Records using themekt "Marine Realms Information Bank (MRIB) Keywords"

Results are color-coded by center: PCMSC SPCMSC WHCMSC

EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography-Louisiana, Mississippi and Alabama, March 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: First Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography--Louisiana, Mississippi and Alabama September 2006: Last Return

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography-Louisiana, Alabama, and Florida, June 2008

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography-Louisiana, Alabama, and Florida, June 2008

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 10BIM04 Offshore Cat Island, Mississippi, September 2010

In September of 2010, the U.S. Geological Survey conducted a geophysical survey offshore of Cat Island, Miss., to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov)

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 12BIM03 Offshore of the Chandeleur Islands, Louisiana, July 2012

In July of 2012, the U.S. Geological Survey conducted a geophysical survey offshore of the Chandeleur Islands, La. to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>).

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruises 13BIM02 and 13BIM07 Offshore of the Chandeleur Islands, Louisiana, 2013

On July 5–19 (13BIM02) and August 22–September 1 (13BIM07) of 2013, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the oil spill mitigation sand berm constructed at the north end and offshore of the Chandeleur Islands, La. This investigation is part of a broader USGS study, which seeks to understand barrier island evolution better over medium time scales (months to years). This report serves as an archive of unprocessed, digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are provided. These data are available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>).

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 13CCT04 Offshore of Petit Bois Island, Mississippi, August 2013

In August of 2013, the U.S. Geological Survey conducted a geophysical survey offshore of Petit Bois Island, Mississippi to investigate the geologic controls on barrier island framework and long-term sediment transport. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>).

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 13GFP01, Brownlee Dam and Hells Canyon Reservoir, Idaho and Oregon, 2013

From March 16 - 31, 2013, the U.S. Geological Survey conducted a geophysical survey to investigate sediment deposits and long-term sediment transport within the Snake River from Brownlee Dam to Hells Canyon Reservoir, Idaho; this effort will help the USGS to better understand geologic processes. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>)

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11CEV02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17-23, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Seventy-one underway discrete samples were collected approximately hourly over a span of 1628 kilometer (km) track line, additionally 34 samples were taken at 10 stations. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11CEV02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17-23, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Seventy-one underway discrete samples were collected approximately hourly over a span of 1628 kilometer (km) track line, additionally 34 samples were taken at 10 stations. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11CEV02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred February 17-23, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Seventy-one underway discrete samples were collected approximately hourly over a span of 1628 kilometer (km) track line, additionally 34 samples were taken at 10 stations. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11CEV01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-six underway discrete samples in January were collected approximately hourly over a span of 745.3 km Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11CEV01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-six underway discrete samples in January were collected approximately hourly over a span of 745.3 km Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11CEV02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred January 3-7, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-six underway discrete samples in January were collected approximately hourly over a span of 745.3 km Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-six discrete samples were collected at ten stations. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Forty-eight underway discrete samples were collected approximately hourly over a span of 1130 kilometer (km) track line. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-four underway discrete samples were collected approximately hourly over a span of 1632 kilometer (km) track line, additionally 44 discrete samples were taken at four stations, these were taken at various depths. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-four underway discrete samples were collected approximately hourly over a span of 1632 kilometer (km) track line, additionally 44 discrete samples were taken at four stations, these were taken at various depths. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September 20 - 28 and November 2 - 4, 2011. Both left from and returned to Saint Petersburg, Florida, but followed different routes (see Trackline). On both cruises the USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Discrete surface samples were taken during transit approximatly hourly on both cruises, 95 in September were collected over a span of 2127 km, and 7 over a trackline of 732 km line on the November cruise. Along with the surface samples, another set of samples were taken at various depths at stations; 27 in September at four stations and 15 in November at five stations. In addition to the discrete samples flow-through data was also collected on both cruises in a variety of forms. Surface CTD data was collected every five minutes which includes temperature, salinity, and pH. In addition, two more flow-through instruments were setup on both cruises that recorded pH and CO2 every 15 minutes. Corroborating the USGS data is the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September 20 - 28 and November 2 - 4, 2011. Both left from and returned to Saint Petersburg, Florida, but followed different routes (see Trackline). On both cruises the USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Discrete surface samples were taken during transit approximatly hourly on both cruises, 95 in September were collected over a span of 2127 km, and 7 over a trackline of 732 km line on the November cruise. Along with the surface samples, another set of samples were taken at various depths at stations; 27 in September at four stations and 15 in November at five stations. In addition to the discrete samples flow-through data was also collected on both cruises in a variety of forms. Surface CTD data was collected every five minutes which includes temperature, salinity, and pH. In addition, two more flow-through instruments were setup on both cruises that recorded pH and CO2 every 15 minutes. Corroborating the USGS data is the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September 20 - 28 and November 2 - 4, 2011. Both left from and returned to Saint Petersburg, Florida, but followed different routes (see Trackline). On both cruises the USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Discrete surface samples were taken during transit approximatly hourly on both cruises, 95 in September were collected over a span of 2127 km, and 7 over a trackline of 732 km line on the November cruise. Along with the surface samples, another set of samples were taken at various depths at stations; 27 in September at four stations and 15 in November at five stations. In addition to the discrete samples flow-through data was also collected on both cruises in a variety of forms. Surface CTD data was collected every five minutes which includes temperature, salinity, and pH. In addition, two more flow-through instruments were setup on both cruises that recorded pH and CO2 every 15 minutes. Corroborating the USGS data is the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September 20 - 28 and November 2 - 4, 2011. Both left from and returned to Saint Petersburg, Florida, but followed different routes (see Trackline). On both cruises the USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Discrete surface samples were taken during transit approximatly hourly on both cruises, 95 in September were collected over a span of 2127 km, and 7 over a trackline of 732 km line on the November cruise. Along with the surface samples, another set of samples were taken at various depths at stations; 27 in September at four stations and 15 in November at five stations. In addition to the discrete samples flow-through data was also collected on both cruises in a variety of forms. Surface CTD data was collected every five minutes which includes temperature, salinity, and pH. In addition, two more flow-through instruments were setup on both cruises that recorded pH and CO2 every 15 minutes. Corroborating the USGS data is the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Water column sample data from predefined locations of the West Florida Shelf: USGS Cruise 11BHM03

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September 20 - 28 and November 2 - 4, 2011. Both left from and returned to Saint Petersburg, Florida, but followed different routes (see Trackline). On both cruises the USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Discrete surface samples were taken during transit approximatly hourly on both cruises, 95 in September were collected over a span of 2127 km, and 7 over a trackline of 732 km line on the November cruise. Along with the surface samples, another set of samples were taken at various depths at stations; 27 in September at four stations and 15 in November at five stations. In addition to the discrete samples flow-through data was also collected on both cruises in a variety of forms. Surface CTD data was collected every five minutes which includes temperature, salinity, and pH. In addition, two more flow-through instruments were setup on both cruises that recorded pH and CO2 every 15 minutes. Corroborating the USGS data is the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Surface water data for samples collected approximately hourly along the West Florida Shelf: USGS Cruise 11BHM03

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September 20 - 28 and November 2 - 4, 2011. Both left from and returned to Saint Petersburg, Florida, but followed different routes (see Trackline). On both cruises the USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Discrete surface samples were taken during transit approximatly hourly on both cruises, 95 in September were collected over a span of 2127 km, and 7 over a trackline of 732 km line on the November cruise. Along with the surface samples, another set of samples were taken at various depths at stations; 27 in September at four stations and 15 in November at five stations. In addition to the discrete samples flow-through data was also collected on both cruises in a variety of forms. Surface CTD data was collected every five minutes which includes temperature, salinity, and pH. In addition, two more flow-through instruments were setup on both cruises that recorded pH and CO2 every 15 minutes. Corroborating the USGS data is the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM03

