Metadata: Identification_Information: Citation: Citation_Information: Originator: Marci E. Marot Originator: Christopher G. Smith Originator: Terrence A. McCloskey Originator: Stanley D. Locker Originator: Nicole S. Khan Originator: Kathryn E.L. Smith Publication_Date: 20200428 Title: Sedimentary Data From Grand Bay, Alabama/Mississippi, 2014-2016 (ver. 1.1, April 2020) Edition: 2.0 Geospatial_Data_Presentation_Form: Multimedia presentation Series_Information: Series_Name: U.S. Geological Survey Data Release Issue_Identification: doi:10.5066/P9FO8R3Y Publication_Information: Publication_Place: St. Petersburg, FL Publisher: U.S. Geological Survey Online_Linkage: https://doi.org/10.5066/P9FO8R3Y Description: Abstract: This data release is an archive of sedimentary field and laboratory analytical data collected in Grand Bay, Alabama/Mississippi from 2014-2016 by scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS SPCMSC). This work, a component of the SPCMSC’s Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, provides the necessary data to quantify sedimentation rates and sediment sources for the marsh and estuary. The SSIEES project objective is to evaluate the exchange of sediment material between the marsh and estuary due to extreme storms and sea-level rise. Micropaleontological data from select cores and surface samples are available in Haller and others (2018, https://doi.org/10.5066/F7MC8X5F, https://doi.org/10.5066/F7445KSG). Single-beam bathymetry of Grand Bay proper and multi-beam bathymetry of several marsh-edge eroding shorelines are reported in Dewitt and others (2017, https://doi.org/10.3133/ds1070) and Stalk and others (2018, https://doi.org/10.5066/F7MC8Z9N), respectively. Subbottom and sidescan sonar data for Grand Bay proper are reported in Locker and others (2018, https://doi.org/10.5066/P9374DKQ). This publication includes data for the sediment cores and surface sediments taken in Grand Bay marsh and estuary during five sampling periods of this study, which were designated as USGS Field Activity Numbers (FAN) 2014-323-FA (project ID 14CCT01), 2015-315-FA (project ID 15CCT02), 2016-331-FA (project ID 16CCT03), 2016-348-FA (project ID 16CCT04), and 2016-358-FA (project ID 16CCT07). Data products include: GPS-derived site locations and elevations; core photographs, logs, and x-radiographs; lithologic, radiochemical, elemental composition, stable isotopic composition, and radiocarbon data; and Federal Geographic Data Committee (FGDC) metadata. Purpose: Dissemination of field-collected and laboratory analytical data of sediment from push cores collected in Grand Bay marsh, Alabama/Mississippi in October 2016 (USGS FAN 2016-358-FA, project ID 16CCT07). Supplemental_Information: To ensure that USGS St. Petersburg data management protocols were followed, this survey was assigned the following USGS field activity number (FAN): 2016-358-FA (https://cmgds.marine.usgs.gov/fan_info.php?fan=2016-358-FA). Funding for this survey was provided by the USGS Coastal and Marine Geology Program’s SSIEES project (https://coastal.er.usgs.gov/ssiees/). The authors would like to acknowledge the assistance of Chelsea Stalk in field data collection, sediment coring, and post-processing of the differential Global Positioning System (DGPS) data. The authors also acknowledge Max Tuten, Cheyenne Everhart, Elsie McBride, Craig Felson, and Ashlyn Spector for their assistance with laboratory sample analysis. We would also like to thank Alisha Ellis for pre-release commentary and peer review of this report. Time_Period_of_Content: Time_Period_Information: Range_of_Dates/Times: Beginning_Date: 20161021 Ending_Date: 20161022 Currentness_Reference: ground condition Status: Progress: Complete Maintenance_and_Update_Frequency: None planned Spatial_Domain: Bounding_Coordinates: West_Bounding_Coordinate: -88.41242 East_Bounding_Coordinate: -88.39657 North_Bounding_Coordinate: 30.38365 South_Bounding_Coordinate: 30.37594 Keywords: Theme: Theme_Keyword_Thesaurus: USGS Metadata Identifier Theme_Keyword: USGS:a4ee6866-f4b7-429f-9490-87d02f141c15 Theme: Theme_Keyword_Thesaurus: ISO 19115 Topic Category Theme_Keyword: geoscientificInformation Theme_Keyword: location Theme_Keyword: elevation Theme_Keyword: biota Theme: Theme_Keyword_Thesaurus: USGS Thesaurus Theme_Keyword: geology Theme_Keyword: unconsolidated deposits Theme_Keyword: push coring Theme_Keyword: GPS measurement Theme_Keyword: core analysis Theme_Keyword: bulk density Theme_Keyword: grain-size analysis Theme_Keyword: radiometric dating Theme: Theme_Keyword_Thesaurus: None Theme_Keyword: marshes Theme_Keyword: sediment Theme_Keyword: GRADISTAT Theme_Keyword: loss on ignition Theme_Keyword: radiochemistry Theme_Keyword: gamma spectroscopy Theme_Keyword: U.S. Geological Survey Theme_Keyword: USGS Theme_Keyword: St. Petersburg Coastal and Marine Science Center Place: Place_Keyword_Thesaurus: Geographic Names Information System (GNIS) Place_Keyword: Alabama Place_Keyword: Mississippi Place_Keyword: Grand Bay Access_Constraints: None Use_Constraints: The U.S. Geological Survey requests that it be acknowledged as the originator of this dataset in any future products or research derived from these data. Point_of_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: USA