Single-Beam XYZ Point Coastal Bathymetry Data Collected in June 2014 from Fire Island, New York from the Wilderness Breach

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently anticipated questions:


What does this data set describe?

Title:
Single-Beam XYZ Point Coastal Bathymetry Data Collected in June 2014 from Fire Island, New York from the Wilderness Breach
Abstract:
Scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, collected bathymetric data along the upper shoreface and within the wilderness breach at Fire Island, New York, in June 2014. The U.S. Geological Survey is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the shoreface along Fire Island and model the evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B.During this study, bathymetry was collected with single-beam echo sounders and global positioning systems, mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry was collected using backpack global positioning systems along the flood shoals and shallow channels within the wilderness breach.
  1. How might this data set be cited?
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center, 20160707, Single-Beam XYZ Point Coastal Bathymetry Data Collected in June 2014 from Fire Island, New York from the Wilderness Breach: U.S. Geological Survey Data Series DS 1007, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL.

    Online Links:

    This is part of the following larger work.

    Nelson, Timothy R., Miselis, Jennifer L., Hapke, Cheryl J., Wilson, Kathleen E., Henderson, Rachel E., Brenner, Owen T., Reynolds, Billy J., and Hansen, Mark E., 20160707, Coastal Bathymetry Data Collected in June 2014 from Fire Island, New York: the Wilderness Breach and Shoreface: U.S. Geological Survey Data Series DS 1007, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL.

    Online Links:

  2. What geographic area does the data set cover?
    West_Bounding_Coordinate: -73.228361
    East_Bounding_Coordinate: -72.866648
    North_Bounding_Coordinate: 40.733833
    South_Bounding_Coordinate: 40.605501
  3. What does it look like?
  4. Does the data set describe conditions during a particular time period?
    Beginning_Date: 10-Jun-2014
    Ending_Date: 20-Jun-2014
    Currentness_Reference:
    ground condition
  5. What is the general form of this data set?
    Geospatial_Data_Presentation_Form: Tabular digital data
  6. How does the data set represent geographic features?
    1. How are geographic features stored in the data set?
      This is a Point data set. It contains the following vector data types (SDTS terminology):
      • Point (770,915)
    2. What coordinate system is used to represent geographic features?
      Grid_Coordinate_System_Name: Universal Transverse Mercator
      Universal_Transverse_Mercator:
      UTM_Zone_Number: 18
      Transverse_Mercator:
      Scale_Factor_at_Central_Meridian: 0.999600
      Longitude_of_Central_Meridian: -75.000000
      Latitude_of_Projection_Origin: 0.000000
      False_Easting: 500000.000000
      False_Northing: 0.000000
      Planar coordinates are encoded using row and column
      Abscissae (x-coordinates) are specified to the nearest 1.000000
      Ordinates (y-coordinates) are specified to the nearest 1.000000
      Planar coordinates are specified in meters
      The horizontal datum used is North American Datum 1983.
      The ellipsoid used is Geodetic Reference System 80.
      The semi-major axis of the ellipsoid used is 6378137.000000.
      The flattening of the ellipsoid used is 1/298.257222101.
      Vertical_Coordinate_System_Definition:
      Altitude_System_Definition:
      Altitude_Datum_Name: North American Vertical Datum 1988
      Altitude_Resolution: 0.001 m
      Altitude_Distance_Units: meter
      Altitude_Encoding_Method: Attribute values
  7. How does the data set describe geographic features?
    201406_Single_Beam_XYZ_Wilderness_Breach.csv
    Comma delimited xyz file (Source: U.S. Geological Survey)
    Easting_m
    NAD83 UTM x-axis coordinate (Zone 18) (Source: U.S. Geological Survey)
    Range of values
    Minimum:676181
    Maximum:678815
    Units:Meter
    Northing_m
    NAD83 UTM y-axis coordinate (Zone 18N) (Source: U.S. Geological Survey)
    Range of values
    Minimum:4509233
    Maximum:4512085
    Units:Meter
    Elev_NAVD8_m
    z-value (elevation) in NAVD88 (Source: U.S. Geological Survey)
    Range of values
    Minimum:-8.17
    Maximum:-0.16
    Units:Meter
    Line_Num
    Line Number (Source: U.S. Geological Survey)
    Range of values
    Minimum:185
    Maximum:407
    Vessel
    Vessel ID Number (Source: U.S. Geological Survey)
    Range of values
    Minimum:1
    Maximum:2
    Date
    Date of Sample (Source: U.S. Geological Survey)
    Range of values
    Minimum:20140612 14:06:01
    Maximum:20140619 21:13:59
    Entity_and_Attribute_Overview:
    Comma delimited xyz file containing UTM X, UTM Y locations and corresponding Z elevation value, all in meters.
    Entity_and_Attribute_Detail_Citation:
    Coastal bathymetry point data for Wilderness Breach, Fire Island, N.Y., created from data collected during a single-beam echosounder survey conducted between June 10, 2014, and June 20, 2014.

Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
    • U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
  2. Who also contributed to the data set?
  3. To whom should users address questions about the data?
    U.S. Geological Survey
    Attn: Timothy R. Nelson
    600 4th Street South
    St. Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov

Why was the data set created?

To determine the change Hurricane Sandy caused in the shoreface morphology and breach evolution at Fire Island, New York, USA, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a bathymetric survey of Fire Island from June 10-20, 2014. The objectives of the data collection effort were to map the morphology of the shoreface and the wilderness breach as part of the USGS Hurricane Sandy Supplemental Project GS2-2B. This dataset, 201406_Single_Beam_XYZ Breach.zip, consists of nearshore, single-beam horizontal position and vertical elevation data collected within the wilderness breach, onboard two personal watercraft (PWC) vessels.

How was the data set created?

  1. From what previous works were the data drawn?
  2. How were the data generated, processed, and modified?
    Date: 2014 (process 1 of 8)
    GPS Acquisition: GPS base stations were erected at benchmarks REST (near the town of Robins Rest) and U374 (NGS benchmark Permanent Identification number (PID#) KU0206) located on Fire Island. Base stations were equipped with Ashtech ProFlex 500 Global Navigation Satellite System (GNSS) receivers. The survey personal watercraft (PWC) (rovers) were equipped with ProFlex 500 GNSS receivers. The base and rover receivers recorded their positions concurrently at 10 Hertz (Hz) throughout the survey. Reference stations coordinates were verified with Continuously Operating Reference Station (CORS) sites using the Online Positioning User Service (OPUS), available at http://www.ngs.noaa.gov/OPUS/). U374 used reference stations ZNY1, NYRH, CTDA, while REST used stations NYCI, NYRH, and MOR6. OPUS computed both reference stations had horizontal errors of 0.4 cm and vertical errors of 0.2 cm. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Mark E. Hansen
    Oceanographer
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8036 (voice)
    727-502-8182 (FAX)
    mhansen@usgs.gov
    Date: 2014 (process 2 of 8)
    Single-Beam Sounding Acquisition: The single-beam bathymetric data were collected on two Yamaha (2010 and 2013) VX Deluxe personal watercraft. Each PWC was fitted with a single-beam transducer below the waterline off the starboard stern, 1.11 m beneath the GPS antenna position. HYPACK version 2013 was used for positioning and navigation during the survey. Depth soundings were recorded at 10 Hertz (Hz), using an Odom Ecotrac CV-100 Digital Hydrographic Echo Sounder system with 200 kHz transducers with 4-degree (10 June 2014) and 9-degree (remainder of survey) transducers. Soundings were merged into a raw data file (.raw) and a sounding file (.bin) in Hypack. Each file was named according to transect number and coordinated universal time (UTC). Water column sound velocity measurements were collected periodically throughout the survey, using a SonTek CastAway conductivity, temperature, and depth (CTD) meter. Data were processed using SonTek CastAway CTD software version 1.5. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Timothy R. Nelson
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov
    Date: 2014 (process 3 of 8)
    Single-Beam Differentially Corrected Navigation Processing: Horizontal positions and vertical elevations associated with each single-beam sounding were post-processed using differential corrections derived from the base/rover setup. Two GPS reference stations were used for the survey and were located at benchmarks U374 and REST. Applying the reference station coordinates, GPS data acquired from the rover were processed to the concurrent GPS session data at the base station- using GrafNav version 8.5 software (Waypoint Product Group). The horizontal and vertical coordinates were recorded in the World Geodetic System of 1984 (WGS84) reference frame and exported as an ASCII file for each personal watercraft and each survey day. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Mark E. Hansen
    Oceanographer
    600 4th St. South
    Saint Petersburg, FL
    USA

