Bathymetric Data collected with Backpack and Wheel-mounted GPS within and around the Wilderness Breach, Fire Island, New York, (2014) in XYZ ASCII Text File Format

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently anticipated questions:


What does this data set describe?

Title:
Bathymetric Data collected with Backpack and Wheel-mounted GPS within and around the Wilderness Breach, Fire Island, New York, (2014) in XYZ ASCII Text File Format
Abstract:
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island, New York, from October 5 to 10, 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach, which formed in October 2012 during Hurricane Sandy, as part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected, using single-beam echo sounders and global positioning systems mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach, Fire Island Inlet, Narrow Bay, and Great South Bay east of Nicoll Bay. Additional bathymetry and elevation data were collected using backpack and wheel-mounted global positioning systems along the subaerial beach (foreshore and backshore), and flood shoals and shallow channels within the wilderness breach and adjacent shoreface.
  1. How might this data set be cited?
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center, 20170213, Bathymetric Data collected with Backpack and Wheel-mounted GPS within and around the Wilderness Breach, Fire Island, New York, (2014) in XYZ ASCII Text File Format: U.S. Geological Survey Data Series DS 1034, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL.

    Online Links:

    This is part of the following larger work.

    Nelson, Timothy R., Miselis, Jennifer L., Hapke, Cheryl J., Brenner, Owen T., Henderson, Rachel E., Reynolds, Billy J., and Wilson, Kathleen E., 20170213, Bathymetry data collected in October 2014 From Fire Island, New York—The Wilderness Breach, Shoreface, and Bay: U.S. Geological Survey Data Series DS 1034, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL.

    Online Links:

  2. What geographic area does the data set cover?
    West_Bounding_Coordinate: -72.8957208645575
    East_Bounding_Coordinate: -72.8709539592071
    North_Bounding_Coordinate: 40.7350409912943
    South_Bounding_Coordinate: 40.7237019865522
  3. What does it look like?
  4. Does the data set describe conditions during a particular time period?
    Beginning_Date: 05-Oct-2014
    Ending_Date: 10-Oct-2014
    Currentness_Reference:
    ground condition
  5. What is the general form of this data set?
    Geospatial_Data_Presentation_Form: Tabular digital data
  6. How does the data set represent geographic features?
    1. How are geographic features stored in the data set?
      This is a Point data set. It contains the following vector data types (SDTS terminology):
      • Point (57,813)
    2. What coordinate system is used to represent geographic features?
      Grid_Coordinate_System_Name: Universal Transverse Mercator
      Universal_Transverse_Mercator:
      UTM_Zone_Number: 18
      Transverse_Mercator:
      Scale_Factor_at_Central_Meridian: 0.9996
      Longitude_of_Central_Meridian: -75
      Latitude_of_Projection_Origin: 0.0
      False_Easting: 500000
      False_Northing: 0.0
      Planar coordinates are encoded using row and column
      Abscissae (x-coordinates) are specified to the nearest 1.000000
      Ordinates (y-coordinates) are specified to the nearest 1.000000
      Planar coordinates are specified in meters
      The horizontal datum used is North American Datum of 1983.
      The ellipsoid used is Geodetic Reference System 80.
      The semi-major axis of the ellipsoid used is 6378137.
      The flattening of the ellipsoid used is 1/298.257.
      Vertical_Coordinate_System_Definition:
      Altitude_System_Definition:
      Altitude_Datum_Name: North American Vertical Datum 1988
      Altitude_Resolution: 0.01 m
      Altitude_Distance_Units: meter
      Altitude_Encoding_Method: Attribute values
  7. How does the data set describe geographic features?
    201410_Ground_Based_XYZ.csv
    Comma delimited xyz file (Source: U.S. Geological Survey)
    Easting_m
    NAD83 UTM x-axis coordinate (Zone 18) (Source: U.S. Geological Survey)
    Range of values
    Minimum:676749
    Maximum:679791
    Units:Meter
    Northing_m
    NAD83 UTM y-axis coordinate (Zone 18) (Source: U.S. Geological Survey)
    Range of values
    Minimum:4509682
    Maximum:4511725
    Units:Meter
    Elev_NAVD88_m
    z-value (elevation) in NAVD88 (Source: U.S. Geological Survey)
    Range of values
    Minimum:-1.743
    Maximum:5.908
    Units:Meter
    Date
    Date and Time of Sample Collection (Source: U.S. Geological Survey)
    Range of values
    Minimum:20141006
    Maximum:20141008
    Entity_and_Attribute_Overview:
    Comma delimited xyz file containing UTM X, UTM Y locations and corresponding Z elevation value, all in meters.
    Entity_and_Attribute_Detail_Citation:
    Ground-based GPS point data for Fire Island, NY, created from data collected between October 5, 2014 and October 10, 2014.

Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
    • U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
  2. Who also contributed to the data set?
  3. To whom should users address questions about the data?
    Timothy R. Nelson
    U.S. Geological Survey
    600 4th Street South
    St. Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov

Why was the data set created?