Contact_Voice_Telephone: 727-502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Data_Set_Credit: U.S. Geological Survey, Coastal and Marine Geology Program, St. Petersburg Coastal and Marine Science Center Native_Data_Set_Environment: Microsoft Windows 7 Enterprise Service Pack 1; Microsoft Excel Version 2010 Cross_Reference: Citation_Information: Originator: DeWitt, N.T., Stalk, C.A., Smith, C.G., Locker, S.D., Fredericks, J.J., McCloskey, T.A., and Wheaton, C.J. Publication_Date: 2017 Title: Single-beam bathymetry data collected in 2015 from Grand Bay, Alabama-Mississippi Series_Information: Series_Name: U.S. Geological Survey Data Series Issue_Identification: 1070 Online_Linkage: https://doi.org/10.3133/ds1070 Cross_Reference: Citation_Information: Originator: Stalk, C.A., Fredericks, J.J., Locker, S.D., and Carlson, C.S. Publication_Date: 2018 Title: Multibeam bathymetry data collected in 2016 from Grand Bay Alabama/Mississippi Series_Information: Series_Name: U.S. Geological Survey data release Issue_Identification: doi.org/10.5066/F7MC8Z9N Online_Linkage: https://doi.org/10.5066/F7MC8Z9N Cross_Reference: Citation_Information: Originator: Locker, S.D., Forde, A.S., and Smith, C.G. Publication_Date: 2018 Title: Subbottom and sidescan sonar data acquired in 2015 from Grand Bay, Mississippi and Alabama Series_Information: Series_Name: U.S. Geological Survey data release Issue_Identification: doi.org/10.5066/P9374DKQ Online_Linkage: https://doi.org/10.5066/P9374DKQ Cross_Reference: Citation_Information: Originator: Haller, Christian, Osterman, L.E., Smith, C.G., McCloskey, T.A., Marot, M.E., Ellis, A.M, and Adams, C.S. Publication_Date: 2018 Title: Benthic foraminiferal data from the eastern Mississippi Sound salt marshes and estuaries Series_Information: Series_Name: U.S. Geological Survey data release Issue_Identification: doi.org/10.5066/F7MC8X5F Online_Linkage: https://doi.org/10.5066/F7MC8X5F Cross_Reference: Citation_Information: Originator: Haller, Christian, Smith, C.G., McCloskey, T.A., Marot, M.E., Ellis, A.M., and Adams, C.S. Publication_Date: 2018 Title: Benthic foraminiferal data from sedimentary cores collected in the Grand Bay (Mississippi) and Dauphin Island (Alabama) salt marshes Series_Information: Series_Name: U.S. Geological Survey data release Issue_Identification: doi.org/10.5066/F7445KSG Online_Linkage: https://doi.org/10.5066/F7445KSG Cross_Reference: Citation_Information: Originator: Blott, S.J. and Pye, K. Publication_Date: 2001 Title: Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments Edition: Version 8.0 Series_Information: Series_Name: Earth Surface Processes and Landforms Issue_Identification: Volume 26 Other_Citation_Details: Pages 1237-1248 Online_Linkage: http://www.kpal.co.uk/gradistat.html Cross_Reference: Citation_Information: Originator: Cutshall, N.H., Larsen, I.L., and Olsen, C.R. Publication_Date: 1983 Title: Direct analysis of 210Pb in sediment samples: self-absorption corrections Series_Information: Series_Name: Nuclear Instruments and Methods Issue_Identification: Volume 206, Issues 1-2 Other_Citation_Details: Pages 309-312 Online_Linkage: https://doi.org/10.1016/0167-5087(83)91273-5 Cross_Reference: Citation_Information: Originator: Cutshall, N.H. and Larsen, I.L. Publication_Date: 1986 Title: Calibration of a portable intrinsic Ge gamma-ray detector using point sources and testing for field applications Series_Information: Series_Name: Health Physics Issue_Identification: Volume 51 Other_Citation_Details: Pages 53-59 Online_Linkage: https://doi.org/10.1097/00004032-198607000-00004 Data_Quality_Information: Attribute_Accuracy: Attribute_Accuracy_Report: The accuracy of the position and elevation data at the sample locations was determined during data collection. It is a function of the benchmark horizontal and vertical accuracy, and the quality of the raw DGPS position data recorded by the DGPS receiver and antenna. Benchmarks for the base stations were selected based upon the reported positional accuracy of a benchmark and the distance between sample sites (rover antenna) and base station. For this survey, the distance was kept within 8 kilometers (km). The final position and associated accuracy of the sample locations were determined through post-processing the DGPS trajectory between the base DGPS and the rover DGPS using Waypoint Product Group's GrafNav software version 8.7. All base station positions, respective antenna profiles, antenna height offsets, and recording intervals were accounted for in post-processing. Replicate analyses of loss on ignition are reported for quality assurance. The grain size data represent the sample averages for a subset of the statistical parameters calculated by GRADISTAT. The number of runs included in the averaged results are reported, and the standard deviation of the averaged results are reported for most parameters. The gamma spectroscopic radioisotope activities reported include the counting error for all samples. The critical level for gamma spectroscopy is reported for each core set. Logical_Consistency_Report: The grain-size sample runs in the GRADISTAT output files for which the mean Folk and Ward grain size varied from the set average by more than 1.5 standard deviations are highlighted in yellow and were