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September 20 - 28 and November 2 - 4, 2011. Both left from and returned to Saint Petersburg, Florida, but followed different routes (see Trackline). On both cruises the USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Discrete surface samples were taken during transit approximatly hourly on both cruises, 95 in September were collected over a span of 2127 km, and 7 over a trackline of 732 km line on the November cruise. Along with the surface samples, another set of samples were taken at various depths at stations; 27 in September at four stations and 15 in November at five stations. In addition to the discrete samples flow-through data was also collected on both cruises in a variety of forms. Surface CTD data was collected every five minutes which includes temperature, salinity, and pH. In addition, two more flow-through instruments were setup on both cruises that recorded pH and CO2 every 15 minutes. Corroborating the USGS data is the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM03

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September 20 - 28 and November 2 - 4, 2011. Both left from and returned to Saint Petersburg, Florida, but followed different routes (see Trackline). On both cruises the USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Discrete surface samples were taken during transit approximatly hourly on both cruises, 95 in September were collected over a span of 2127 km, and 7 over a trackline of 732 km line on the November cruise. Along with the surface samples, another set of samples were taken at various depths at stations; 27 in September at four stations and 15 in November at five stations. In addition to the discrete samples flow-through data was also collected on both cruises in a variety of forms. Surface CTD data was collected every five minutes which includes temperature, salinity, and pH. In addition, two more flow-through instruments were setup on both cruises that recorded pH and CO2 every 15 minutes. Corroborating the USGS data is the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Lidar Bathymetry Data of Cape Canaveral, Florida, (2014) in XYZ ASCII text file format

The Cape Canaveral Coastal System (CCCS) is a prominent feature along the Southeast U.S. coastline and is the only large cape south of Cape Fear, North Carolina. Most of the CCCS lies within the Merritt Island National Wildlife Refuge and included in its boundaries are the Cape Canaveral Air Force Station (CCAFS), NASA’s Kennedy Space Center (KSC), and a large portion of Canaveral National Seashore. The actual promontory of the modern cape falls within the jurisdictional boundaries of the CCAFS. These various agencies have ongoing concerns related to erosion hazards and vulnerability of the system including critical infrastructure, habitats, and recreational and cultural resources. The USGS conducted a bathymetric mapping survey August 18-20, 2014, in the Atlantic Ocean offshore of Cape Canaveral, Florida (USGS Field Activity Number 2014-324-FA). The study area covered an area extending south from Port Canaveral, Florida, to the northern end of the KSC property and from the shoreline to about 2.5 km offshore. Bathymetric data were collected with single-beam sonar- and lidar-based systems. Two jet skis and a 17-ft outboard motor boat equipped with the USGS SANDS hydrographic system collected precision sonar data. The sonar operations were conducted in three missions, one on each day, with the boat and jet skis operating concurrently. The USGS airborne EAARL-B mapping system flown in a twin engine plane was used to collect lidar data. The lidar operations were conducted in three missions, one in the afternoon of August 19, 2015, and two more in the morning and afternoon of August 20, 2014. The missions were synchronized such that there was some temporal and spatial overlap between the sonar and lidar operations. Additional data were collected to evaluate the actual water clarity corresponding to lidar's ability to receive bathymetric returns. This dataset serves as an archive of processed single-beam and lidar bathymetry data collected at Cape Canaveral, Florida, in 2014 (in XYZ comma delimited, ASCII and shapefile format). Also included in this archive are Geographic Information System (GIS) data products: gridded map data (in ESRI binary and ASCII grid format), and a color-coded bathymetry map (in PDF format).

Info
Archive of Chirp Subbottom Profile Data Collected in 2015 from the Northern Chandeleur Islands, Louisiana

From September 14 to 28, 2015, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months to years). This publication serves as an archive of unprocessed, digital chirp subbottom data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) metadata. Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). These data are available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov).

Info
Archive of Ground Penetrating Radar and Differential Global Positioning System Data Collected in April 2016 from Fire Island, New York

Researchers from the U.S. Geological Survey (USGS) conducted a long-term, coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal Change project (https://coastal.er.usgs.gov/fire-island/) objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. In April 2016, scientists from the USGS St. Petersburg Coastal and Marine Science Center conducted geophysical and sediment sampling surveys on Fire Island to characterize and quantify spatial variability in the subaerial geology with the goal of subsequently integrating onshore geology with other surf zone and nearshore datasets.

Info
Archive of Chirp Subbottom Profile Data Collected in 2016 from the Northern Chandeleur Islands, Louisiana

From June 10 to 19, 2016, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months to years). This publication serves as an archive of unprocessed, digital chirp subbottom data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) metadata. Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). These data are available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS, https://cmgds.marine.usgs.gov).

Info
Archive of Chirp Subbottom Profile Data Collected in 2017 From the Northern Chandeleur Islands, Louisiana

From August 7 to 16, 2017, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months to years). This publication serves as an archive of unprocessed, digital chirp subbottom data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) metadata. Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). These data are available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS, https://cmgds.marine.usgs.gov).

Info
Archive of Chirp Subbottom Profile Data Collected in 2017 from the Louisiana Chenier Plain

June 2–10 and July 2, 2017, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of the Louisiana Chenier Plain to document the changing morphology of the coastal environment. Data were collected under the Barrier Island Coastal Monitoring (BICM) program, an ongoing collaboration between the State of Louisiana Coastal Protection and Restoration Authority (CPRA), the University of New Orleans (UNO) Pontchartrain Institute for Environmental Sciences (PIES), and the USGS. Project objectives include compiling historical shoreline bathymetric datasets and comparing them to other bathymetric data collected during the BICM project. At the same time, subsurface geophysical data were collected to investigate the geomorphology and geologic controls on barrier-shoreline evolution. This publication serves as an archive of unprocessed, digital chirp subbottom data, survey trackline maps, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) metadata. Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). These data are available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS, https://cmgds.marine.usgs.gov).

Info
Archive of Chirp Subbottom Profile Data Collected in June 2018 From Fire Island, New York

Researchers from the U.S. Geological Survey (USGS) conducted a long-term, coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal System Change project (https://coastal.er.usgs.gov/fire-island/) objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. From June 2-16, 2018, scientists from the USGS St. Petersburg Coastal and Marine Science Center conducted geophysical surveys on Fire Island to characterize and quantify spatial variability in the subaerial geology with the goal of subsequently integrating onshore geology with other surf zone and nearshore datasets. This publication serves as an archive of high-resolution subbottom profile images, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) metadata. Additionally, in April 2016, geophysical and sediment sampling data were collected as part of the Fire Island project. The ground penetrating radar and vibracore datasets are available from Forde and others, 2018; Buster and others, 2018; and Bernier and others, 2018.

Info
Archive of Chirp Subbottom Profile Data Collected in 2018 from the Northern Chandeleur Islands, Louisiana

From August 16 to 21, 2018, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the sand berm constructed in 2011 (offshore, at the northern end of the Chandeleur Islands, Louisiana) as mitigation of the Deepwater Horizon oil spill. This investigation is part of a broader USGS project, which seeks to better understand barrier island evolution over medium time scales (months to years). This publication serves as an archive of unprocessed, digital chirp subbottom data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) metadata. Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). These data are available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS, https://cmgds.marine.usgs.gov).

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 24, 2018)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (October 15, 2018)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Archive of Chirp Subbottom Profile Data Collected in 2019 from Cedar Island, Virginia

From August 9 to 14, 2019, researchers from the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate shoreface morphology and geology near Cedar Island, Virginia. The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. This publication serves as an archive of high-resolution chirp subbottom data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) metadata. Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975). In addition to this data release, the SEG Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS) at, https://cmgds.marine.usgs.gov. Bathymetry and backscatter data were also collected during this survey are available in Stalk and others (2020).

