Attribute_Accuracy_Report:
The attributes in this data layer correspond to an average of mobility estimates for 80 individual representative wave scenarios, weighted by probability of occurrence over the time period of 04/01/2010 to 08/01/2012, for sediment and various classes of SRBs, the characteristics of which may be found in the included SRB_classes.txt file. The bottom shear stress used in estimating mobility was calculated from wave and current estimates generated with Delft3D, and would vary if different models were used or if different model inputs (such as bathymetry, forcing winds, and boundary conditions) or parameterizations were chosen. Calculated currents were depth-averaged and therefore the calculated mobility values are expected to be most valid in well-mixed regions, e.g., the surf zone. Mobility estimates would vary for different size or density objects and/or if a different formulation for calculating the critical stress value is used. Mobility estimates would also vary if a different set of wave scenarios (see wave_scenarios.txt) were used to represent the time frame of interest, or if a different time period of interest was examined.
No duplicate features are present. All polygons are closed, and all lines intersect where intended. No undershoots or overshoots are present.
All model output values were used in the calculation of this statistic. The statistic was calculated as an average of mobility estimates for 80 individual representative wave scenarios, weighted by probability of occurrence over the time period of 04/01/2010 to 08/01/2012, for sediment and various classes of SRBs, the characteristics of which may be found in the included SRB_classes.txt file. The bottom shear stress used in estimating mobility was calculated from wave and current estimates generated with Delft3D, and would vary if different models were used or if different model inputs (such as bathymetry, forcing winds, and boundary conditions) or parameterizations were chosen. Calculated currents were depth-averaged and therefore the calculated mobility values are expected to be most valid in well-mixed regions, e.g., the surf zone. Mobility estimates would vary for different size or density objects and/or if a different formulation for calculating the critical stress value is used. Mobility estimates would also vary if a different set of wave scenarios (see wave_scenarios.txt) were used to represent the time frame of interest, or if a different time period of interest was examined.
Source_Information:
Source_Citation:
Citation_Information:
Originator: NOAA National Centers for Environmental Prediction (NCEP)
Publication_Date: 20110601
Title: NOAA/NCEP Global Forecast System (GFS) Atmospheric Model
Publication_Information:
Publication_Place: Camp Springs, MD
Publisher: NOAA National Centers for Environmental Prediction
Online_Linkage: http://nomads.ncdc.noaa.gov/data.php
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20100401
Ending_Date: 20120531
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NOAA GFS
Source_Contribution:
Wind speed data at 10 m above the sea surface from the NOAA Global Forecast System (GFS) 0.5 degree model is interpolated by NOAA to the 4' Wavewatch3 grid and archived. These archived data are used to drive the numerical wave and circulation model that creates estimated of bottom shear stress.
Source_Information:
Source_Citation:
Citation_Information:
Originator: NOAA National Centers for Environmental Prediction (NCEP
Publication_Date: 20121001
Title: NOAA/NWS/NCEP 4' Wavewatch III Operational Wave Forecast
Publication_Information:
Publication_Place: Camp Springs, MD
Publisher: NOAA National Centers for Environmental Prediction
Online_Linkage: http://polar.ncep.noaa.gov/waves/index2.shtml
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20100401
Ending_Date: 20120531
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NOAA WW3
Source_Contribution:
Boundary conditions for the wave model were provided by the 4' NOAA/NWS/NCEP Wavewatch III operational ocean wave forecast.
Source_Information:
Source_Citation:
Citation_Information:
Originator: National Data Buoy Center
Publication_Date: 20120901
Title: National Data Buoy Center Buoy 42040
Publication_Information:
Publication_Place: Stennis Space Center, MS
Publisher: National Oceanic and Atmospheric Administration
Online_Linkage: http://www.ndbc.noaa.gov/station_page.php?station=42040
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20100401
Ending_Date: 20120801
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NDBC42040
Source_Contribution:
Observational wave data from NDBC Buoy 42040 were used to identify the percentage of observations between 04/01/2010 and 08/01/2012 which corresponded to each of 80 wave scenarios distinguished by wave height and direction, and to identify a characteristic time period in the record for each scenario.