not included in final averaged results. No formal logical accuracy tests were conducted on the remaining datasets. Completeness_Report: This dataset is considered complete for the information presented, as described in the abstract section. Users are advised to read the rest of the metadata record carefully for additional details. Positional_Accuracy: Horizontal_Positional_Accuracy: Horizontal_Positional_Accuracy_Report: All static GPS base station sessions were processed through the On-Line Positioning User Service (OPUS) maintained by the National Geodetic Survey (NGS). The OPUS base station solutions were entered into a spreadsheet to compute a final, time-weighted positional coordinate (latitude, longitude, and ellipsoid height) for each base station. Base station positional error was calculated as the absolute value of the final position minus the session position value. The maximum horizontal error of the base station coordinates used for post-processing the sample locations was 0.00081 seconds latitude and 0.00063 seconds longitude for benchmark B166, and 0.00054 seconds latitude and 0.00036 seconds longitude for benchmark 189A. Vertical_Positional_Accuracy: Vertical_Positional_Accuracy_Report: All static GPS base station sessions were processed through OPUS. The OPUS base station solutions were entered into a spreadsheet to compute a final, time-weighted positional coordinate (latitude, longitude, and ellipsoid height) for each base station. Base station positional error for each GPS session was calculated as the absolute value of the final position minus the session position value. For this survey, the maximum standard deviation of the base station ellipsoid heights were 0.021 m for B166 and 0.012 m for 189A. The maximum vertical error and standard deviation for the base stations B166 and 189A were +/- 0.028 m, 0.007 m and +/- 0.029 m, 0.011 m, respectively. All sample locations were post-processed to the base station coordinates. Lineage: Process_Step: Process_Description: Two transects of four cores each were collected at two salt marsh sites along Grand Bay, Alabama/Mississippi. At each site, the 4 cores were collected at distances of 5, 15, 25, and 50 meters landward of the shoreline. Push cores were collected with 10.2-centimenter (cm) diameter polycarbonate barrels, driven into the sediment until refusal. Measurements were taken on the inside and outside of the barrel to determine compaction or core shortening values. Upon retrieval, the push cores were capped, labeled, and inspected for integrity. Push core recovered lengths ranged between 42 and 54 cm. Core identifiers consist of the USGS project ID (16CCT07) and a site-specific identifier (for example, GB301). An alphabetic identifier was appended to each site identifier to differentiate the collection method (M for push core). Site positioning and elevations for cores GB301M-GB304M were determined using an Ashtech differential GPS receiver. GPS locations were not recorded at the core sites GB305M-GB308M, the site location was approximated from a reference map. Elevations at core sites GB305M-GB308M were determined using a total station during site reoccupation in January 2017. Site locations, elevations, date of collection, distance from the shoreline, core lengths, and core compaction are reported in an Excel spreadsheet. Comma-separated values data files containing the tabular data in plain text are included in the download files. Process_Date: 2016 Source_Produced_Citation_Abbreviation: 16CCT07_SiteInformation.zip Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: USA Contact_Voice_Telephone: (727) 502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Process_Step: Process_Description: DGPS Acquisition: DGPS base stations were erected on two NGS benchmarks located within the Grand Bay National Estuarine Research Reserve, B166 (PID DO5987) and 189A (PID DO5977). At each base station, an Ashtech Z-Xtreme DGPS receiver recorded the 12-channel full-carrier-phase positioning signals (L1/L2) from satellites via a Thales choke-ring antenna. A similar instrument combination (Ashtech Z-Xtreme receiver and Ashtech geodetic antenna) was used for the rover GPS systems. The base receiver and the rover receiver record their positions concurrently at 1 second (s) recording intervals throughout the survey. A stop-and-go rapid-static survey technique was used, with static occupation durations of either 300 or 30 s, depending on sample site. Process_Date: 2016 Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey Contact_Person: Marci Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: USA Contact_Voice_Telephone: (727) 502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Process_Step: Process_Description: GPS Post-Processing: The final, time weighted coordinates from 16CCT07 for the GPS base stations were imported into GrafNav, version 8.7 (Novatel Waypoint Product Group) and the data from the rover GPS were post-processed to the concurrent GPS session data from the nearest base station; baseline distances for all sample sites were less than about 8 km dependent upon site location. The GPS data were acquired in the World Geodetic System of 1984 (WGS84, (G1150)) geodetic datum, processed and exported in the North American Datum of 1983 (NAD83) geocentric datum. The exported file from GrafNav was converted using the National Oceanic and Atmospheric Association (NOAA) VDatum software conversion tool version 3.6 (http://vdatum.noaa.gov/). The sample locations were transformed from the GPS acquisition datum (WGS84) horizontal and vertical, to NAD 83, Universal Transverse Mercator (UTM) Zone 16 north (16N) horizontal reference frame and the North American Vertical Datum of 1988 (NAVD 88) orthometric elevation using the NGS geoid model of 2012A (GEOID 12A). The site information data files provided in the data release are in the Geographic Coordinate System (latitude, longitude, decimal degrees) NAD83. Process_Date: 2016 Source_Produced_Citation_Abbreviation: 16CCT07_SiteInformation.zip Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey Contact_Person: Marci Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: USA Contact_Voice_Telephone: (727) 502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Process_Step: Process_Description: At the SPCMSC, the eight push cores were vertically extruded and sectioned into 1-cm intervals. The outer circumference of each interval was removed to avoid use of sediment that was in contact with the polycarbonate barrel. Each sediment interval was bagged and homogenized. The bagged intervals were refrigerated until processing. Process_Date: 2016 Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey St. Petersburg Coastal and Marine Science Center Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: U.S. Contact_Voice_Telephone: (727) 502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Process_Step: Process_Description: In the SPCMSC laboratory, a subsample of each 1-cm interval from the 8 push cores was processed for basic sediment characteristics (dry bulk density and porosity). Water content, porosity and dry bulk density were determined using water mass lost during drying. For each 1-cm interval, 10–60 milliliters (mL) of each wet subsample was packed into a graduated syringe with 0.5 mL resolution. The wet sediment was then extracted into a pre-weighed aluminum tray and the weight of the wet sediment and the volume was recorded. The wet sediment and tray were placed in a drying oven for a minimum of 48 hours at 60 degrees Celsius (°C). Water content (θ) was determined as the mass of water (mass lost when dried) relative to the initial wet sediment mass. Dry bulk density was determined by ratio of dry sediment to the known volume of sediment packed into the syringe. Porosity (φ) was calculated from the equation φ = θ / [θ+(1-θ)/ρs] where ρs is grain density assumed to be 2.5 grams per cubic centimeter (g/cm^3). Salt-mass contributions were removed based on an estimation of salinity to be 25. Water content, porosity and dry bulk density are reported in the Excel spreadsheet. A comma-separated values data file containing the tabular data in plain text is included in the download file. Process_Date: 2017 Source_Produced_Citation_Abbreviation: 16CCT07_SedimentPhysicalProperties.zip Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey St. Petersburg Coastal and Marine Science Center Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: U.S. Contact_Voice_Telephone: (727) 502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Process_Step: Process_Description: Organic matter content was determined with a mass loss technique, referred to as loss on ignition (LOI). The dry sediment from the previous process was homogenized with a porcelain mortar and pestle. Approximately 2-3 grams (g) of the dry sediment was placed into a pre-weighed porcelain crucible. The mass of the dried sediment was recorded. The sample was then placed inside a laboratory muffle furnace with stabilizing temperature control. The furnace was heated to 110 °C for a minimum of 6 hours to remove hygroscopic water absorbed onto the sediment particles. The furnace temperature was then lowered to 60 °C, at which point the sediments could be reweighed. The dried sediment was returned to the muffle furnace. The furnace was heated to 550 °C over 30 minutes and kept at 550 °C for 6 hours. The furnace temperature was then lowered to 60 °C and held at this temperature until the sediments could be reweighed. The latter step prevents the absorption of moisture, which can affect the measurement. The mass lost during the 6-hour baking period relative to the 110 °C-dried mass is used as a metric of organic matter content. Data are reported as a ratio of mass (g) of organic matter to mass (g) of dry sediment (post-110 °C drying). Replicate analyses of loss on ignition for a representative subset of the core intervals are reported for quality assurance in the Excel spreadsheet. A comma-separated values data file containing the tabular data in plain text is included in the download file. Process_Date: 2018 Source_Produced_Citation_Abbreviation: 16CCT07_SedimentPhysicalProperties.zip Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey St. Petersburg Coastal and Marine Science Center Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: U.S. Contact_Voice_Telephone: (727) 502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Process_Step: Process_Description: Down-core particle size analysis was performed on 1-cm depth interval for the eight push