DS888-metadata: EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]

Metadata:

Identification_Information:
Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 2014
Title:
DS888-metadata: EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)
Edition: first
Geospatial_Data_Presentation_Form: tabular, vector, and raster digital data
Series_Information:
Series_Name: U.S. Geological Survey Data Series
Issue_Identification: 888
Publication_Information:
Publication_Place: St. Petersburg, FL
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.3133/ds888
Description:
Abstract:
American Standard Code Information Interchange XYZ and binary point-cloud data, as well as a seamless (bare-earth and submerged) digital elevation model for part of Fire Island, New York, pre-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5–1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 5.24 centimeters for the bare earth topography. Additional data were insufficient to calculate an RMSE for the submerged topography. A peak sampling rate of 15–30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
Purpose:
The purpose of this project was to produce highly detailed and accurate seamless digital elevation maps for part of Fire Island, New York, pre-Hurricane Sandy (October 2012 hurricane), for use as a management tool and to make these data available to natural-resource managers and research scientists.
Supplemental_Information:
Raw lidar data are not in a format that is generally usable by natural-resource managers and research scientists for scientific analysis. Converting dense lidar elevation data into a readily usable format without loss of essential information requires specialized processing. The U.S. Geological Survey's Coastal and Marine Geology Program (CMGP) has developed custom software to convert raw lidar data into a GIS-compatible map product to be provided to GIS specialists, managers, and scientists. The primary tool used in the conversion process is Airborne Lidar Processing System (ALPS), a multitiered processing system developed originally by a USGS-NASA collaborative project. Specialized processing algorithms are used to convert raw waveform lidar data acquired by the EAARL-B to georeferenced spot (x,y,z) returns for "first surface" and "bare earth" topography. The terms first surface and bare earth refer to the digital elevation data of the terrain, but although first-surface data include vegetation, buildings, and other manmade structures, bare-earth data do not. The zero crossing of the second derivative (that is, detection of stationary points) is used to detect the first return, resulting in "first surface" topography, whereas the trailing edge algorithm (that is, the algorithm searches for the location before the last return where direction changes along the trailing edge) is used to detect the range to the last return, or "bare earth" (the first and last returns being the first and last significant measurable part of the return pulse). Statistical filtering, known as the Random Consensus Filter (RCF), is used to remove false bottom returns and other outliers from the EAARL-B topography data. The filter uses a grid of non-overlapping square cells (buffer) of user-defined size overlaid onto the original point cloud. The user also defines the vertical tolerance (vertical width) based on the topographic complexity and point-sampling density of the data. The maximum allowable elevation range within a cell is established by this vertical tolerance. An iterative process searches for the maximum concentration of points within the vertical tolerance and removes those points outside of the tolerance (Nayegandhi and others, 2009). These data are then converted to the North American Datum of 1983 and the North American Vertical Datum of 1988 (using the GEOID12A model). Each file contains data located in a 2-kilometer by 2-kilometer tile, where the upper-left bound can be ascertained quickly through the filename. The first 3 numbers in the filename represent the left-most UTM east bounding coordinate (e###000) in meters, the next 4 numbers represent the top-most UTM north bounding coordinate (n####000) in meters, and the last 2 numbers (##) represent the UTM zone in which the tile is located (for example, pre_e123_n4567_18).
The development of custom software for creating these data products has been supported by the U.S. Geological Survey CMGP's Lidar for Science and Resource Management project. Processed data products are used by the U.S. Geological Survey CMGP's National Assessment of Coastal Change Hazards project to quantify the vulnerability of shorelines to coastal change hazards such as severe storms, sea-level rise, and shoreline erosion and retreat.
Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20121027
Currentness_Reference: ground condition
Status:
Progress: Complete
Maintenance_and_Update_Frequency: None planned
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -73.3684
East_Bounding_Coordinate: -72.6776
North_Bounding_Coordinate: 40.7906
South_Bounding_Coordinate: 40.6023
Keywords:
Theme:
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: elevation
Theme:
Theme_Keyword_Thesaurus: USGS Metadata Identifier
Theme_Keyword: USGS:9ef49dd8-f00e-4834-ab39-11509dbcd138
Theme:
Theme_Keyword_Thesaurus: General
Theme_Keyword: Airborne Lidar Processing System
Theme_Keyword: ALPS
Theme_Keyword: Cessna 310
Theme_Keyword: Digital Elevation Model
Theme_Keyword: DEM
Theme_Keyword: EAARL-B
Theme_Keyword: Experimental Advanced Airborne Research Lidar
Theme_Keyword: laser altimetry
Theme_Keyword: lidar
Theme_Keyword: remote sensing
Theme_Keyword: topography
Theme:
Theme_Keyword_Thesaurus: Global Change Master Science Directory
Theme_Keyword: LAND SURFACE > TOPOGRAPHY > TERRAIN ELEVATION
Theme_Keyword: OCEAN > COASTAL PROCESSES > BARRIER ISLANDS
Theme_Keyword: OCEAN > COASTAL PROCESSES > BEACHES
Theme_Keyword: OCEAN > COASTAL PROCESSES > SHORELINE DISPLACEMENT
Theme_Keyword:
DOI/USGS/CMG > COASTAL AND MARINE GEOLOGY, U.S. GEOLOGICAL SURVEY, U.S. DEPARTMENT OF INTERIOR
Theme:
Theme_Keyword_Thesaurus: GCMD Instrument
Theme_Keyword: LIDAR > LIGHT DETECTION AND RANGING
Theme:
Theme_Keyword_Thesaurus: Data Categories for Marine Planning
Theme_Keyword: distributions
Theme_Keyword: bathymetry and elevation
Theme:
Theme_Keyword_Thesaurus: Marine Realms Information Bank (MRIB) Keywords
Theme_Keyword: altimetry
Theme_Keyword: topographic mapping
Theme:
Theme_Keyword_Thesaurus: USGS Thesaurus
Theme_Keyword: LIDAR
Theme_Keyword: topography
Theme_Keyword: digital elevation models
Place:
Place_Keyword_Thesaurus: Geographic Names Information System
Place_Keyword: Suffolk
Place_Keyword: New York
Place_Keyword: Atlantic Ocean
Stratum:
Stratum_Keyword_Thesaurus: General
Stratum_Keyword: Seamless (bare earth and submerged)
Temporal:
Temporal_Keyword_Thesaurus: General
Temporal_Keyword: 2012
Temporal_Keyword: Pre-Hurricane Sandy
Access_Constraints: None
Use_Constraints:
The U.S. Geological Survey requests to be acknowledged as originator of these data in future products or derivative research.
Point_of_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Xan Fredericks
Contact_Organization:
Cherokee Nation Technology Solutions, U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL
Contact_Position: Lidar Validation and Processing Analyst
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street South
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: 727 502-8086
Contact_Facsimile_Telephone: 727 502-8182
Contact_Electronic_Mail_Address: afredericks@usgs.gov
Data_Set_Credit:
Acknowledgment of the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, as a data source would be appreciated in products developed from these data, and such acknowledgment as is standard for citation and legal practices for data source is expected. Sharing of new data layers developed directly from these data would also be appreciated by the U.S. Geological Survey staff. Users should be aware that comparisons with other datasets for the same area from other periods may be inaccurate because of inconsistencies resulting from changes in photointerpretation, mapping conventions, and digital processes over time. These data are not legal documents and are not to be used as such.
Security_Information:
Security_Classification_System: Unclassified
Security_Classification: Unclassified
Security_Handling_Description: None
Native_Data_Set_Environment:
Microsoft Windows 7 Enterprise Service Pack 1; Esri ArcCatalog 10.1.1.3143
Cross_Reference:
Citation_Information:
Originator: Nayegandhi, A., Brock, J.C., and Wright, C.W.
Publication_Date: 2009
Title:
Small footprint, waveform-resolving lidar estimation of submerged and subcanopy topography in coastal environments
Geospatial_Data_Presentation_Form:Series_Information:
Series_Name: International Journal of Remote Sensing
Issue_Identification: v. 30 no. 4, p. 861-878
Data_Quality_Information:
Attribute_Accuracy:
Attribute_Accuracy_Report:
The expected accuracy of the measured variables is as follows: attitude within 0.05 degree, 3 centimeters nominal ranging accuracy, and vertical elevation accuracy of 5.24 centimeters RMSE for the bare earth topographic surface. Quality checks are built into the data-processing software.
Logical_Consistency_Report:
Each file contains data located in a 2-kilometer by 2-kilometer tile where the upper-left bound can be ascertained quickly through the filename. The first 3 numbers in the filename represent the left-most UTM east bounding coordinate (e###000) in meters, the next 4 numbers represent the top-most UTM north bounding coordinate (n####000) in meters, and the last 2 numbers (##) represent the UTM zone in which the tile is located (for example, pre_e123_n4567_18).
Completeness_Report:
Several regions of the raster dataset are labeled as "No Data" in the GeoTIFF file. These "No Data" areas are a result of the survey not covering a particular region, optical water depth of greater than 1.5 Secchi disc depths, or the manual removal of lidar processing artifacts. The presence of "No Data" values does not necessarily indicate an absence of land, but rather an absence of survey coverage or the presence of prolific vegetation that the laser is not able to penetrate to return bare-earth data. This metadata file is generalized; each data file in this Data Series has its own corresponding metadata file.
Positional_Accuracy:
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report:
Raw elevation measurements have been determined to be within 1 meter in horizontal accuracy.
Vertical_Positional_Accuracy:
Vertical_Positional_Accuracy_Report:
Typical vertical elevation accuracies for these data are consistent with the point elevation data; however, a ground-control survey is not completed simultaneously with every lidar survey. Vertical accuracies may differ based on the type of terrain and the accuracy of the GPS and aircraft-attitude measurements.
Lineage:
Process_Step:
Process_Description:
The data were collected using a Cessna 310 aircraft. The EAARL-B laser scanner collects the data using a green-wavelength (532-nanometer) raster scanning laser, while a digital camera acquires a visual record of the flight. The data are stored on hard drives and archived at the U.S. Geological Survey office in St. Petersburg, Florida. The navigational data are processed and then, along with the raw data, are downloaded into ALPS, or the Airborne Lidar Processing System (20121105–20140326). Data are converted from units of time to x,y,z points for elevation and formatted into .las and .xyz files, and the derived surface data are converted into raster data (GeoTIFFs).
Process_Date: 20140326
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Xan Fredericks
Contact_Organization:
Cherokee Nation Technology Solutions, U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL
Contact_Position: Lidar Validation and Processing Analyst
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street South
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: 727 502-8086
Contact_Electronic_Mail_Address: afredericks@usgs.gov
Process_Step:
Process_Description:
A bias correction of -16 centimeters (value determined from instrument calibrations) was applied to the point-cloud data using ALPS (20140905) to account for a change in configuration parameters. Data are formatted into .las and .xyz files, and the derived surface data are converted into raster data (GeoTIFFs).
Process_Date: 20140905
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Christine Kranenburg
Contact_Organization:
Cherokee Nation Technology Solutions, U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL
Contact_Position: Programmer/Analyst
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street South
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: 727 502-8129
Contact_Electronic_Mail_Address: ckranenburg@usgs.gov
Process_Step:
Process_Description: Metadata imported into ArcCatalog 10.1.1.3143 from XML file.
Process_Date: 20140404
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Melanie Masessa
Contact_Organization:
Cherokee Nation Technology Solutions, U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL
Contact_Position: GIS Analyst
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street South
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: 727 502-8096
Contact_Electronic_Mail_Address: mmasessa@usgs.gov
Process_Step:
Process_Description:
Keywords section of metadata optimized for discovery in USGS Coastal and Marine Geology Data Catalog.
Process_Date: 20170124
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Alan O. Allwardt
Contact_Position: Contractor -- Information Specialist
Contact_Address:
Address_Type: mailing and physical address
Address: 2885 Mission Street
City: Santa Cruz
State_or_Province: CA
Postal_Code: 95060
Contact_Voice_Telephone: 831-460-7551
Contact_Facsimile_Telephone: 831-427-4748
Contact_Electronic_Mail_Address: aallwardt@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword.
Process_Date: 20201013
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: mailing and physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Spatial_Data_Organization_Information:
Indirect_Spatial_Reference: Tiling Index
Direct_Spatial_Reference_Method: Raster
Raster_Object_Information:
Raster_Object_Type: Pixel
Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:
Planar:
Grid_Coordinate_System:
Grid_Coordinate_System_Name: Universal Transverse Mercator
Universal_Transverse_Mercator:
UTM_Zone_Number: 18
Transverse_Mercator:
Scale_Factor_at_Central_Meridian: 0.999600
Longitude_of_Central_Meridian: -75.000000
Latitude_of_Projection_Origin: 0
False_Easting: 500000.000000
False_Northing: 0
Planar_Coordinate_Information:
Planar_Coordinate_Encoding_Method: row and column
Coordinate_Representation:
Abscissa_Resolution: 2.500000
Ordinate_Resolution: 2.500000
Planar_Distance_Units: meters
Geodetic_Model:
Horizontal_Datum_Name: North American Datum of 1983
Ellipsoid_Name: Geodetic Reference System 80
Semi-major_Axis: 6378137.000000
Denominator_of_Flattening_Ratio: 298.25722210100002
Vertical_Coordinate_System_Definition:
Altitude_System_Definition:
Altitude_Datum_Name: North American Vertical Datum of 1988
Altitude_Resolution: 0.20
Altitude_Distance_Units: meters
Altitude_Encoding_Method:
Explicit elevation coordinate included with horizontal coordinates
Entity_and_Attribute_Information:
Detailed_Description:
Entity_Type:
Entity_Type_Label: *.xyz
Entity_Type_Definition:
The "*" represents the file name. The file is .xyz ASCII space-delimited.
Entity_Type_Definition_Source: Internally devised to maintain naming consistency.
Attribute:
Attribute_Label: X
Attribute_Definition: UTM easting in meters
Attribute_Definition_Source: NAD83
Attribute_Domain_Values:
Unrepresentable_Domain: varying value range
Attribute:
Attribute_Label: Y
Attribute_Definition: UTM northing in meters
Attribute_Definition_Source: NAD83
Attribute_Domain_Values:
Unrepresentable_Domain: varying value range
Attribute:
Attribute_Label: Z
Attribute_Definition: Altitude in meters
Attribute_Definition_Source: NAVD88
Attribute_Domain_Values:
Unrepresentable_Domain: varying value range
Overview_Description:
Entity_and_Attribute_Overview:
The input parameters for the random consensus filter (RCF) were: grid cell size (buffer) = 500 centimeters x 500 centimeters for bare earth and 1000 centimeters x 1000 centimeters for submerged topography; vertical tolerance (vertical width) = 60 centimeters for bare earth and 40 centimeters for submerged topography. Each pixel of the encoded GeoTIFF has an explicit elevation value associated with it. The GeoTIFF grid is encoded with the interpolated elevation value at a 2.5-meter resolution. The GeoTIFFs are created using Delauney triangulation, followed by linear interpolation based on the routines in the International Telephone and Telegraph Visual Information Solutions Interactive Data Language (IDL) code.
Entity_and_Attribute_Detail_Citation: http://pubs.usgs.gov/of/2009/1078/
Distribution_Information:
Distributor:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Xan Fredericks
Contact_Position:
Lidar Validation and Processing Analyst, Cherokee Nation Technology Solutions
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street South
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: 727 502-8086
Resource_Description: DS 888
Distribution_Liability:
Although these data have been processed successfully on a computer system at the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data on any other system, or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. The USGS shall not be held liable for improper or incorrect use of the data described or contained herein. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: GeoTIFF
Format_Version_Number: 2
Format_Specification: GeoTIFF
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information:
Network_Address:
Network_Resource_Name: https://doi.org/10.3133/ds888
Fees: None
Metadata_Reference_Information:
Metadata_Date: 20231010
Metadata_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Melanie Masessa
Contact_Organization:
Cherokee Nation Technology Solutions, U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL
Contact_Position: GIS Analyst
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street South
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: 727 502-8096
Contact_Electronic_Mail_Address: mmasessa@usgs.gov
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001-1998
Metadata_Time_Convention: local time

This page is <https://cmgds.marine.usgs.gov/catalog/spcmsc/DS888-metadata.html>
Generated by mp version 2.9.51 on Wed Oct 2 16:36:35 2024