Process_Step:
Process_Description:
Using observed wave conditions from NOAA buoy 42040 and Mathworks MATLAB software 2012A, the hourly wave buoy observations between 04/01/2010 and 08/01/2012 were each classified as falling into 1 of 80 wave scenarios defined by wave height and direction. For each scenario, a specific time step was identified in the record which was most representative of the other observations within the same wave height and direction bins based on both wave (height, period, and direction) and wind (speed and direction) characteristics. The characteristics of these scenarios, along with the percentage of observation in the record and the chosen representative time period, may be found in wave_scenarios.txt. The probability of occurrence for each wave scenario along with its characteristics and representative time periods were saved in MATLAB .mat format.
Source_Used_Citation_Abbreviation: NDBC42040
Process_Date: 2012
Source_Produced_Citation_Abbreviation: WAVE_SCENARIOS
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Nathaniel Plant
Contact_Organization: USGS
Contact_Position: Oceanographer
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street S
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Contact_Voice_Telephone: (727) 803-8747 x3072
Contact_Facsimile_Telephone: (727) 803-2023
Contact_Electronic_Mail_Address: nplant@usgs.gov
Process_Step:
Process_Description:
The D-Flow and D-Waves components of the Deltares Delft3D numerical model suite (version 4.00.01) were used to estimate bottom orbital velocity, peak period, peak wave direction, and east and north components of wind and wave-driven velocity for the offshore wave conditions corresponding to each scenario's representative time period (characteristics of which may be found in the included wave_scenarios.txt file) in each grid cell in the model domain. The wave model D-Waves, based on the Simulating WAves Nearshore (SWAN) model, is a 3rd generation phase-averaged numerical wave model which conserves wave energy subject to generation, dissipation, and transformation processes and resolves spectral energy density over a range of user-specified frequencies and directions. D-Wave was used in stationary mode. D-Flow solves the shallow water Navier Stokes equations and is run in 2-D depth-averaged mode, with linkage to D-Waves allowing the generation of wave-driven currents via wave radiation stress forcing. Default values for model parameters governing horizontal viscosity, bottom roughness, and wind drag were used. Neumann boundary conditions were used along the east, west, and south model boundaries with harmonic forcing set to zero. Model bathymetry was provided by the NOAA National Geophysical Data Center Northern Gulf Coast digital elevation map, referenced to NAVD88.
Significant wave height, dominant wave period, and wave direction were prescribed as D-Wave TPAR format files every 30 grid cells along the model boundary using results from the NOAA Wavewatch III 4' multi-grid model for a representative moment in time corresponding to the offshore wave conditions of the scenario, the specific time of which may be found in the included wave_scenarios.txt file. A JONSWAP (JOint NOrth Sea WAve Project) spectral shape was assumed at these boundary points. Wind forcing was provided using the archived WavewatchIII 4' winds, extracted from the NOAA GFS wind model, for this time. The D-Wave directional space covers a full circle with a resolution was 5 degrees (72 bins). The frequency range was specified as 0.05-1 Hz with logarithmic spacing. Bottom friction calculations used the JONSWAP formulation with a uniform roughness coefficient of 0.067 m2/s3. 3rd-generation physics are activated which accounts for wind wave generation, triad wave interactions and whitecapping (via the Komen et al parameterization). Depth-induced wave breaking dissipation is included using the method of Battjes and Janssen with default values for alpha (1) and gamma (0.73). Wave model outputs of bottom orbital velocity, peak period, and peak wave direction were extracted on the wave model grid, and current model outputs of east and north current velocity component were extracted and interpolated to the wave model grid (staggered points in relation to the current model grid).
NDBC observations from station 42012 for the representative scenario time periods were used to validate the wave model results.