cores. Select intervals throughout the entire length of each core were chosen for analysis. A total of 96 samples were analyzed for particle size. Prior to particle size analysis, organic material was chemically removed from the samples using 30% hydrogen peroxide (H2O2). Wet sediment was dissolved in H2O2 overnight. The H2O2 was then evaporated by gentle heating and the sediment washed and centrifuged twice with deionized water. Grain size analyses on the sediment cores were performed using a Coulter LS 13 320 (https://www.beckmancoulter.com/) particle-size analyzer (PSA), which uses laser diffraction to measure the size distribution of sediments ranging in size from 0.4 microns to 2 millimeters (mm) (clay to very coarse-grained sand). To prevent shell fragments from damaging the Coulter instrument, particles greater than 1 mm in diameter were separated from all samples prior to analysis using a number 18 (1000 microns or 1 mm) U.S. standard sieve, which meets the American Society for Testing and Materials (ASTM) E11 standard specifications for determining particle size using woven-wire test sieves. Two subsamples from each depth interval were processed through the instrument a minimum of three runs each. The sediment slurry made from the digested sample and deionized water was sonicated with a wand sonicator for 1 minute before being introduced into the Coulter PSA to breakdown aggregated particles. The Coulter PSA measures the particle-size distribution of each sample by passing sediment suspended in solution between two narrow panes of glass in front of a laser. Light is scattered by the particles into characteristic refraction patterns measured by an array of photodetectors as intensity per unit area and recorded as relative volume for 92 size-related channels (bins). The size-classification boundaries for each bin were specified based on the ASTM E11 standard. Process_Date: 2017 Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: USA Contact_Voice_Telephone: (727) 502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Process_Step: Process_Description: The raw grain size data were then run through the free software program GRADISTAT (Blott and Pye, 2001; http://www.kpal.co.uk/gradistat), which calculates the mean, sorting, skewness, and kurtosis of each sample geometrically in metric units and logarithmically in phi units. GRADISTAT also calculates the fraction of sediment from each sample by size category (for example, clay, coarse silt, fine sand). A macro function in Microsoft Excel, developed by the USGS SPCMSC, was applied to the data to calculate average and standard deviation for each sample set (8 runs per sample), and highlighted runs that varied from the set average by more than ±1.5 standard deviations. Excessive deviations from the mean are likely the result of equipment error or extraneous organic material in the sample and are not considered representative of the sample. The highlighted runs were removed from the results and the sample average was recalculated using the remaining runs. The averaged results for all samples, including the number of averaged runs and the standard deviation of the averaged results were summarized in an Excel workbook with each core on its own tab. A comma-separated values data file containing the tabular data in plain text is included in the download file. Process_Date: 2017 Source_Produced_Citation_Abbreviation: 16CCT07_GrainSize.zip Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and Physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: USA Contact_Voice_Telephone: (727) 502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Process_Step: Process_Description: Dried, ground sediment from the 1-cm depth intervals of the 8 push cores were analyzed for the detection of radionuclides by standard gamma-ray spectrometry (Cutshall and Larsen, 1986) at the USGS SPCMSC radioisotope lab. Intervals from the uppermost 30 cm were analyzed from each core with alternating intervals analyzed from lower depths in the cores. A total of 306 depth intervals were analyzed for radioisotopic activities. The sediments (3.3-30 g) were sealed in airtight polypropylene containers or polystyrene test tubes. Sediments placed in the test tubes were sealed with a layer of epoxy. The sample weights and counting container geometries were matched to pre-determined calibration standards. The sealed samples were stored for a minimum of 3 weeks prior to analysis to allow Ra-226 to come into secular equilibrium with its daughter isotopes Pb-214 and Bi-214. The sealed samples were then counted for 48-72 hours on a 16 x 40-mm well or 50-mm diameter planar-style, low energy, high-purity germanium, gamma-ray spectrometer. The suite of naturally-occurring and anthropogenic radioisotopes measured along with their corresponding photopeak energies in kiloelectron volts (keV) are Pb-210 (46.5 keV), Th-234 (63.3 keV), Pb-214 (295.7 and 352.5 keV; proxies for Ra-226), Bi-214 (609.3 keV; proxy for Ra-226), Cs-137 (661.6 keV), and K-40 (1640.8 keV). Sample count rates were corrected for detector efficiency determined with International Atomic Energy Agency RGU-1 reference material, standard photopeak intensity, and self-absorption using a U-238 sealed source (planar detectors only, Cutshall and