To determine the change Hurricane Sandy caused in the shoreface morphology and breach evolution at Fire Island, New York, USA, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a bathymetric survey of Fire Island from October 5 to 10, 2014. The objectives of the data collection effort were to map the morphology of the wilderness breach and adjacent shoreface, Fire Island Inlet, Narrow Bay, and Great South Bay east of Nicoll Bay the shoreface as part of the USGS Hurricane Sandy Supplemental Project GS2-2B. This dataset, 201410_Ground_Based_XYZ.zip, consists of elevation data collected with a backpack and wheel-mounted global positioning systems (GPS) from the subaerial beach profile (foreshore and backshore), subaerial and shallow flood shoals.

How was the data set created?

  1. From what previous works were the data drawn?
  2. How were the data generated, processed, and modified?
    Date: 2014 (process 1 of 6)
    GPS Acquisition: Horizontal and vertical positioning of each vessel and backpack was were collected determined using a base-rover configuration. Data were recorded at 10 Hertz (Hz) using Ashtech ProFlex™ 500 Global Navigation Satellite System (GNSS) receivers with Thales choke ring antennas. Three stationary base stations (REST, VC, and U374) were occupied during the surveys. The stationary base at published NGS benchmark U374 (Permanent Identification number (PID#) KU0206) was equipped with an Inmarsat Broadband Global Area Network (BGAN) satellite uplink system for remote monitoring of the base station. U374 consisted of an Ashtech Proflex 500 GNSS receiver and an Ashtech choke ring antenna with a vertical offset of 1.24 meters (m). GPS data acquired by the PWCs, backpack, wheel-mount, and the REST and VC base stations were downloaded at the end of each survey day. A small segment of the U374 data was downloaded via the BGAN network nightly to ensure the system was operating properly. Reference station coordinates were verified with Continuously Operating Reference Stations (CORS) stations using OPUS, (http://www.ngs.noaa.gov/OPUS/). OPUS computed reference positions had a vertical error of 0.007 m and horizontal errors of 0.8 cm and 0.6 cm for East-West and North-South, respectively. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Billy J. Reynolds
    Engineering Technician
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8067 (voice)
    727-502-8181 (FAX)
    breynolds@usgs.gov
    Date: 2014 (process 2 of 6)
    Backpack GPS Acquisition: Elevation data were collected from shallow flood shoals and channels, using a SECO GPS backpack containing an Ashtech Z-Xtreme receiver with Ashtech Marine antennas attached to a pole extending above the head of the surveyor. Positions were recorded at 10 Hz. The elevation of the antenna relative to the ground was measured for the surveyor in a walking stride position (2.112 m). The surveyors did not follow a pre-defined path but collected data over as much of the subaerial and shallow shoals as possible during low-tide. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Owen T. Brenner
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8085 (voice)
    727-502-8182 (FAX)
    obrenner@usgs.gov
    Date: 2014 (process 3 of 6)
    Wheel-Mounted GPS Acquisition: A wheel-mounted GPS system containing an Ashtech Z-Xtreme receiver with Ashtech Marine antennas was used to record elevations and positions at 10 Hz. The elevation of the antenna relative to the ground was fixed at 2 m. The system collected data along the approximate mean high water line, along pre-defined transects, and additional data on the subaerial beach. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Owen T. Brenner
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8085 (voice)
    727-502-8182 (FAX)
    obrenner@usgs.gov
    Date: 2014 (process 4 of 6)
    Ground-Based Differentially Corrected Navigation Processing: GPS data points were post-processed using a differential correction derived from the base/rover setup. The base station coordinates were imported into GrafNav version 8.5 (Waypoint Product Group) and the GPS data from the backpack and wheel-mounted systems were processed to the concurrent GPS session data at the base stations. The horizontal and vertical coordinates of the ground-based data were saved in North American Datum of 1983 (NAD83) and North American Vertical Datum of 1988 (NAVD88) and exported as American Standard Code for Information Interchange (ASCII) files. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Billy J. Reynolds
    Engineering Technician
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8067 (voice)
    727-502-8181 (FAX)
    breynolds@usgs.gov
    Date: 2014 (process 5 of 6)
    Ground-Based GPS Processing: Using ArcGIS, position and elevation of the ground based data were analyzed for instances when the surveyor was either sitting, removing the backpack, being transported between shoals on a personal watercraft, or tilted the wheel horizontally. Once all extraneous data points were removed, the remaining data were saved as an ASCII file. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Owen T. Brenner
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8085 (voice)
    727-502-8182 (FAX)
    obrenner@usgs.gov
    Date: 2015 (process 6 of 6)
    Ground-Based Uncertainty Calculation: Backpack and wheel GPS elevation errors were calculated by computing the vertical differences at crossings occurring at least 1 minute apart. Using Matlab, the calculated RMS error was 12.5 cm. Elevation differences between the ground-based data points and single-beam data points indicate the backpack elevations were 5 cm higher than elevations recorded using PWCs. Given the high degree of uncertainty arising from the backpack surveyor striding over a subaqueous shoal surface and the tilting of the wheel-mount, the ground-based data were adjusted to the PWC elevation at the crossings. The adjusted positions, elevation, and date of sampling were saved as an ASCII file. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Timothy R. Nelson
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov
    Data sources produced in this process:
    • 201410_Ground_Based_XYZ.csv
  3. What similar or related data should the user be aware of?
    Nelson, Timothy R., Miselis, Jennifer L., Hapke, Cheryl J., Wilson, Kathleen E., Henderson, Rachel E., Brenner, Owen T., Reynolds, Billy J., and Hansen, Mark E., 20170213, Coastal Bathymetry Data Collected in June 2014 from Fire Island, New York: the Wilderness Breach and Shoreface: U.S. Geological Survey Data Series DS 1034, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL.