Source_Used_Citation_Abbreviation: NOAA GFS
Source_Used_Citation_Abbreviation: NOAA WW3
Source_Used_Citation_Abbreviation: WAVE_SCENARIOS
Process_Date: 2012
Source_Produced_Citation_Abbreviation: DELFT3D
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Joseph W. Long
Contact_Organization: U.S. Geological Survey
Contact_Position: Oceanographer
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street S
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: (727) 803-8747 x3024
Contact_Facsimile_Telephone: (727) 803-2032
Contact_Electronic_Mail_Address: jwlong@usgs.gov
Process_Step:
Process_Description:
Use the wave model and current model results to calculate the bottom shear stress within each model grid cell for each scenario using Mathworks MATLAB software (v2012A). The wave-current stress was calculating following the method of Soulsby (1995) to parameterize four methods giving good overall performance for estimating wave-current stress, based on original formulations by Grant and Madsen (1979), Fredsøe (1984), Huynh-Thanh and Temperville (1991), and Davies et al. (1998). The combined wave-current stress for the individual components of wave and current stress was calculated for hydrodynamic model output following the method prescribed in Soulsby (1997) for each of the four methods. The mean value of the four methodologies was used to estimate the combined wave-current shear stress for each hydrodynamic scenario. Wave direction, bottom orbital velocity, and period, and depth-averaged current magnitude and direction, required for this calculation, are calculated internally by the model. The roughness used is 1/12 the diameter of the SRB or sediment being analyzed, following Soulsby (1997). Stress values are saved in MATLAB .mat format.
The same individual who completed this processing step completed all additional processing steps.
References:
Davies, A.G., Soulsby, R.L., King, H.L. (1988). A numerical model of the combined wave and current bottom boundary layer. J. Geophys. Res. 93, 491-508.
Fredsøe, J. (1984). Turbulent boundary layer in wave-current motion. J. Hydraul. Eng. ASCE (110), 1103-1120.
Grant, W.D., Madsen, O.S. (1979). Combined wave and current interaction with a rough bottom. J. Geophys. Res. (84), 1797-1808.
Huynh-Thanh, S., Temperville, A. (1991). A numerical model of the rough turbulent boundary layer in combined wave and current interaction, in Sand Transport in Rivers, Estuaries, and the Sea, eds. R. L. Soulsby and R. Bettess, pp 93-100. Balkema, Rotterdam.
Soulsby, R.L. (1995). Bed shear-stresses due to combined waves and currents, in Advances in Coastal Morphodynamics, eds. M.J.F. Stive, H.J. de Vriend, J. Fredsøe, L. Hamm, R.L. Soulsby, C. Teisson and J.C. Winterwerp, pp. 4-20 and 3-23. Delft Hydraulics, Netherlands.
Soulsby, R.L. (1997). Dynamics of Marine Sands. Thomas Telford Publications: London, 249 pp.
Source_Used_Citation_Abbreviation: DELFT3D
Process_Date: 2012
Source_Produced_Citation_Abbreviation: WC STRESS
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: P. Soupy Dalyander
Contact_Organization: U.S. Geological Survey
Contact_Position: Oceanographer
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Country: USA
Contact_Voice_Telephone: (508) 548-8700 x2290
Contact_Facsimile_Telephone: (508) 457-2310
Contact_Electronic_Mail_Address: sdalyander@usgs.gov
Process_Step:
Process_Description:
Estimate the critical shear stress for 300 micron quartz sediment and 6 SRB size classes and take the ratio of the combined wave-current stress to this critical value at each grid point for each scenario. The specific characteristics for the sediment and SRB classes may be found in the included SRB_classes.txt file. Calculations are performed in Mathworks MATLAB (v2012A). Critical stress thresholds are calculated using the Shield's parameter following Soulsby (1997) and saved in MATLAB .mat format. These ratios may also be found in ArcGIS format within the same OFR containing this layer, with naming convention Hh_Dd_mobility corresponding to results for scenario Hh_Dd. In the case of SRBs, the Shield's parameter is identified as a "high" critical stress value, corresponding to instances when an SRB of the identified size is within a uniform bed of similarly sized SRBs. Exposure above the bed, such as may occur with a single SRB on a sand band, reduces the critical shear stress value for incipient motion. Based on field observations of gravel and sand mixtures, a "medium" critical stress value is calculated from a constant non-dimensional Shields parameter of 0.02, and a "low" critical stress value is calculated from a constant non-dimensional Shields parameter of 0.01 (Andrews, 1983; Bottacin-Busolin et al, 2008; Fenton and Abbott, 1977; Wiberg and Smith, 1987; Wilcock, 1998). Because the in-situ sediment is assumed to be of a relatively uniform size, a single critical stress value based on the Shields parameter is used.