    727-502-8036 (voice)
    727-502-8182 (FAX)
    mhansen@usgs.gov
    Date: 2014 (process 4 of 8)
    Single-Beam Data Processing: Single-beam soundings were merged with differentially processed GPS data and sound velocity profiles using Matlab R2014b. Each transect was visually inspected for elevation outliers and dropouts associated with wave breaking in the surf zone were manually corrected. Typically, the highest intensity return is generated by the seafloor surface. Breaking waves in the surf zone can create air bubbles in the water column and create an erroneous peak in waveform intensity, which causes errors in the interpreted seafloor reflection. When this situation was suspected, a corrected seafloor elevation was manually digitized by analyzing the complete waveform signal recorded by the Odom within the .bin data file. The soundings were corrected for the average speed of sound (table 1). A moving average filter was applied to the soundings to reduce instrument noise and the noise associated with the pitch and roll of the PWC. The depth soundings (from the transducer to the seafloor) were then adjusted to the depth from the GPS antenna and subsequently to the WGS84 ellipsoid. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Timothy R. Nelson
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov
    Date: 2014 (process 5 of 8)
    Single-Beam Datum Transformation: NOAA's VDatum v3.3 was used to transform single-beam data points(x,y,z data) from their data acquisition datum (WGS84) to the North American Datum of 1983 (NAD83) reference frame and the North American Vertical Datum of 1988 (NAVD88) elevation using the National Geodetic Survey (NGS) geoid model of 2012A (GEOID12A). For conversion from the WGS84 ellipsoid to NAVD88 there is a total of 5.4 cm of uncertainty in the transformation (http://vdatum.noaa.gov/docs/est_uncertainties.html). Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Timothy R. Nelson
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov
    Date: 2015 (process 6 of 8)
    Single-Beam Error Analysis: The accuracy of the single-beam soundings was evaluated by identifying locations where survey track lines crossed and soundings from each line were horizontally within 0.25 m of each other. Any track line with a root mean square (RMS) error of 12.2 cm for a total of 732 crossings. Since the mean error between wave runners was 0.5 cm, which is below the minimum resolution of the echosounder, no correction offset was applied to the individual echosounders. Applying the square root of the sum of the datum conversion uncertainty and the sounding uncertainty resulted in a combined vertical error of 13.3 cm. Horizontal uncertainty is assumed to be half of the vertical uncertainty (6.7 cm) at most. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Timothy R. Nelson
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov
    Date: 2015 (process 7 of 8)
    Merging Transects: Using Matlab R2015b, partial lines (the result of restarting the line in the middle of a transect) were subsequently merged with similar segments to create one seamless line. When repeats were present, only a single line was retained. The data were then combined into a single ASCII file consisting of position, elevation, line number, vessel number, and time of sampling. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Timothy R. Nelson
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov
    Date: 2015 (process 8 of 8)
    Extract Wilderness Breach XYZ: The single-beam XYZ data was imported into Esri ArcGIS v10.2.2 using the Create Feature Class From XY Table tool, in ArcCatalog. A polygon was then created surrounding data points within Wilderness Breach in ArcGIS ArcMap. The polygon vertices were converted to points using the Feature Vertices to Points tool, Add XY Coordinates tool, and exported as an ASCII file using the Export Feature Attribute to ASCII tool. This ASCII file was subsequently imported into Matlab R2015b. Any single-beam data within or on this polygon was then extracted and saved as an ASCII file. Person who carried out this activity:
    U.S. Geological Survey St. Petersburg Coastal and Marine Science Center
    Attn: Timothy R. Nelson
    Geologist
    600 4th St. S
    Saint Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov
  3. What similar or related data should the user be aware of?