others, 1983). All activities, with the exception of short-lived Pb-214 and Bi-214, were decay-corrected to the date of field collection. The radioisotopic activities reported in the Excel spreadsheet include the counting error for all samples, results from each core are on its own tab. The critical level is reported for each core. A comma-separated values data file containing the tabular data in plain text is included in the download file. Process_Date: 2018 Source_Produced_Citation_Abbreviation: 16CCT07_GammaSpectroscopy.zip Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey St. Petersburg Coastal and Marine Science Center Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: U.S. Contact_Voice_Telephone: (727) 502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Process_Step: Process_Description: Added keywords section with USGS persistent identifier as theme keyword. Process_Date: 20201013 Process_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey Contact_Person: VeeAnn A. Cross Contact_Position: Marine Geologist Contact_Address: Address_Type: Mailing and Physical Address: 384 Woods Hole Road City: Woods Hole State_or_Province: MA Postal_Code: 02543-1598 Contact_Voice_Telephone: 508-548-8700 x2251 Contact_Facsimile_Telephone: 508-457-2310 Contact_Electronic_Mail_Address: vatnipp@usgs.gov Entity_and_Attribute_Information: Detailed_Description: Entity_Type: Entity_Type_Label: 16CCT07_SiteInformation.xlsx Entity_Type_Definition: Microsoft Excel workbook defining the field sampling dates, distance from shoreline, site locations, elevations, core lengths and core compaction for the 8 marsh push cores collected in this study (USGS FAN 2016-358-FA, project ID 16CCT07). Entity_Type_Definition_Source: USGS Detailed_Description: Entity_Type: Entity_Type_Label: 16CCT07_SiteInformation.csv Entity_Type_Definition: Comma-separated values text file defining the field sampling dates, distance from shoreline, site locations, elevations, core lengths, and core compaction for the 8 marsh push cores collected in this study (USGS FAN 2016-358-FA, project ID 16CCT07). Entity_Type_Definition_Source: USGS Detailed_Description: Entity_Type: Entity_Type_Label: 16CCT07_SedimentPhysicalProperties.xlsx Entity_Type_Definition: Microsoft Excel workbook listing water content, porosity, bulk density and loss-on-ignition data for the 8 push cores collected in this study (USGS FAN 2016-358-FA, project ID 16CCT07). The results for each core are provided on its own tab. Entity_Type_Definition_Source: USGS Detailed_Description: Entity_Type: Entity_Type_Label: 16CCT07_SedimentPhysicalProperties.csv Entity_Type_Definition: Comma-separated values text file listing water content, porosity, bulk density and loss-on-ignition data for the 8 push cores collected in this study (USGS FAN 2016-358-FA, project ID 16CCT07). Entity_Type_Definition_Source: USGS Detailed_Description: Entity_Type: Entity_Type_Label: 16CCT07_GrainSize.xlsx Entity_Type_Definition: Microsoft Excel workbook summarizing grain-size parameters for the 8 push cores collected in this study (USGS FAN 2016-358-FA, project ID 16CCT07). The averaged results for each sample, including the number of runs used, the standard deviation of the averaged results, and graphical class-size distributions, are provided for each core on its own tab. Entity_Type_Definition_Source: USGS Detailed_Description: Entity_Type: Entity_Type_Label: 16CCT07_GrainSize.csv Entity_Type_Definition: Comma-separated values text file summarizing grain-size parameters for the 8 push cores collected in this study (USGS FAN 2016-358-FA, project ID 16CCT07). The averaged results for each sample, including the number of runs used, the standard deviation of the averaged results, and graphical class-size distributions, are provided. Entity_Type_Definition_Source: USGS Detailed_Description: Entity_Type: Entity_Type_Label: 16CCT07_GammaSpectroscopy.xlsx Entity_Type_Definition: Microsoft Excel workbook listing gamma spectroscopy radiochemistry results for the 8 push cores collected in this study (USGS FAN 2016-358-FA, project ID 16CCT07). The results for each core are provided on its own tab. Entity_Type_Definition_Source: USGS Detailed_Description: Entity_Type: Entity_Type_Label: 16CCT07_GammaSpectroscopy.csv Entity_Type_Definition: Comma-separated values text file listing gamma spectroscopy radiochemistry results for the 8 push cores collected in this study (USGS FAN 2016-358-FA, project ID 16CCT07). Entity_Type_Definition_Source: USGS Attribute: Attribute_Label: Site ID Attribute_Definition: Site identifier assigned by the USGS scientist Attribute_Definition_Source: USGS Attribute_Domain_Values: Unrepresentable_Domain: Character string Attribute: Attribute_Label: Date Collected Attribute_Definition: Calendar date of field sample collection Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 10/21/2016 Range_Domain_Maximum: 10/22/2016 Attribute_Units_of_Measure: mm/dd/yyyy Attribute_Measurement_Resolution: 1 Attribute: Attribute_Label: Distance from Shoreline Attribute_Definition: Distance of the core site from the marsh shoreline, in meters Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 5 Range_Domain_Maximum: 50 Attribute_Units_of_Measure: Meter Attribute_Measurement_Resolution: 1 Attribute: Attribute_Label: Latitude (NAD83) Attribute_Definition: Latitude of site location relative to the North American Datum of 1983, in decimal degrees Attribute_Definition_Source: VDatum Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 30.37600 Range_Domain_Maximum: 30.38365 Attribute_Units_of_Measure: Decimal degree Attribute_Measurement_Resolution: 0.00001 Attribute: Attribute_Label: Longitude (NAD83) Attribute_Definition: Longitude of site location relative to the North American Datum of 1983, in decimal degrees Attribute_Definition_Source: VDatum Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: -88.41242 Range_Domain_Maximum: -88.39657 Attribute_Units_of_Measure: Decimal degree Attribute_Measurement_Resolution: 0.00001 Attribute: Attribute_Label: Orthometric Height (m, NAVD88 Geoid 12A) Attribute_Definition: Orthometric height of site location relative to the North American Vertical Datum of 1988 using Geoid 12A, in meters Attribute_Definition_Source: VDatum Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.158 Range_Domain_Maximum: 0.305 Attribute_Units_of_Measure: Meter Attribute: Attribute_Label: Push Core Recovered Length (cm) Attribute_Definition: Field measurement of the recovered push core length, in centimeters Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 42 Range_Domain_Maximum: 54 Attribute_Units_of_Measure: Centimeter Attribute_Measurement_Resolution: 0.5 Attribute: Attribute_Label: Push Core Compaction During Coring (cm) Attribute_Definition: Field measurement of sediment compaction in the push cores during coring, in centimeters Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 3 Range_Domain_Maximum: 9 Attribute_Units_of_Measure: Centimeter Attribute_Measurement_Resolution: 0.5 Attribute: Attribute_Label: Core ID Attribute_Definition: Core identifier assigned by the USGS scientist Attribute_Definition_Source: USGS Attribute_Domain_Values: Unrepresentable_Domain: Character string Attribute: Attribute_Label: Depth (cm) Attribute_Definition: Depth interval measured from below the core surface, in centimeters Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: Top (unconsolidated sediment) Range_Domain_Maximum: 51-52 Attribute_Units_of_Measure: Centimeter Attribute_Measurement_Resolution: 0.1 Attribute: Attribute_Label: Water Content (g-water/g-wet) Attribute_Definition: The ratio of the mass of water to the mass of wet sediment Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.26 Range_Domain_Maximum: 0.73 Attribute_Units_of_Measure: Gram of water per gram of wet sediment Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Porosity (cm^3-voids/cm^3-wet) Attribute_Definition: Porosity of the sediment interval Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.47 Range_Domain_Maximum: 0.87 Attribute_Units_of_Measure: Cubic centimeter of void space per cubic centimeter of wet sediment Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Dry Bulk Density (g/cm^3) Attribute_Definition: Dry bulk density of the sediment interval Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.28 Range_Domain_Maximum: 1.27 Attribute_Units_of_Measure: Gram per cubic centimeter Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Loss On Ignition (g-OM/g-dry) Attribute_Definition: The ratio of the mass of organic matter combusted at 550 Celsius to the pre-combusted mass of dry sediment Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.022 Range_Domain_Maximum: 0.280 Attribute_Units_of_Measure: Gram of organic matter per gram of dry sediment Attribute_Measurement_Resolution: 0.001 Attribute: Attribute_Label: Cs-137 (dpm/g) Attribute_Definition: Cesium-137 specific activity measured in disintegrations per minute per gram of dry sediment decay-corrected to the date of field collection Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: Not Detected Range_Domain_Maximum: 1.75 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Cs-137 Error (+/- dpm/g) Attribute_Definition: Cesium-137 specific activity counting error measured in disintegrations per minute per gram of dry sediment Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: Null Range_Domain_Maximum: 0.17 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Pb-210 (dpm/g) Attribute_Definition: Lead-210 specific activity measured in disintegrations per minute per gram of dry sediment decay-corrected to the date of field collection Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 1.10 Range_Domain_Maximum: 7.88 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Pb-210 Error (+/- dpm/g) Attribute_Definition: Lead-210 specific activity counting error measured in disintegrations per minute per gram of dry sediment Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.15 Range_Domain_Maximum: 0.58 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Ra-226 (dpm/g) Attribute_Definition: Radium-226 specific activity measured in disintegrations per minute per gram of dry sediment Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.88 Range_Domain_Maximum: 1.97 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Ra-226 Error (+/- dpm/g) Attribute_Definition: Radium-226 specific activity counting error measured in disintegrations per minute per gram of dry sediment Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.05 Range_Domain_Maximum: 0.20 