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 18, 2019)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Ground Control Point Locations and Photographs From North Topsail Beach and Camp Lejeune, North Carolina, June 2019

Scientist from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) collected xyz locations for 53 Ground Control Points (GCP) in North Topsail Beach and within the Camp Lejeune Marine Corps Base, North Carolina, June 12-14, 2019. During this study, Global Positing System (GPS) data were collected using a single Spectra SP80 Global Navigation Satellite System (GNSS) receiver affixed to a 2-meter (m) survey pole. Additional attributes pertaining to each survey point have also been provided in 2019_330_FA_GCP_Final.csv as well as all photographs taken during data collection. Data are provided in the native format of the World Geodetic System of 1984 (WGS84) International Terrestrial Reference Frame of 2008 (ITRF08) ellipsoid heights, as well as in the North American Datum of 1983 (NAD83) ellipsoid and NAD83 North American Vertical Datum of 1988 (NAVD88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (June 10, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 10, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014

A digital elevation model (DEM) mosaic was produced for Anegada, British Virgin Islands, from remotely sensed, geographically referenced elevation measurements collected by Watershed Sciences, Inc. (WSI)/Quantum Spatial using an Optech Orion M300 (1064-nm wavelength) lidar sensor on January 21, 2014.

Info
Lidar-Derived Seamless (Bare Earth and Submerged) Point Cloud for Coastal Topography—Anegada, British Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 20 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-Derived Seamless (Bare Earth and Submerged) Digital Elevation Model (DEM) Mosaic for Coastal Topography—Anegada, British Virgin Islands, 2014

A seamless (bare earth and submerged) topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Anegada, British Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected March 19-20, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 20 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2002: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2002: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements acquired cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over Assateague Island National Seashore using the first-generation National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-Derived Classified Bare-Earth Point-Cloud for Coastal Topography—Assateague Island, Maryland and Virginia, Post-Hurricane Joaquin, 26 November 2015

Binary point-cloud data were produced for Assateague Island, Maryland and Virginia, post-Hurricane Joaquin, from remotely sensed, geographically referenced elevation measurements collected by Quantum Spatial using a Leica ALS70 (1064-nm wavelength) lidar sensor.

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Assateague Island, Maryland and Virginia, Post-Hurricane Joaquin, 26 November 2015

A digital elevation model (DEM) mosaic was produced for Assateague Island, Maryland and Virginia, post-Hurricane Joaquin, from remotely sensed, geographically referenced elevation measurements collected by Quantum Spatial using a Leica ALS70 (1064-nm wavelength) lidar sensor.

Info
Subtropical Storm Alberto Assessment of Potential Coastal Change Impacts: NHC Advisory 8, 0800 AM EDT SUN MAY 27 2018

This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Subtropical Storm Alberto in May 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
EAARL-B Topography-Big Thicket National Preserve: Beaumont and Lower Neches River Units, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Beaumont and Lower Neches River Units, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 29, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 29, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

A bare-earth topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

A first-surface topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Canyonlands and Upper Neches River Corridor Units, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Canyonlands and Upper Neches River Corridor Units of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-derived First-Surface Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Canyonlands and Upper Neches River Corridor Units, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Canyonlands and Upper Neches River Corridor Units of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Lance Rosier Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Lance Rosier Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Little Pine Island Bayou Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-Derived First-Surface Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Little Pine Island Bayou Corridor Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Lower Neches River Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Lower Neches River Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Menard Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Menard Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Neches Bottom and Jack Lore Baygall Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Neches Bottom and Jack Lore Baygall Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Neches Bottom and Jack Lore Baygall Unit, Texas, 2014

A first-surface topography Digital Elevation Model (DEM) mosaic for the Neches Bottom and Jack Lore Baygall Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 21, 23, 25, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

A bare-earth topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 25, 26, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

A first-surface topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 25, 26, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography-Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

A bare-earth topography Digital Elevation Model (DEM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 23, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Topography—Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

A first-surface topography Digital Surface Model (DSM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, 23, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography--Dauphin Island, Alabama, 2010: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Tropical Storm Bonnie (July 2010 tropical storm), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography--Dauphin Island, Alabama, 2010: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Tropical Storm Bonnie (July 2010 tropical storm), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Tropical Storm Bill Assessment of Potential Coastal-Change Impacts: NHC Advisory 2, 0900 AM UTC MON JUN 16 2015

This dataset defines storm-induced coastal erosion hazards for the Texas and Louisiana coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Bill in June 2015. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Topobathymetric Lidar Survey of Breton and Gosier Islands, Louisiana, January 16 and 18, 2014

This dataset contains binary point-cloud data, produced from remotely sensed, geographically referenced topobathymetric measurements collected by Photo Science, Inc., encompassing the Breton and Gosier Island, LA study areas. The original area of interest was buffered by 100 meters to ensure complete coverage, resulting in approximately 75 square miles of lidar data. The Breton Island Lidar project called for the planning, acquisition, processing, and derivative products of topobathymetric lidar data, collected at a nominal pulse spacing (NPS) of 0.5-0.45 meters (4-5 points/square meter). Lidar acquisition was prioritized to coincide with the lowest tide possible. Water clarity was also assessed and deemed acceptable prior to acquisition flights. The data, in meters, are projected to UTM Zone 16 North and referenced horizontally to the NAD83 (2011) datum and vertically to the NAVD88 (GEOID12A) datum. The classified point-cloud data were delivered in LAS v1.2 format and the merged DEM was converted to a GeoTIFF file. Each LAS file contains data in a 1-kilometer by 1-kilometer tile named according to the US National Grid conventions. The final product was a LAZ file for Breton Island and another for Gosier Islands.

Info
1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1869. In 2002, NOAA published digitized shorelines for T-sheet (T-1097), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1922. In 2002, NOAA published digitized shorelines for T-sheet (T-3920), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service (NOS) raster shoreline maps (often called T-sheet or TP-sheet maps) created for Breton Island in 1950. In 2002, NOAA published digitized shorelines for T-sheet (T-9393), which were subsequently edited by USGS staff for input into the Digital Shoreline Analysis System (DSAS) Version 4.0, where area and shoreline change analyses could be conducted.

Info
1983 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National High Altitude Photography (NHAP) program. The NHAP was coordinated by the U.S. Geological Survey as an interagency project to acquire cloud-free aerial photographs at a specific altitude above mean terrain elevation. Two different camera systems were used to obtain simultaneous coverage of black-and-white (BW) and color infrared (CIR) aerial photographs over the conterminous United States. Black-and-white aerial photographs were obtained on 9-inch film from an altitude of 40,000 feet above mean terrain elevation and are centered over USGS 7.5-minute quadrangles. Images are at a scale of 1:80,000 (1 inch equals about 1.26 miles). All NHAP flights where flown in a north to south direction. Imagery was collected over Breton Island on November 17, 1983. This dataset contains digitized shorelines created from the NHAP imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
1998 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center's Digital Orthophoto Quarter Quads (DOQQ) images collected on January 24, 1998. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2001 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements collected by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA) on September 07-09, 2001. Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. This dataset contains vectorized shorelines created from data acquired from Breton Island, Louisiana. Shorelines were vectorized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2004 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center’s Digital Orthophoto Quarter Quads (DOQQ) images collected on January 20, 2004. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2005 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center’s Digital Orthophoto Quadrangle (DOQ) images collected on November 17, 2005. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2007 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National Agriculture Imagery Program (NAIP) digital ortho imagery collected on October 11, 2007. This dataset contains digitized shorelines created from the NAIP imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2008 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center high-resolution orthorectified images collected on October 01, 2008. This dataset contains digitized shorelines created from the USGS imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) Version 4.0.

