Hurricane Florence Assessment of Potential Coastal Change Impacts: NHC Advisory 57, 1100 AM EDT THU SEP 13 2018

Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]

Metadata:

Identification_Information:
Citation:
Citation_Information:
Originator: Justin J. Birchler
Originator: Kara S. Doran
Originator: Heather A. Schreppel
Originator: Hilary F. Stockdon
Publication_Date: 20190619
Title:
Hurricane Florence Assessment of Potential Coastal Change Impacts: NHC Advisory 57, 1100 AM EDT THU SEP 13 2018
Geospatial_Data_Presentation_Form: vector digital data
Series_Information:
Series_Name: U.S. Geological Survey Data Release
Issue_Identification: doi:10.5066/P9Z362BC
Publication_Information:
Publication_Place: St. Petersburg, FL
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/P9Z362BC
Larger_Work_Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 2019
Title: USGS Coastal Change Hazards Portal
Online_Linkage: https://marine.usgs.gov/coastalchangehazardsportal
Description:
Abstract:
This dataset defines storm-induced coastal erosion hazards for the Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Florence in September 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. . All hydrodynamic and morphologic variables are included in this dataset.
Purpose:
To provide data on the probability of storm-induced coastal erosion hazards for the Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, New Jersey and New York coast post-Hurricane Florence.
Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20180913
Currentness_Reference: ground condition
Status:
Progress: Complete
Maintenance_and_Update_Frequency:
None planned, however future updates and post-storm analyses are anticipated.
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -81.458719
East_Bounding_Coordinate: -71.854854
North_Bounding_Coordinate: 41.073131
South_Bounding_Coordinate: 30.696351
Keywords:
Theme:
Theme_Keyword_Thesaurus: USGS Metadata Identifier
Theme_Keyword: USGS:52d856fe-68c2-4a13-98e5-d917b4522a2e
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: U.S. Geological Survey
Theme_Keyword: USGS
Theme_Keyword: St. Petersburg Coastal and Marine Science Center
Theme_Keyword: Coastal and Marine Geology Program
Theme_Keyword: CMGP
Theme_Keyword: SPCMSC
Theme_Keyword: Hurricane Florence
Theme_Keyword: coastal
Theme:
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: oceans
Theme_Keyword: elevation
Theme_Keyword: environment
Theme_Keyword: geoscientificInformation
Theme:
Theme_Keyword_Thesaurus: USGS Thesaurus
Theme_Keyword: hazards
Theme_Keyword: marine geology
Theme_Keyword: ocean sciences
Theme_Keyword: coastal processes
Theme_Keyword: erosion
Theme:
Theme_Keyword_Thesaurus: Data Categories for Marine Planning
Theme_Keyword: distributions
Theme_Keyword: bathymetry and elevation
Theme_Keyword: physical habitats and geomorphology
Theme:
Theme_Keyword_Thesaurus: Marine Realms Information Bank (MRIB) Keywords
Theme_Keyword: effects of coastal change
Theme_Keyword: shoreline accretion
Theme_Keyword: shoreline erosion
Theme_Keyword: storm erosion
Theme_Keyword: topographic mapping
Theme_Keyword: hurricanes and typhoons
Place:
Place_Keyword_Thesaurus: Geographic Names Information System
Place_Keyword: United States of America
Place_Keyword: Georgia
Place_Keyword: South Carolina
Place_Keyword: North Carolina
Place_Keyword: Virginia
Place_Keyword: Maryland
Place_Keyword: Delaware
Place_Keyword: New Jersey
Place_Keyword: New York
Access_Constraints: None
Use_Constraints:
Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. The U.S. Geological Survey requests to be acknowledged as originators of the data in future products or derivative research.
Point_of_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Hilary Stockdon
Contact_Address:
Address_Type: mailing and physical
Address: 600 4th Street South
City: Saint Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: UNITED STATES
Contact_Voice_Telephone: 727-502-8074
Contact_Facsimile_Telephone: 727-502-8182
Contact_Electronic_Mail_Address: hstockdon@usgs.gov
Data_Set_Credit:
The predicted elevations of storm surge were extracted from the National Oceanic and Atmospheric Administration’s (NOAA) Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model, which has been employed by NOAA in inundation risk studies and operational storm surge forecasting. Wave runup and setup conditions were generated using NOAA's WaveWatch III model.
Native_Data_Set_Environment:
Microsoft Windows 7 Version 6.1 (Build 7600); Esri ArcGIS 10.0.4.4000
Data_Quality_Information:
Logical_Consistency_Report:
No additional checks for consistency were performed on this data.
Completeness_Report:
This dataset includes dune morphology and hurricane hydrodynamic data used to generate probabilities of hurricane-induced erosion, elevation data from lidar surveys are not included. Measurements were collected approximately every 10 meters (m) and summarized to 1-kilometer (km) segments.
Positional_Accuracy:
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report: Horizontal accuracy was not estimated.
Vertical_Positional_Accuracy:
Vertical_Positional_Accuracy_Report:
Vertical accuracy for hydrodynamic measurements (surge, setup, and runup) is dependent on input data. SLOSH model accuracy is estimated to be +/- 20 percent of the calculated value. No other accuracy checks were performed. Vertical accuracy for dune morphology (dune crest and toe elevation) data is dependent on the positional accuracy of the lidar data. Estimated accuracy of lidar surveys are +/- 15 centimeters. However, vertical accuracies may vary based on the type of terrain (for example, inaccuracies may increase as slope increases or with the presence of extremely dense vegetation), the accuracy of the global positioning system (GPS), and aircraft-attitude measurements.
Lineage:
Source_Information:
Source_Citation:
Citation_Information:
Originator:
National Hurricane Center, National Oceanic and Atmospheric Administration
Publication_Date: 20180913
Title: Probabilistic Hurricane Storm Surge
Online_Linkage: https://slosh.nws.noaa.gov/psurge2.0/index.php
Type_of_Source_Media: Online digital data
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20180913
Source_Currentness_Reference: The date when web page was last modified.
Source_Citation_Abbreviation: Psurge
Source_Contribution:
Data provides water levels that have a 1 in 10 chance of being exceeded during the next 3 days.
Source_Information:
Source_Citation:
Citation_Information:
Originator: NOAA National Weather Service Environmental Modeling Center
Publication_Date: 20180913
Title: NOAA Wavewatch III
Online_Linkage: https://polar.ncep.noaa.gov/waves
Type_of_Source_Media: Online digital data
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20180913
Source_Currentness_Reference: The date when the model was run.
Source_Citation_Abbreviation: WW3
Source_Contribution:
Model that was used to estimate wave setup and runup conditions for Hurricane Florence.
Source_Information:
Source_Citation:
Citation_Information:
Originator: United States Army Corps of Engineers (USACE)
Publication_Date: 20180514
Title:
2016 USACE Post-Matthew Topobathy Lidar: Southeast Coast (VA, NC, SC, GA and FL)
Other_Citation_Details: Geographic Coverage: GA, SC, NC, VA
Online_Linkage: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=5184
Type_of_Source_Media: Online digital data
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20161028
Ending_Date: 20161126
Source_Currentness_Reference: The date when lidar surveys were collected.
Source_Citation_Abbreviation: USACE Southeast 2016
Source_Contribution:
A lidar survey that was used to estimate dune morphology variables.
Source_Information:
Source_Citation:
Citation_Information:
Originator:
Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), National Geodetic Survey (NGS), Remote Sensing Division
Publication_Date: 20160523
Title:
2014 NOAA Post Hurricane Sandy Topobathymetric LiDAR Mapping for Shoreline Mapping
Other_Citation_Details:
Geographic Coverage: SC (Winyah Bay to SC/NC border), NC, VA, MD, DE, NJ, NY
Online_Linkage: https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/4800/
Type_of_Source_Media: Online digital data
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20140108
Ending_Date: 20140727
Source_Currentness_Reference: The date when lidar surveys were collected.
Source_Citation_Abbreviation: NOAA 2014 MD-NY
Source_Contribution:
A lidar survey that was used to estimate dune morphology variables.
Process_Step:
Process_Description:
Process_Description: For dune morphology data: Elevation data from lidar surveys were interpolated in MATLAB (version 2017a) to a gridded domain that was rotated parallel to the shoreline and had a resolution of 10 m in the longshore direction and 2.5 m in the cross-shore direction. The interpolation method applied spatial filtering with a Hanning window that was twice as wide as the grid resolution. Dune morphology data were extracted from the elevation grid in MATLAB. Dune morphology data were then summarized to 1 km sections. Sections with greater than 75 percent of data missing were flagged with the invalid number of -999. The 1-km smoothed dune crest (DHIGH), toe (DLOW) and root mean square (RMS) error for each (DHIrms and DLOrms) were written to line shapefiles using MATLAB's shapewrite.m script.