    Online Links:

    • https:\\doi.org/10.313/ds1007


How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?
    The accuracy of the data is determined during data collection. This dataset is derived from a single field survey using identical equipment, setup procedures, and staff; therefore, the dataset is internally consistent. Methods are employed to maintain data collection consistency. During setup, each piece of equipment is isolated to obtain internal and external offset measurements with respect to the survey mount. All the critical measurements are recorded manually and digitally entered into their respective programs. For backpack collected elevations, the antenna height relative to the ground was measured for the surveyor in a walking stride position and accounted for during post-processing. For the wheel-mount collected elevations, the antenna height relative to the ground was 2 meters and accounted for during post-processing.
  2. How accurate are the geographic locations?
    The GPS antenna and receiver acquisition configuration used at the base station was duplicated on the survey mount (rover). The base receiver and the rover receiver recorded their positions concurrently at 10 hertz (Hz) recording intervals throughout the survey. All processed measurements were referenced to the base station coordinates. All static base station GPS sessions were submitted for processing to the Online Positioning User Service (OPUS), which was created by the National Oceanic and Atmospheric Administration/National Geodetic Survey (NOAA/NGS). OPUS results provided an error measurement for each daily solution with a horizontal accuracy estimated as 0.007 m root mean squared (RMS). The combined horizontal error is assumed to be at most half of the vertical offset.
  3. How accurate are the heights or depths?
    The GPS antenna and receiver acquisition configuration used at the base station was duplicated on the survey mount (rover). The base receiver and the rover receiver recorded their positions concurrently at 10 Hz recording intervals throughout the survey. All processed measurements are referenced to the base station coordinates. OPUS results provided an error measurement for each daily solution. Applying these error measurements, the vertical accuracy of the base station was estimated to be 0.007 m root mean squared (RMS). The kinematic (rover) trajectories were processed using GrafNav v8.50 software by Novatel, Inc. Occurrences where a backpack and/or wheel-mounted GPS trackline crossed a line it previously surveyed were evaluated to determine vertical error. The combined vertical error from base station coordinate solutions and rover trajectories was 0.125 m.
  4. Where are the gaps in the data? What is missing?
    This is a complete, post-processed x,y,z bathymetric data point file acquired with a backpack and wheel-mounted GPS system within and around the wilderness breach, Fire Island, New York.
  5. How consistent are the relationships among the observations, including topology?
    The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center collected shallow water bathymetric data in the wilderness breach, Bellport Bay, Narrow Bay, Great South Bay east of Nicoll Bay, Fire Island Inlet, and the ocean shoreface within approximately 2.5 kilometers (km) of Wilderness Breach. Backpack-collected GPS was collected over subaerial and shallow flood shoals. Wheel-mounted GPS was collected on the subaerial beach. This zip archive contains the post-processed backpack and wheel-mounted (ground based) GPS data (x, y, z) from October 2014 that were acquired during a single field survey.

How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?
Access_Constraints:
The U.S. Geological Survey requests that it be referenced as the originator of this dataset in any future products or research derived from these data.
Use_Constraints: These data should not be used for navigational purposes.
  1. Who distributes the data set? (Distributor 1 of 1)
    U.S. Geological Survey, St Petersburg Coastal and Marine Science Center, St. Petersburg, FL
    Attn: Timothy R. Nelson
    600 4th Street South
    St. Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov
  2. What's the catalog number I need to order this data set? U.S. Geological Survey DS 1034
  3. What legal disclaimers am I supposed to read?
    Neither the U.S. Government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of these data or related materials. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
  4. How can I download or order the data?

Who wrote the metadata?

Dates:
Last modified: 18-Mar-2019
Last Reviewed: 05-Jan-2017
Metadata author:
U.S. Geological Survey
Attn: Timothy R. Nelson
Geologist
600 4th Street South
St. Petersburg, FL
USA

727-502-8098 (voice)
727-502-8182 (FAX)
trnelson@usgs.gov
Metadata standard:
Content Standard for Digital Geospatial Metadata (FGDC-STD-001-1998)

This page is <https://cmgds.marine.usgs.gov/catalog/spcmsc/201410_Ground_Based_XYZ.faq.html>
Generated by mp version 2.9.49 on Tue Mar 19 09:14:57 2019