Info
2010 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from the National Agriculture Imagery Program (NAIP) digital ortho imagery collected on May 10, 2010. This dataset contains digitized shorelines created from the NAIP imagery for Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2012 Digitized Shoreline for Breton Island, Louisiana(Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey Earth Resources Observations and Science Center (EROS) high-resolution orthorectified image that was collected on October 20, 2012 over Breton Island, Louisiana. Shorelines were digitized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2013 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey topographic lidar survey that was conducted on July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana and published in USGS Data Series 838. Photo Science, Inc., was contracted by the USGS to collect and process these data. Lidar data were acquired around portions of both the Alabama and Louisiana barrier islands; however, this dataset only contains shorelines created from data acquired from Breton Island, Louisiana. Shorelines were vectorized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
2014 Vectorized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

Shorelines were derived from a U.S. Geological Survey topographic lidar survey that was conducted on January 16-18, 2014 over Breton Island, Louisiana and released under USGS field activity number 14LGC01. Quantum Spatial was contracted by the USGS to collect and process these data. This dataset contains vectorized shorelines created from data acquired from Breton Island, Louisiana. Shorelines were vectorized in ArcMap 10.2.2 so they could be used for area and shoreline change analysis, using the Digital Shoreline Analysis System (DSAS) version 4.0.

Info
EAARL Coastal Topography—Chandeleur Islands, Louisiana, 4-5 September 2010: Seamless (Bare Earth and Submerged)

ASCII XYZ point-cloud data for the Chandeleur Islands in Louisiana were produced from remotely sensed, geographically referenced elevation measurements collected on September 4 and 5, 2010 by the U.S. Geological Survey. Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography—Chandeleur Islands, Louisiana, 12-13 February 2011: Seamless (Bare Earth and Submerged)

ASCII XYZ point-cloud data for the Chandeleur Islands in Louisiana were produced from remotely sensed, geographically referenced elevation measurements collected on February 12 and 13, 2011 by the U.S. Geological Survey. Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Submerged Topography—Crocker Reef, Florida, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Crocker Reef, Florida, were produced from remotely sensed, geographically referenced elevation measurements collected on April 13 and 22, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 0.9 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Submerged Topography—Crocker Reef, Florida, 2014

A submerged topography digital elevation model (DEM) mosaic for a portion of the submerged environs of Crocker Reef, Florida, was produced from remotely sensed, geographically referenced elevation measurements collected on April 13 and 22, 2014 by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 0.9 points per square meter. A peak sampling rate of 15–30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Delineated Coastal Cliff Toes Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff toes that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects using the Cliff Feature Delineation Tool (Seymour and others, 2020), which assigned coordinate locations (X, Y, Z) of cliff features over a 140,244-meter (m) stretch of the Puerto Rican coastline at 10-m intervals and output them as either polyline (cliff transects) or point (cliff top or toe) shapefiles. Feature delineation was performed using post-Hurricane Maria (landfall was September 20, 2017) rasterized topobathy lidar elevation data collected by the U.S. Army Corps of Engineers and published by the National Oceanic and Atmospheric Administration National Centers for Environmental Information (2018) as bare earth digital elevation model (DEM) files. The delineation tool (Seymour and others, 2020) was used to generate 3D point features in Esri ArcGIS shapefile format representing the cliff toes; these files should be opened in a 3D geographic information system (GIS) viewer.

Info
Delineated Coastal Cliff Tops Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff tops that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects using the Cliff Feature Delineation Tool (Seymour and others, 2020), which assigned coordinate locations (X, Y, Z) of cliff features over a 140,244-meter (m) stretch of the Puerto Rican coastline at 10-m intervals and output them as either polyline (cliff transects) or point (cliff top or toe) shapefiles. Feature delineation was performed using post-Hurricane Maria (landfall was September 20, 2017) rasterized topobathy lidar elevation data collected by the U.S. Army Corps of Engineers and published by the National Oceanic and Atmospheric Administration National Centers for Environmental Information (2018) as bare earth digital elevation model (DEM) files. The delineation tool (Seymour and others, 2020) was used to generate 3D point features in Esri ArcGIS shapefile format representing the cliff tops; these files should be opened in a 3D geographic information system (GIS) viewer.

Info
Delineated Coastal Cliff Transects Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018

The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff transects that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects using the Cliff Feature Delineation Tool (Seymour and others, 2020), which assigned coordinate locations (X, Y, Z) of cliff features over a 140,244-meter (m) stretch of the Puerto Rican coastline at 10-m intervals and output them as either polyline (cliff transects) or point (cliff top or toe) shapefiles. Feature delineation was preformed using post-Hurricane Maria (landfall was September 20, 2017) rasterized topobathy lidar elevation data collected by the U.S. Army Corps of Engineers and published by the National Oceanic and Atmospheric Administration National Centers for Environmental Information (2018) as bare earth digital elevation model (DEM) files. The delineation tool (Seymour and others, 2020) was used to generate 3D point features in Esri ArcGIS shapefile format representing the cliff transects, these files should be opened in a 3D geographic information system (GIS) viewer.

Info
Tropical Storm Colin Assessment of Potential Coastal Change Impacts: NHC Advisory 4, 0500 AM EDT MON JUN 06 2016

This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Colin in June 2016. Storm-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Archive of Digital CHIRP Seismic Reflection Data Collected During USGS Cruise 06SCC02 Offshore of the Chandeleur Islands, Louisiana, July 2006

In July of 2006, the U.S. Geological Survey conducted geophysical surveys offshore of Chandeleur Islands, LA, and in nearby waterbodies. This report serves as an archive of unprocessed digital CHIRP seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided.

Info
Archive of Digital Boomer Seismic Reflection Data Collected Offshore Northeast Florida during USGS Cruise 02FGS01 in October 2002

In October of 2002, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted a geophysical survey of the Atlantic Ocean offshore Nassau and Duval Counties in northeast Florida, from the northern tip of Amelia Island to Jacksonville Beach. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS files, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists SEG Y format (rev. 0) (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov).

Info
Archive of Digital Boomer Subbottom Profile Data Collected in the Atlantic Ocean Offshore Northeast Florida During USGS Cruises 03FGS01 and 03FGS02 in September and October of 2003

In September and October of 2003, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey, conducted geophysical surveys of the Atlantic Ocean offshore northeast Florida from St. Augustine, Florida, to the Florida-Georgia border. This report serves as an archive of unprocessed digital boomer subbottom profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided.

Info
EAARL Coastal Topography and Imagery--Western Louisiana, Post-Hurricane Rita, 2005: First Surface

ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the Louisiana coastline, post-Hurricane Rita (September 2005 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
a100sc.m77t and a100sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity A-1-00-SC in Southern California from Port Hueneme to Mexican Border from 06/05/2000 to 06/29/2000

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-00-SC. The cruise was conducted from Port Hueneme, California, to the Mexican border from June 5 to June 29, 2000. The chief scientists were Chris Gutmacher, Stephanie Ross, Brian Edwards all from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to identify and map active and potentially active faults, folds, and submarine slide-prone areas that may threaten densely populated areas of Southern California. This survey was also taken to determine the pathways through which sea-water is intruding into aquifers of Los Angeles County in the area of the Long Beach and Los Angeles harbors. The geophysical source was a Knudsen 12 kilohertz (kHz) 320B/R echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/a/a100sc/html/a-1-00-sc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
a193yb.m77t and a193yb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity A-1-93-YB in Yakukat Bay, Alaska from 08/21/1993 to 08/27/1993