References:
Andrews, E.D. (1983). Entrainment of gravel from naturally sorted riverbed material. Geo. Soc. Amer. Bull. (94), 1225-1231.
Bottacin-Busolin, A., Tait, S.J., Marion, A., Chegini, A., Tregnaghi, M. (2008). Probabilistic description of grain resistance from simultaneous flow field and grain motion measurements. Water Resources Res. (44), WO9419.
Fenton, J.D., Abbott, J.E. (1977). Initial movement of grains on a stream bed: the effect of relative protusion. Proc. R. Soc. Lond. A. (352), 523-537.
Soulsby, R., 1997. Dynamics of Marine Sands, a Manual for Practical Applications. Thomas Telford Publications, London.
Wibert, P.L., Smith, J.D. (1987). Calculations of the Critical Shear Stress for Motion of Uniform and Heterogenous Sediments. Water Resources Res. (23), 1471-1480.
Wilcock, P.R. (1998). Two-Fraction Model of Initial Sediment Motion in Gravel-Bed Rivers. Science (280), 410-412.
Source_Used_Citation_Abbreviation: WC STRESS
Process_Date: 2012
Source_Produced_Citation_Abbreviation: RATIO
Process_Step:
Process_Description:
For each scenario, the ratio of stress to critical stress for sediment and each SRB class was converted into a binary matrix of zeros and ones, with zero at all location where the ratio was less than 1 (indicating no mobility) and one at all locations where the ratio was greater than 1 (indicating mobility). The average of this value in each grid cell for sediment and each size of SRB was calculated for each scenario, weighting the scenario value by the percent observation of that scenario in the time period of 04/01/2010 to 08/01/2012.
Source_Used_Citation_Abbreviation: WAVE_SCENARIOS
Source_Used_Citation_Abbreviation: RATIO
Process_Date: 2012
Source_Produced_Citation_Abbreviation: MOBILITY
Process_Step:
Process_Description:
Exported the values for each grid cell from MATLAB format into an ArcGIS shapefile using the Mathworks MATLAB Mapping Toolbox (v2012A). Land grid cells are not exported to Arc. The shapefile is written with the "shapewrite" command. Because MATLAB does not assign a projection, the projection corresponding to the projection associated with the bathymetry used in the numerical models is added in ArcCatalog 9.3. The file was then quality checked in ArcMap to insure values were properly exported to the shapefile from MATLAB.
Source_Used_Citation_Abbreviation: MOBILITY
Process_Date: 2012
Process_Step:
Process_Description:
Keywords section of metadata optimized for discovery in USGS Coastal and Marine Geology Data Catalog.
Process_Date: 20170313
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Alan O. Allwardt
Contact_Position: Contractor -- Information Specialist
Contact_Address:
Address_Type: mailing and physical address
Address: 2885 Mission Street
City: Santa Cruz
State_or_Province: CA
Postal_Code: 95060
Contact_Voice_Telephone: 831-460-7551
Contact_Facsimile_Telephone: 831-427-4748
Contact_Electronic_Mail_Address: aallwardt@usgs.gov
Process_Step:
Process_Description:
Keywords section of metadata optimized by correcting variations of theme keyword thesauri and updating/adding keywords.
Process_Date: 20180403
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Arnell S. Forde
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street South
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Contact_Voice_Telephone: 727-502-8000
Contact_Electronic_Mail_Address: aforde@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword.
Process_Date: 20201013
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov