Title:
BITH2014_BeaumontLNRUnits_EAARLB_FS_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Beaumont and Lower Neches River Units, Texas, 2014
Abstract:
A first-surface topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
Supplemental_Information:
Raw lidar data are not in a format that is generally usable by natural-resource managers and research scientists for scientific analysis. Converting dense lidar elevation data into a readily usable format without loss of essential information requires specialized processing. The U.S. Geological Survey's Coastal and Marine Geology Program (CMGP) has developed custom software to convert raw lidar data into a GIS-compatible map product to be provided to GIS specialists, managers, and scientists. The primary tool used in the conversion process is Airborne Lidar Processing System (ALPS), a multitiered processing system developed originally by a USGS-NASA collaborative project. Specialized processing algorithms are used to convert raw waveform lidar data acquired by the EAARL-B to georeferenced spot (x,y,z) returns for "first surface" and "bare earth" topography. The terms first surface and bare earth refer to the digital elevation data of the terrain, although first-surface data include vegetation, buildings, and other manmade structures, bare-earth data do not. The zero crossing of the second derivative (that is, detection of stationary points) is used to detect the first return, resulting in "first surface" topography, whereas the trailing edge algorithm (that is, the algorithm searches for the location before the last return where direction changes along the trailing edge) is used to detect the range to the last return, or "bare earth" (the first and last returns being the first and last significant measurable part of the return pulse). Statistical filtering, known as the Random Consensus Filter (RCF), is used to remove false bottom returns and other outliers from the EAARL-B topography data. The filter uses a grid of non-overlapping square cells (buffer) of user-defined size overlaid onto the original point cloud. The user also defines the vertical tolerance (vertical width) based on the topographic complexity and point-sampling density of the data. The maximum allowable elevation range within a cell is established by this vertical tolerance. An iterative process searches for the maximum concentration of points within the vertical tolerance and removes those points outside of the tolerance (Nayegandhi and others, 2009). These data are then converted to the North American Datum of 1983 and the North American Vertical Datum of 1988 (using the GEOID12A model); please note that these data are not suitable for navigational use, nor for determining absolute elevation measurements.