Bering Strait close to the 5 and 10 m isobaths. Outputs include three-hourly nearshore significant wave heights (Hs), mean wave periods (Tm) and mean wave directions (Dm) for 6424 locations. Data are available as netCDF files and are packaged for the Beaufort Sea region from the U.S. Canada border to Nuvuk (Point Barrow), and for the Chukchi Sea region from Nuvuk to Kotzebue Sound and from ...

Info
Weekly Wind Speed and Frequency for a Wave Exposure Model of Grand Bay, Mississippi

Coastal marshes are highly dynamic and ecologically important ecosystems that are subject to pervasive and often harmful disturbances, including shoreline erosion. Shoreline erosion can result in an overall loss of coastal marsh, particularly in estuaries with moderate- or high-wave energy. Not only can waves be important physical drivers of shoreline change, they can also influence shore-proximal vertical accretion through sediment delivery. For these reason, estimates of wave energy can provide a ...

Info