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-93-YB. The cruise was conducted in Yakukat Bay, Alaska from August 21 to August 27, 1993. The chief scientists were Paul Carlson of the USGS Coastal and Marine Geology office in Menlo Park, CA and Ellen Cowan of Appalachian State University and Ross Powell of Northern Illinois University. The overall purpose of this study was to characterize seismic facies for interpreting past glacier behavior, especially during the Last Glacial Maximum (LGM). The geophysical source was a hull-mounted 12 kilohertz (kHz) bathymetry echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/a/a193yb/html/a-1-93-yb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
a194gb.m77t and a194gb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity A-1-94-GB in Prince William Sound, Yakutat Bay, Glacier Bay and Icy Strait, Alaska from 08/08/1994 to 08/17/1994

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-94-GB. The cruise was conducted in Prince William Sound, Yakutat Bay, Glacier Bay and Icy Strait, Alaska from August 8 to August 17, 1994. The chief scientists were Paul Carlson and Rob Kayen from the USGS Coastal and Marine Geology office in Menlo Park, CA, Ellen Cowan (Appalachian State University), and Ross Powell (Northern Illinois University). The overall purpose of this study was to study high resolution seismic facies to interpret glacial fluctuations in Gulf of Alaska region. The geophysical source was a 12 kilohertz (kHz) bathymetry echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/a/a194gb/html/a-1-94-gb.sc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
a194yb.m77t and a194yb.h77t: MGD77T data and header files for single-beam bathymetry for field activity A-1-94-YB in Yakutat Bay and Yakutat Sea Valley, Alaska from 08/05/1994 to 08/08/1994

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-94-YB. The cruise was conducted in Yakutat Bay and Yakutat Sea Valley, Alaska from August 5 to August 8, 1994. The chief scientists were Paul Carlson, Rob Kayen from the USGS Coastal and Marine Geology office in Menlo Park, CA and Ellen Cowan (Appalachian State University) and Ross Powell(North Illinois University). The purpose of this cruise was to study Hi-Res seismic facies to interpret glacial fluctuations in Gulf of Alaska region. The geophysical source was a 12 kilohertz (kHz) echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/a/a194yb/html/a-1-94-yb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
a298sc.m77t and a298sc.h77t: MGD77T data and header file for single-beam bathymetry for field activity A-2-98-SC in Santa Monica Bay from 08/23/1998 to 08/31/1998

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-2-98-SC. The cruise was conducted in Santa Monica Bay from August 23 to August 31, 1998. The chief scientists were Homa Lee and Brian Edwards from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to collect box core, gravity and piston core samples to understand anthropogenic affects on sedimentation. The geophysical source was an ODEC 3.5 kilohertz (kHz) echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/a/a298sc/html/a-2-98-sc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
c179nc.m77t and c179nc.h77t: MGD77T data and header file for single-beam bathymetry data for field activity C-1-79-NC in Northern California from 05/01/1979 to 05/02/1979

Single-beam bathymetry data along with miniranger navigation data was collected as part of the U.S. Geological Survey cruise C-1-79-NC. The cruise was conducted in Northern California from May 1 to May 2 1979. The chief scientist was John Dingler from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise is unknown. The geophysical source is also unknown. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/c/c179nc/html/c-1-79-nc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
d179eg.m77t and d179eg.h77t: MGD77T data and header files for single-beam bathymetry data for field activity D-1-79-EG in the Eastern Gulf of Alaska from 05/24/1979 to 06/01/1979

Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise D-1-79-EG. The cruise was conducted in the Eastern Gulf of Alaska from May 24 to June 1, 1979. The chief scientists were Bruce Molnia from the USGS Coastal and Marine Geology office in Menlo Park, CA and Mark Wheeler. The purpose of this cruise was to collect sediment samples and cores for a microfossil study. The geophysical source was a 3.5 kilohertz (kHz) bathymetry system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/d/d179eg/html/d-1-79-eg.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
f389sc.m77t and f389sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-3-89-SC in Monterey Bay, California from 02/02/1989 to 02/15/1989

Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-3-89-SC. The cruise was conducted in Monterey Bay, California from February 2 to February 15, 1989. The chief scientists were Mike Field and Jim Gardner from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise is ground truthing of the Southern Monterey Fan. The geophysical sources are 10 kilohertz (kHz) and 3.5 kHz systems. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/f/f389sc/html/f-3-89-sc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
f392sc.m77t and f392sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-3-92-SC in in Southern California from 04/22/1992 to 05/15/1992

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise F-3-92-SC. The cruise was conducted in Southern California from April 22 to May 15, 1992. The chief scientists were Herman Karl and Monty Hampton from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was 10 kilohertz (kHz) and 3.5 kHz systems. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/f/f392sc/html/f-3-92-sc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
f690sc.m77t and f690sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-6-90-SC in Southern California, Monterey Canyon from 06/19/1990 to 07/12/1990

Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-6-90-SC. The cruise was conducted in Southern California, Monterey Canyon from June 19 to July 12, 1990. The chief scientists were Jim Gardner from the USGS Coastal and Marine Geology office in Menlo Park, CA and Doug Masson. The purpose of this cruise was to survey with midrange sidescan sonar (TOBI: towed ocean bottom instrument).The geophysical source was 12 kilohertz (kHz), 7 kHz, and 3.5 kHz systems. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/f/f690sc/html/f-6-90-sc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
f786hw.m77t and f786hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-7-86-HW in in Hawaii from 11/28/1986 to 12/20/1986

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise F-7-86-HW. The cruise was conducted in Hawaii from November 28 to December 20, 1986. The chief scientists were Jim Hein from the USGS Coastal and Marine Geology office in Menlo Park, CA and Bill Schwab from the USGS Coastal and Marine Geology office in Woods Hole, Mass. This cruise had many purposes, the bathymetric data is a survey of a small area of the south Johnston Island ridge. The geophysical source was 3.5 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/f/f786hw/html/f-7-86-hw.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
f790nc.m77t and f790nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-7-90-NC in the Gulf of Farallones, Northern California from 07/19/1990 to 08/03/1990

Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-7-90-NC. The cruise was conducted in the Gulf of Farallones, Northern California from July 19 to August 3, 1990. The chief scientists were Herman Karl and Dave Drake from the USGS Coastal and Marine Geology office in Menlo Park, CA and Bill Schwab from the USGS Coastal and Marine Geology office in Woods Hole, Mass. The purpose of this cruise was a slope stability survey of the Farallones Escarpment. The geophysical sources were 10 kilohertz (kHz), 4.5 kHz, and 3.5 kHz systems. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/f/f790nc/html/f-7-90-nc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
f890nc.m77t and f890nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-8-90-NC in Gulf of Farallones, Northern California from 08/05/1990 to 08/17/1990

Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-8-90-NC. The cruise was conducted in the Gulf of Farallones, Northern California from August 5 to August 17, 1990. The chief scientists were Herman Karl and Dave Drake from the USGS Coastal and Marine Geology office in Menlo Park, CA and Bill Schwab from the USGS Coastal and Marine Geology office in Woods Hole, Mass. The purpose of this cruise was a slope stability survey of the Farallones Escarpment. The geophysical sources were 12 kilohertz (kHz), 10 kHz, and 3.5 kHz systems. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/f/f890nc/html/f-8-90-nc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
f991cp.m77t and f991cp.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-9-91-CP in Central Pacific from 09/24/1991 to 09/25/1991

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise F-9-91-CP. The cruise was conducted in the Central Pacific from September 24 to September 25, 1991. The chief scientists was Jim Gardner from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was a 10 kilohertz (kHz) and 3.5 kHz system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/f/f991cp/html/f-9-91-cp.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
g177eg.m77t and g177eg.h77t: MGD77T data and header files for single-beam bathymetry data for field activity G-1-77-EG in Yakutat Bay, Eastern Gulf of Alaska from 04/27/1977 to 05/22/1977

Single-beam bathymetry data along with dead reckoning navigation data was collected as part of the U.S. Geological Survey cruise G-1-77-EG. The cruise was conducted in Yakutat Bay, Eastern Gulf of Alaska from April 27 to May 22, 1977. The chief scientist was Paul Carlson from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was a 3.5 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/g/g177eg/html/g-1-77-eg.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
g295sf.m77t and g295sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity G-2-95-SF in San Francisco Bay, Golden Gate from 05/30/1995 to 06/10/1995

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise G-2-95-SF. The cruise was conducted in San Francisco Bay, Golden Gate area from May 30 to June 10, 1995. The chief scientists were Terry Bruns, Paul Carlson, and Dennis Mann all from the USGS Coastal and Marine Geology office in Menlo Park, CA. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/g/g295sf/html/g-2-95-sf.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
j100sf.m77t and j100sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-1-00-SF in Grizzly Bay and Suisun Bay from 03/13/2000 to 03/14/2000

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise J-1-00-SF. The cruise was conducted in Grizzly Bay and Suisun Bay in the San Francisco Bay area, California from March 13 to March 14, 2000. The chief scientist was John Chin from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to study San Francisco Bay's response of bed morphology and surficial sediment texture to flow events. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/j/j100sf/html/j-1-00-sf.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
j200sf.m77t and j200sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-00-SF in Grizzly Bay, San Pablo Bay from 03/22/2000 to 03/27/2000

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise J-2-00-SF. The cruise was conducted in Grizzly Bay and San Pablo Bay in the San Francisco Bay area, California from March 22 to March 27, 2000. The chief scientist was Bruce Jaffe from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was for ground truthing, and to collect box cores and gravity cores. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/j/j200sf/html/j-2-00-sf.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
j281nc.m77t and j281nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-81-NC in Carmel Bay, Monterey Bay, Northern California from 06/23/1981 to 06/30/1981

Single-beam bathymetry data along with miniranger navigation data was collected as part of the U.S. Geological Survey cruise J-2-81-NC. The cruise was conducted in Carmel Bay, Monterey Bay, Northern California from June 23 to June 30, 1981. The chief scientist was John Dingler from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was a 12 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/j/j281nc/html/j-2-81-nc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
j295mb.m77t and j295mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-95-MB in Monterey Bay from 03/06/1995 to 04/15/1995

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-2-95-MB. The cruise was conducted from in Monterey Bay, California from March 6 to April 15, 1995. The chief scientists were Roberto Anima, Andy Stevenson, and Steve Eittreim all from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to compile a side-scan sonar mosaic of the offshore area of Monterey Bay Marine Santuary. The geophysical source was a Lowrance fathometer. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/j/j295mb/html/j-2-95-mb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
j299sf.m77t and j299sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-99-SF in Grizzly Bay, San Francisco Bay from 02/24/1999 to 03/08/1999

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-2-99-SF. The cruise was conducted in Grizzly Bay and San Francisco Bay, California from February 24 to March 8, 1999. The chief scientist was John Chin from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to survey Grizzly Bay and adjacent areas for seasonal changes in bottom morphology and sediment texture. The geophysical source was a 200 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/j/j299sf/html/j-2-99-sf.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
j399sf.m77t and j399sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-3-99-SF in Grizzly Bay, San Francisco Bay from 11/08/1999 to 11/18/1999

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-3-99-SF. The cruise was conducted in Grizzly Bay and San Francisco Bay, California from November 8 to November 18, 1999. The chief scientist was John Chin from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to survey Grizzly Bay and adjacent areas for seasonal changes in bottom morphology and sediment texture. The geophysical source was a 200 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/j/j399sf/html/j-3-99-sf.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
j483hb.m77t and j483hb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-4-83-HB in Humboldt Bay, California from 08/16/1983 to 08/19/1983

Single-beam bathymetry data along with miniranger navigation data was collected as part of the U.S. Geological Survey cruise J-4-83-HB. The cruise was conducted in Humboldt Bay, California from August 16 to August 19, 1983. The chief scientist was John Dingler from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of the cruise was to conduct a survey of the underwater exterior and related features of both Humboldt Bay jetties and the Crescent City Outer Breakwater. The geophysical source was a Raytheon 7 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/j/j483hb/html/j-4-83-hb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
j695mb.m77t and j695mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-6-95-MB in Monterey Bay from 10/16/1995 to 11/30/1995

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-6-95-MB. The cruise was conducted from in Monterey Bay, California from October 16 to November 30, 1995. The chief scientists were Roberto Anima, Andy Stevenson, and Steve Eittreim all from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to produce a mosaic of the northern Monterey Bay Santuary continental shelf area from as near shore out to the continental slope, and to collect digital subbottom profile data to better understand the shallow tectonics and paleomorphology of the sanctuary. The geophysical source was a Lowrance fathometer. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/j/j695mb/html/j-6-95-mb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
k185ar.m77t and k185ar.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-85-AR in the Arctic from 09/04/1985 to 09/04/1985

Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise K-1-85-AR. The cruise was conducted in the Arctic on September 4, 1993. The chief scientists were Erk Reimnitz and Peter Barnes from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study and the geophysical source are unknown. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k185ar/html/k-1-85-ar.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
k190gb.m77t and k190gb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-90-GB in Glacier Bay, Alaska from 06/14/1990 to 06/24/1990

Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise K-1-90-GB. The cruise was conducted in Glacier Bay, Alaska from June 14 to June 24, 1990. The chief scientist was Paul Carlson from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study was to look at glacial discharge streams and morainal banks of tidewater glaciers and imaging of gulleys and chutes on a pro-delta face in Queen Inlet and ice gouges on the moraine at the mouth of Muir Inlet.The geophysical source was a 7 kilohertz (kHz) and 3.5 kHz system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k190gb/html/k-1-90-gb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
k191yb.m77t and k191yb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-91-YB in Yakutat Bay, Alaska from 06/22/1991 to 06/28/1991

Single-beam bathymetry data along with radar and GPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-91-YB. The cruise was conducted in Yakutat Bay, Alaska from June 22 to June 28, 1991. The chief scientists were Paul Carlson from the USGS Coastal and Marine Geology office in Menlo Park, CA, and Ross Powell from Northern Illinois University. The overall purpose of this study is a continuation of previous studies of morainal bank and proximal environments of tidewater glaciers in Glacier Bay, Alaska. The geophysical source was a 7 kilohertz (kHz) Rayheon RTT 1000 system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k191yb/html/k-1-91-yb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
k193hw.m77t and k193hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-93-HW in Oahu, Hawaii from 02/20/1993 to 02/26/1993

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-93-HW. The cruise was conducted in Oahu, Hawaii from February 20 to February 26, 1993. The chief scientist was Mike Torresan from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to create a detailed bathymetric map of the Mamala Bay seafloor that delimits the general extent of the acoustically-resolvable dredged material deposits. The geophysical source was a 12 kilohertz (kHz) Raytheon system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k193hw/html/k-1-93-hw.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
k194hw.m77t and k194hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-94-HW in Mamala Bay, Offshore Honolulu, Oahu, Hawaii from 05/10/1994 to 05/16/1994

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-94-HW. The cruise was conducted in Oahu, Hawaii from May 10 to May 16, 1994. The chief scientists were Mike Torresan and Monty Hampton from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to create a detailed bathymetric map of the Mamala Bay seafloor that delimits the general extent of the acoustically-resolvable dredged material deposits. The geophysical source was a Raytheon 12 kilohertz (kHz) DSF-6000 fathometer. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k194hw/html/k-1-94-hw.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
k195hw.m77t and k195hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-95-HW in in Hawaii from 06/14/1995 to 06/18/1995