How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?
    The accuracy of the data is determined during data collection. This dataset is derived from a single field survey using identical equipment, set-ups, and staff; therefore, the dataset is internally consistent. Methods are employed to maintain data collection consistency. During mobilization, each piece of equipment is isolated to obtain internal and external offset measurements with respect to the survey mount. All the critical measurements are recorded manually and digitally entered into their respective programs. For single-beam soundings, the distance between the transducer and the GPS antenna was measured for each personal watercraft and accounted for during post-processing. For the base stations, the Ashtech ProFlex 500 system has a long static horizontal accuracy of 0.3 centimeters (cm) and 0.6 cm vertical accuracy. For the rovers, the post-processed kinematic horizontal instrument accuracy is 1 cm, and vertical accuracy is 2 cm. The Echotrac CV100 Digital Hydrographic Echo Sounder has a vertical accuracy of 0.01 m 0.1% depth.
  2. How accurate are the geographic locations?
    The GPS antenna and receiver acquisition configuration used at the reference station was duplicated on the survey vessel (rover). The base receiver and the rover receiver record their positions concurrently at 10Hz recording intervals throughout the survey. All processed measurements are referenced to the base station coordinates. All static base station GPS sessions were submitted for processing to the NOAA/NGS OPUS software. OPUS results provide an error measurement for each daily solution with a horizontal accuracy estimated as 0.4 cm root mean squared (RMS). The combined horizontal uncertainty is assumed to be at most half of the vertical offset.
  3. How accurate are the heights or depths?
    The GPS antenna and receiver acquisition configuration used at the reference station was duplicated on the survey vessel (rover). The base receiver and the rover receiver record their positions concurrently at 10Hz recording intervals throughout the survey. All processed measurements are referenced to the base station coordinates. OPUS results provide an error measurement for each daily solution. Applying these error measurements, the vertical accuracy of the base station is estimated to be 0.2 cm root mean squared (RMS). The kinematic (rover) trajectories were processed using GrafNav v8.50 software by Novatel, Inc. and Matlab R2015b. Occurrences where a personal watercraft trackline crosses itself were evaluated to determine vertical uncertainty. The combined vertical error from base station coordinate solutions, rover trajectories, and datum transformations is 13.3 cm.
  4. Where are the gaps in the data? What is missing?
    This zip archive contains a horizontal position and vertical elevation xyz single-beam data from June 2014 collected within the wilderness breach. Users are advised to read online Data Series and the rest of the metadata record carefully for additional details.
  5. How consistent are the relationships among the observations, including topology?
    The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center collected shallow water bathymetric data of the shoreface and the wilderness breach on Fire Island, New York, in June 2014.

How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?
Access_Constraints:
The U.S. Geological Survey requests that it be referenced as the originator of this dataset in any future products or research derived from these data.
Use_Constraints: These data should not be used for navigational purposes.
  1. Who distributes the data set? (Distributor 1 of 1)
    U.S. Geological Survey, St Petersburg Coastal and Marine Science Center, St. Petersburg, FL
    Attn: Timothy R. Nelson
    600 4th Street South
    St. Petersburg, FL
    USA

    727-502-8098 (voice)
    727-502-8182 (FAX)
    trnelson@usgs.gov
  2. What's the catalog number I need to order this data set? U.S. Geological Survey DS 1007
  3. What legal disclaimers am I supposed to read?
    This digital publication was prepared by an agency of the United States Government. Although these data have been processed successfully on a computer system at the U.S. Geological Survey, no warranty expressed or implied is made regarding the display or utility of the data on any other system, nor shall the act of distribution imply any such warranty. The U.S. Geological Survey shall not be held liable for improper or incorrect use of the data described and (or) contained herein. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
  4. How can I download or order the data?

Who wrote the metadata?

Dates:
Last modified: 05-Dec-2015
Last Reviewed: 28-Jan-2016
Metadata author:
U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center
Attn: Kathleen E. Wilson
Researcher
600 4th Street South
St. Petersburg, Florida
U.S.

727-502-8099 (voice)
727-502-8182 (FAX)
kwilson@usgs.gov
Metadata standard:
Content Standard for Digital Geospatial Metadata (FGDC-STD-001-1998)

This page is <https://cmgds.marine.usgs.gov/catalog/spcmsc/DS1007_201406_Single_Beam_XYZ_Wilderness_Breach.faq.html>
Generated by mp version 2.9.49 on Mon Sep 10 17:44:22 2018