Source_Used_Citation_Abbreviation: USACE Southeast 2016
Source_Used_Citation_Abbreviation: NOAA 2014 MD-NY
Process_Date: 2018
Source_Produced_Citation_Abbreviation: Dune morphology (DHIGH, DLOW, DHIrms, DLOrms)
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Justin J. Birchler
Contact_Address:
Address_Type: mailing and physical
Address: 600 4th Street South
City: Saint Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: UNITED STATES
Contact_Voice_Telephone: 727-502-8019
Contact_Facsimile_Telephone: 727-502-8182
Contact_Electronic_Mail_Address: jbirchler@usgs.gov
Process_Step:
Process_Description:
For hydrodynamic data: Water level was computed in MATLAB by adding storm surge from NOAA’s Probabilistic Tropical Storm Surge (P- Surge) model (https://slosh.nws.noaa.gov/psurge2.0/) to wave setup and runup. The wave height and period used for calculating wave runup and setup came from the Wavewatch III model. Hydrodynamic parameters were calculated in MATLAB and exported into ArcGIS shapefile format. For details on modeling parameterization, see: Stockdon, H.F., Doran, K.J., Thompson, D.M., Sopkin, K.L., Plant, N.G., and Sallenger, A.H., 2012, National assessment of hurricane-induced coastal erosion hazards: Gulf of Mexico: U.S. Geological Survey Open-File Report 2012-1084, 51 p. https://doi.org/10.3133/ofr20121084
Source_Used_Citation_Abbreviation: Psurge
Source_Used_Citation_Abbreviation: WW3
Process_Date: 20180913
Source_Produced_Citation_Abbreviation: Hydrodynamics (SURGE, SETUP, RUNUP)
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Justin J. Birchler
Contact_Address:
Address_Type: mailing and physical
Address: 600 4th Street South
City: Saint Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: UNITED STATES
Contact_Voice_Telephone: 727-502-8019
Contact_Facsimile_Telephone: 727-502-8182
Contact_Electronic_Mail_Address: jbirchler@usgs.gov
Process_Step:
Process_Description:
Probabilities of coastal erosion hazards were based on estimating the likelihood that the beach system would experience erosion and deposition patterns consistent with collision (PCOL), overwash (POVW), or inundation (PIND) regimes. The regimes were calculated by using values of dune morphology and mean and extreme water levels for each 1 km section, such that the probability of collision (PCOL) occurs when extreme water levels reach the dune toe; overwash (POVW) when extreme water levels reach the dune crest; and inundation (PIND) when mean water levels reach the dune crest. Probabilities were calculated in MATLAB and exported using MATLAB's shapewrite.m script. For details on modeling parameterization, see: Stockdon, H.F., Doran, K.J., Thompson, D.M., Sopkin, K.L., Plant, N.G., and Sallenger, A.H., 2012, National assessment of hurricane-induced coastal erosion hazards: Gulf of Mexico: U.S. Geological Survey Open-File Report 2012-1084, 51 p. https://doi.org/10.3133/ofr20121084
Source_Used_Citation_Abbreviation: Dune morphology
Source_Used_Citation_Abbreviation: Hydrodynamics
Process_Date: 20180913
Source_Produced_Citation_Abbreviation: Probabilities (PCOL, POVW, PIND)
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Justin J. Birchler
Contact_Address:
Address_Type: mailing and physical
Address: 600 4th Street South
City: Saint Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: UNITED STATES
Contact_Voice_Telephone: 727-502-8019
Contact_Facsimile_Telephone: 727-502-8182
Contact_Electronic_Mail_Address: jbirchler@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword.
Process_Date: 20201013
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Spatial_Data_Organization_Information:
Direct_Spatial_Reference_Method: Vector
Point_and_Vector_Object_Information:
SDTS_Terms_Description:
SDTS_Point_and_Vector_Object_Type: String
Point_and_Vector_Object_Count: 1809
Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:
Geographic:
Latitude_Resolution: 8.9831528411952133e-009
Longitude_Resolution: 8.9831528411952133e-009
Geographic_Coordinate_Units: Decimal Degrees
Geodetic_Model:
Horizontal_Datum_Name: D_WGS_1984
Ellipsoid_Name: WGS_1984
Semi-major_Axis: 6378137.0
Denominator_of_Flattening_Ratio: 298.257223563
Entity_and_Attribute_Information:
Detailed_Description:
Entity_Type:
Entity_Type_Label: Florence_PCOI_line
Entity_Type_Definition:
Probabilities of hurricane-induced coastal erosion, dune morphology, and hurricane hydrodynamic data
Entity_Type_Definition_Source: USGS
Attribute:
Attribute_Label: FID
Attribute_Definition: Internal feature number.