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-95-HW. The cruise was conducted in Oahu, Hawaii from June 14 to June 18, 1995. The chief scientist was Mike Torresan from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to conduct an integrated study on the distribution and character of dredged materials as well as the effects of dredged material on the marine environment. A three phase study provided information to evaluate the effects on seafloor substrate and the benthic fauna. The studies include geophysical profiling and imaging, bottom photography, sampling, chemical and physical analyses of sediment, and evaluations of the benthic population, population density, and adverse impacts to the benthic fauna. The geophysical source was an ODEC 3.5 kilohertz (kHz) echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k195hw/html/k-1-95-hw.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
k291bg.m77t and k291bg.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-2-91-BG in Bering Glacier, Alaska from 07/02/1991 to 07/06/1991

Single-beam bathymetry data along with radar and GPS navigation data was collected as part of the U.S. Geological Survey cruise K-2-91-BG. The cruise was conducted in Bering Glacier, Alaska from July 2 to July 6, 1991. The chief scientists were Paul Carlson from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study is to collect bathymetry, sidescan and samples from Icy Bay to Vitus Lake, Alaska. The geophysical source is 7 kilohertz (kHz) and 3.5 kHz systems. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k191yb/html/k-1-91-yb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
k293hw.m77t and k293hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-2-93-HW in Kauai, Hawaii from 02/27/1993 to 03/02/1993

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise K-2-93-HW. The cruise was conducted in Kauai, Hawaii from February 27 to March 2, 1993. The chief scientist was Monty Hampton from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to create a detailed bathymetric map of the Mamala Bay seafloor that delimits the general extent of the acoustically-resolvable dredged material deposits. The geophysical source is unknown. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k293hw/html/k-2-93-hw.meta.htmlinto MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
k294hw.m77t and k294hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-2-94-HW in Mamala Bay, Offshore Honolulu, Oahu, Hawaii from 05/16/1994 to 05/23/1994

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-2-94-HW. The cruise was conducted in Mamala Bay, Offshore Honolulu, Oahu, Hawaii from May 16 to May 23, 1994. The chief scientists were Mike Torresan and Monty Hampton from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to sample and groundtruth the 1993 Acoustic data of the seafloor of Mamala Bay over the US Corps of Engineers Deep Ocean dredged material disposal sites used by Pearl and Honolulu Harbors. The geophysical source is a 12 kilohertz (kHz) Raytheon DSF-6000 fathometer. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/k/k294hw/html/k-2-94-hw.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
l486nc.m77t and l486nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity L-4-86-NC in Northern California from 08/21/1986 to 09/05/1986

Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise L-4-86-NC. The cruise was conducted in Northern California from August 21 to September 5, 1986. The chief scientists were Dave Cacchione and Dave Drake from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise is unknown. The geophysical sources were 12 kilohertz (kHz) and 3.5 kHz systems. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/l/l486nc/html/l-4-86-nc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
m197wo.m77t and m197wo.h77t: MGD77T data and header files for single-beam bathymetry data for field activity M-1-97-WO in Southwest Washington Inner Shelf from 07/07/1997 to 07/15/1997

Single-beam bathymetry data along with DGPS and GPS navigation data were collected as part of the U.S. Geological Survey cruise M-1-97-WO. The cruise was conducted in Southwest Washington Inner Shelf from July 7 to July 15, 1997. The chief scientists were Pat McCrory and Dave Twitchell from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to collect geophysical data to aid in characterizing seismic hazard of nearshore faults & coastal erosion hazards. The geophysical source is a 3.5 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/m/m197wo/html/m-1-97-wo.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
o100sc.m77t and o100sc.h77t: MGD77T data and header file for single-beam bathymetry for field activity O-1-00-SC in San Pedro Bay, Santa Monica, California from 04/09/2000 to 04/14/2000

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise O-1-00-SC. The cruise was conducted in San Pedro Bay, Santa Monica, California from April 9 to April 14, 2000. The chief scientists were Brian Edwards and Homa Lee from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to study pollution transport and accumulation in Santa Monica Bay. The geophysical source is unknown. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/o/o100sc/html/o-1-00-sc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
o199sc.m77t and o199sc.h77t: MGD77T data and header file for single-beam bathymetry for field activity O-1-99-SC in Southern California from 06/05/1999 to 06/17/1999

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise O-1-99-SC. The cruise was conducted in Southern California from June 5 to June 17, 1999. The chief scientist was Bill Normark from the USGS Coastal and Marine Geology office in Menlo Park, CA. The purpose of this cruise was to study pollution transport and accumulation in Santa Monica Bay. The geophysical source was an ODEC 12 kilohertz (kHz) echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/o/o199sc/html/o-1-99-sc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
o399mb.m77t and o399mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity O-3-99-MB in Point Sur, Monterey Canyon, California from 06/25/1999 to 06/29/1999

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise O-3-99-MB. The cruise was conducted in Point Sur, Monterey Canyon, California from June 25 to June 29, 1999. The chief scientists were Homa Lee from the USGS Coastal and Marine Geology office in Menlo Park, CA and Charlie Paull from the Monterey Bay Aquarium Research Institute. The overall purpose of this study was to provide samples to use in collaborative studies of sedimentology and geochemistry with Monterey Bay Aquarium Research Institute. The geophysical source was a 3.5 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/o/o399mb/html/o-3-99-mb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
p192mb.m77t and p192mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity P-1-92-MB in Monterey Bay from 03/20/1992 to 03/22/1992

Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise P-1-92-MB. The cruise was conducted in Monterey Bay from March 20 to March 22, 1992. The chief scientist was Gary Greene from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study and the geophysical source are unknown. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/p/p192mb/html/p-1-92-mb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
p192sc.m77t and p192sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity P-1-92-SC in Santa Monica Basin, Southern California from 01/30/1992 to 02/04/1992

Single-beam bathymetry data along with Loran-C and GPS navigation data was collected as part of the U.S. Geological Survey cruise P-1-92-SC. The cruise was conducted in Santa Monica Basin, Southern California from January 30 to February 4, 1992. The chief scientist was Bill Normark from the USGS Coastal and Marine Geology office in Menlo Park, CA and Dave Piper from the Geological Survey of Canada (GSC). The purpose of this cruise was to define the growth pattern of Navy Fan (offshore from San Diego in the California Continental Borderland) over the past few hundred thousand years. Specifically, the goals were to better understand the processes that lead to the formation of sandy submarine fans and the role of sea level changes in their formation. .The geophysical source was a Raytheon 12 kilohertz (kHz) PTR echosounder and ORE 3.5 kHz echosounder. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/p/p192sc/html/p-1-92-sc.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
p194ar.m77t and p194ar.h77t: MGD77T data and header files for single-beam bathymetry data for field activity P-1-94-AR in Arctic Ocean from 07/25/1994 to 08/30/1994

Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise P-1-94-AR. The cruise was conducted in Monterey Bay from July 25 to August 30, 1994. The chief scientist was Art Grantz from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study was to study climatic history of the western Arctic Ocean basin. The geophysical source is unknown. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/p/p194ar/html/p-1-94-ar.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
s196wo.m77t and s196wo.h77t: MGD77T data and header file for single-beam bathymetry for field activity S-1-96-WO in Cascadia, Washington from 04/14/1996 to 06/06/1996

Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise S-1-96-WO. The cruise was conducted in Cascadia, Washington from April 14 to June 6, 1996. The chief scientists were Mike Fisher from the USGS Coastal and Marine Geology office in Menlo Park, CA and Ernest Flueh from GEOMAR in Germany. The purpose of this cruise was for seismic studies of earthquake hazards posed by the subduction zone off Washington and Oregon. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/s/s196wo/html/s-1-96-wo.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
s378sc.m77t and s378sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity S-3-78-SC in Southern California from 05/24/1978 to 06/01/1978