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Th-234 (dpm/g) Attribute_Definition: Thorium-234 specific activity measured in disintegrations per minute per gram of dry sediment Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 1.18 Range_Domain_Maximum: 8.24 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: Th-234 Error (+/- dpm/g) Attribute_Definition: Thorium-234 specific activity counting error measured in disintegrations per minute per gram of dry sediment Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.17 Range_Domain_Maximum: 0.77 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: K-40 (dpm/g) Attribute_Definition: Potassium-40 specific activity measured in disintegrations per minute per gram of dry sediment decay-corrected to the date of field collection Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 2.64 Range_Domain_Maximum: 26.78 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Attribute: Attribute_Label: K-40 Error (+/- dpm/g) Attribute_Definition: Potassium-40 specific activity counting error measured in disintegrations per minute per gram of dry sediment Attribute_Definition_Source: USGS Attribute_Domain_Values: Range_Domain: Range_Domain_Minimum: 0.51 Range_Domain_Maximum: 2.71 Attribute_Units_of_Measure: Disintegrations per minute per gram Attribute_Measurement_Resolution: 0.01 Overview_Description: Entity_and_Attribute_Overview: The detailed attribute descriptions for the grain size workbook are provided in the included data dictionary (16CCT07_Grain_Size_Data_Dictionary.pdf). These metadata are not complete without this file. Entity_and_Attribute_Detail_Citation: Data dictionary for grain-size data tables, in: Marot, M.E., Smith, C.G., McCloskey, T.A., Locker, S.D., Khan, N.S., and Smith, K.E.L., 2019, Sedimentary Data From Grand Bay, Alabama/Mississippi, 2014-2016: U.S. Geological Survey data release, https://doi.org/10.5066/P9FO8R3Y. Distribution_Information: Distributor: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: USA Contact_Voice_Telephone: 727-502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Resource_Description: Downloadable data Distribution_Liability: This publication was prepared by an agency of the United States Government. Although these data have been processed successfully on a computer system at the U.S. Geological Survey, no warranty expressed or implied is made regarding the display or utility of the data on any other system, or for general or scientific purposes, nor shall the act of distribution imply any such warranty. The U.S. Geological Survey shall not be held liable for improper or incorrect use of the data described and (or) contained herein. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Standard_Order_Process: Digital_Form: Digital_Transfer_Information: Format_Name: Compressed (zip) archive Format_Version_Date: 2018 Format_Specification: Multimedia presentation Format_Information_Content: These zip archives includes Microsoft Excel spreadsheets, comma-separated values text files, Portable Document Format (PDF) image files, and accompanying metadata for sediment data from push cores collected from Grand Bay, Alabama/Mississippi in October 2016 (USGS FAN 2016-358-FA, project ID 16CCT07). File_Decompression_Technique: Unzip Digital_Transfer_Option: Online_Option: Computer_Contact_Information: Network_Address: Network_Resource_Name: https://coastal.er.usgs.gov/data-release/doi-P9FO8R3Y/data/16CCT07_SiteInformation.zip Network_Resource_Name: https://coastal.er.usgs.gov/data-release/doi-P9FO8R3Y/data/16CCT07_SedimentPhysicalProperties.zip Network_Resource_Name: https://coastal.er.usgs.gov/data-release/doi-P9FO8R3Y/data/16CCT07_GrainSize.zip Network_Resource_Name: https://coastal.er.usgs.gov/data-release/doi-P9FO8R3Y/data/16CCT07_GammaSpectroscopy.zip Fees: None, if obtained online Technical_Prerequisites: The data tables for USGS FAN 2016-358-FA (project ID 16CCT07) were created in Microsoft Excel 2010 and can be opened using Microsoft Excel 2007 or higher; these data may also be viewed using the free Microsoft Excel Viewer (http://office.microsoft.com/). The data tables are also provided as comma-separated values text files (.csv). The .csv data file contains the tabular data in plain text and may be viewed with a standard text editor. Portable Document Format (PDF) files can be viewed using the free software Adobe Acrobat Reader (http://get.adobe.com/reader). Metadata_Reference_Information: Metadata_Date: 20201013 Metadata_Contact: Contact_Information: Contact_Organization_Primary: Contact_Organization: U.S. Geological Survey Contact_Person: Marci E. Marot Contact_Position: Geologist Contact_Address: Address_Type: Mailing and physical Address: 600 4th Street South City: St. Petersburg State_or_Province: FL Postal_Code: 33701 Country: USA Contact_Voice_Telephone: 727-502-8000 Contact_Electronic_Mail_Address: mmarot@usgs.gov Metadata_Standard_Name: Content Standard for Digital Geospatial Metadata Metadata_Standard_Version: FGDC-STD-001-1998 Metadata_Access_Constraints: None Metadata_Use_Constraints: Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Metadata_Security_Information: Metadata_Security_Classification_System: None Metadata_Security_Classification: Unclassified Metadata_Security_Handling_Description: None