Attribute_Definition_Source: Esri
Attribute_Domain_Values:
Unrepresentable_Domain:
Sequential unique whole numbers that are automatically generated.
Attribute:
Attribute_Label: Shape
Attribute_Definition: Feature geometry.
Attribute_Definition_Source: Esri
Attribute_Domain_Values:
Unrepresentable_Domain: Coordinates defining the features.
Attribute:
Attribute_Label: DHIGH
Attribute_Definition:
Elevation of dune crest, in meters, using the North American Vertical Datum of 1988 (NAVD88). Extracted from lidar surveys collected from January 2014 to November 2016.
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 1.176346
Range_Domain_Maximum: 17.436601
Attribute_Units_of_Measure: meters NAVD88
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: DLOW
Attribute_Definition:
Elevation of the dune toe, in meters NAVD88. Extracted from lidar surveys collected January 2014 to November 2016.
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 1.043658
Range_Domain_Maximum: 4.241419
Attribute_Units_of_Measure: meters NAVD88
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: DHIrms
Attribute_Definition:
Root mean squared error of dune crest elevation measurements (square meters).
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.193305
Range_Domain_Maximum: 2.565949
Attribute_Units_of_Measure: square meters
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: DLOrms
Attribute_Definition:
Root mean square error of dune toe elevation measurements (square meters).
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 1.064942
Attribute_Units_of_Measure: square meters
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: SURGE
Attribute_Definition: Storm surge water level
Attribute_Definition_Source: NOAA
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 2.703896
Attribute_Units_of_Measure: meters NAVD88
Attribute:
Attribute_Label: RUNUP
Attribute_Definition: Wave runup water level
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.811993
Range_Domain_Maximum: 4.868028
Attribute_Units_of_Measure: meters NAVD88
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: SETUP
Attribute_Definition: Wave setup water level
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.058725
Range_Domain_Maximum: 1.90243
Attribute_Units_of_Measure: meters NAVD88
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: PCOL
Attribute_Definition: Probability of collision
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.642086
Range_Domain_Maximum: 99.999949
Attribute_Units_of_Measure: percent
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: POVW
Attribute_Definition: Probability of overwash
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 99.993676
Attribute_Units_of_Measure: percent
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: PIND
Attribute_Definition: Probability of inundation
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 99.274229
Attribute_Units_of_Measure: percent
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: MEAN
Attribute_Definition: Mean water level (surge + setup)
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.748466
Range_Domain_Maximum: 4.251126
Attribute_Units_of_Measure: meters NAVD88
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: EXTREME
Attribute_Definition: Extreme water level (surge + runup).
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 1.490571
Range_Domain_Maximum: 6.589936
Attribute_Units_of_Measure: meters NAVD88
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: -999
Enumerated_Domain_Value_Definition: Null value
Enumerated_Domain_Value_Definition_Source: USGS
Attribute:
Attribute_Label: TIDE
Attribute_Definition: Predicted tide water level
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 0
Attribute_Units_of_Measure: meters NAVD88
Distribution_Information:
Distributor:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Justin J. Birchler
Contact_Address:
Address_Type: mailing and physical
Address: 600 4th Street South
City: Saint Petersburg
State_or_Province: FL
Postal_Code: 33701
Contact_Voice_Telephone: 727-502-8019
Contact_Facsimile_Telephone: 727-502-8182
Contact_Electronic_Mail_Address: jbirchler@usgs.gov
Distribution_Liability:
Although these data have been processed successfully on a computer system at the USGS, no warranty expressed or implied is made regarding the display or utility of the data on any other system, or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. The USGS shall not be held liable for improper or incorrect use of the data described and/or contained herein. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: shapefile
File_Decompression_Technique: zip
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information:
Fees: None, if obtained online.
Metadata_Reference_Information:
Metadata_Date: 20201013
Metadata_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Justin J. Birchler
Contact_Address:
Address_Type: mailing and physical
Address: 600 4th Street South
City: Saint Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: UNITED STATES
Contact_Voice_Telephone: 727-502-8019
Contact_Facsimile_Telephone: 727-502-8182
Contact_Electronic_Mail_Address: jbirchler@usgs.gov
Metadata_Standard_Name: Content Standard for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001-1998
Metadata_Time_Convention: local time

This page is <https://cmgds.marine.usgs.gov/catalog/spcmsc/Florence_PCOI_line_metadata.html>
Generated by mp version 2.9.50 on Tue Sep 21 18:18:49 2021