Single-beam bathymetry data along with radar and Loran-C navigation data was collected as part of the U.S. Geological Survey cruise G-1-77-EG. The cruise was conducted in Southern California from May 24 to June 1, 1978. The chief scientists were Bill Normark and Gordon Hess from the USGS Coastal and Marine Geology office in Menlo Park, CA. The geophysical source was a 12 kilohertz (kHz) and 3.5 kHz system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/g/g177eg/html/g-1-77-eg.meta.htmlinto MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
t198gb.m77t and t198gb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity T-1-98-GB in Glacier Bay, Alaska from 08/21/1998 to 09/01/1998

Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise T-1-98-GB. The cruise was conducted in Glacier Bay, Alaska from August 21 to September 1, 1998. The chief scientists were Paul Carlson, Guy Cochrane, and Philip Hooge all from the USGS Coastal and Marine Geology office in Menlo Park, CA. The overall purpose of this study was to add the geophysical surveying done in this and previous studies with existing population and sonic-tracking data sets as well as future sediment sampling, scuba, submersible, and bottom video camera observations to better understand Dungeness crab and Pacific halibut habitat relationships. The geophysical source was a 3.5 kilohertz (kHz) system. These data are reformatted from space-delimited ASCII text files located in the Coastal and Marine Geology Program (CMGP) InfoBank field activity catalog at http://walrus.wr.usgs.gov/infobank/t/t198gb/html/t-1-98-gb.meta.html into MGD77T format provided by the NOAA's National Geophysical Data Center(NGDC). The MGD77T format includes a header (documentation) file (.h77t) and a data file (.m77t). More information regarding this format can be found in the publication listed in the Cross_reference section of this metadata file.

Info
EAARL-B Coastal Topography--Eastern New Jersey, Hurricane Sandy, 2012: First Surface

ASCII xyz and binary point-cloud data, as well as a digital elevation model (DEM) of a portion of the New Jersey coastline, pre- and post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5 - 1.6 meters. A bias correction of -16 centimeters was applied as a result of instrument calibrations, yielding a nominal vertical elevation accuracy expressed as the root mean square error (RMSE) of 20 centimeters. A peak sampling rate of 15 - 30 kilohertz results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3-to-4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Submerged Topography—Barnegat Bay, New Jersey, pre-Hurricane Sandy, 2012

American Standard Code for Information Interchange XYZ and binary point-cloud data, as well as a digital elevation model for part of Barnegat Bay, New Jersey, pre-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 20 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Submerged Topography—Barnegat Bay, New Jersey, post-Hurricane Sandy, 2012–2013

American Standard Code Information Interchange XYZ and binary point-cloud data, as well as a digital elevation model for part of Barnegat Bay, New Jersey, post-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5–1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 25 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

American Standard Code Information Interchange XYZ and binary point-cloud data, as well as a seamless (bare-earth and submerged) digital elevation model for part of Fire Island, New York, pre-Hurricane Sandy (October 2012 hurricane), were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5–1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 5.24 centimeters for the bare earth topography. Additional data were insufficient to calculate an RMSE for the submerged topography. A peak sampling rate of 15–30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

This shapefile was produced from 53 2-kilometer by 2-kilometer tile extents of remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5–1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 5.24 centimeters for the bare earth topography. Additional data were insufficient to calculate an RMSE for the submerged topography. A peak sampling rate of 15–30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Coastal Topography--Chandeleur Islands, Louisiana, 2012: Seamless (Bare Earth and Submerged) (.shp file)

This shapefile was produced from 52 2-kilometer by 2-kilometer tile extents of remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5 - 1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 15 centimeters. A peak sampling rate of 15 - 30 kilohertz results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
P07_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall (October 28, 2012), three and four days immediately after the storm (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed.

Info
P08_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set if cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall (October 28, 2012), three and four days immediately after the storm (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed.

Info
P09_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall (October 28, 2012), three and four days immediately after the storm (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed.

Info
P10_Nov2012_Oct2014: Fire Island, NY pre- and post- storm cross-shore profiles from November 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from November 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 14 dates from November 04 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall* (October 28, 2012), three and four days immediately after the storm* (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed. *Data were not able to be collected at this location (P10) for October 28 2012, and Nov 01 2012.

Info
P11_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 15 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall (October 28, 2012), three and four days immediately after the storm (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed.

Info
P23_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall (October 28, 2012), three and four days immediately after the storm (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed.

Info
P24_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall (October 28, 2012), three and four days immediately after the storm (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed.

Info
P25_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall (October 28, 2012), three and four days immediately after the storm (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed.

Info
P26_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall (October 28, 2012), three and four days immediately after the storm (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed.

Info
Shorelines_Oct2012_Sept2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This shapefile consists of Fire Island, NY pre- and post-storm shoreline data collected from October 2012 to September 2014. This dataset contains 13 Mean High Water (MHW) shorelines for Fire Island, NY (A total of 15 dates, where two shorelines were collected over multiple days). Prior to and following Hurricane Sandy in October, 2012, continuous alongshore DGPS data were collected to assess the positional changes of the shoreline (MHW - 0.46 m NAVD88) and the upper portion of the beach. Over the course of 23 months, 13 surveys were conducted collecting data along shore-parallel tracks to capture the base of the dune, the mid-beach, and the upper and lower foreshore. The alongshore tracks extend from just west of Fire Island Lighthouse to the western flank of the storm-induced inlet breach at Old Inlet. The MHW shoreline (0.46 m North American Vertical Datum of 1988 [NAVD 88]; Weber and others, 2005) is derived from the field data by using an interpolation method that creates a series of equally-spaced cross-shore profiles between the two survey lines that flank the MHW contour. The foreshore slope is assumed to be uniform on each profile. Using this slope and the two surveyed positions on each cross-shore profile, a simple geometric calculation is done to find where each profile line intersects the MHW contour.

Info
Lidar-Derived Bare-Earth XYZ for EAARL Coastal Topography—Fire Island, New York, 2002

ASCII XYZ data for Fire Island, New York, was produced from remotely sensed, geographically referenced elevation measurements collected October 25 and November 8, 2002 by the U.S. Geological Survey, in cooperation with the National Park Service (NPS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL Coastal Topography—Fire Island, New York, 2002

A digital elevation model (DEM) mosaic for Fire Island, New York, was produced from remotely sensed, geographically referenced elevation measurements collected October 25 and November 8, 2002 by the U.S. Geological Survey, in cooperation with the National Park Service (NPS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the first-generation Experimental Advanced Airborne Research Lidar (EAARL-A), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-Derived Classified Bare-Earth Point-Cloud for Coastal Topography—Fire Island, New York, 07 May 2012

Binary point-cloud data were produced for Fire Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. using an Optech Gemini lidar sensor flown on a Cessna 206 aircraft.

Info
Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for Coastal Topography—Fire Island, New York, 07 May 2012

A digital elevation model (DEM) mosaic was produced for Fire Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. using an Optech Gemini lidar sensor flown on a Cessna 206 aircraft

Info
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser pulse and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser pulse and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser pulse and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Uncalibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (WGS84)

Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser pulse and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Hurricane Florence Assessment of Potential Coastal Change Impacts: NHC Advisory 57, 1100 AM EDT THU SEP 13 2018

This dataset defines storm-induced coastal erosion hazards for the Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Florence in September 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. . All hydrodynamic and morphologic variables are included in this dataset.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Bradenton Beach to Clearwater Beach, Florida Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Gulf of Mexico from Bradenton Beach to Clearwater Beach, Florida for data collected at various times between 1998 and 2010.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Bradenton Beach to Clearwater Beach, Florida Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Gulf of Mexico from Bradenton Beach to Clearwater Beach, Florida for data collected at various times between 1998 and 2010.

Info
Tropical Storm Gordon Assessment of Potential Coastal Change Impacts: NHC Advisory 8, 0700 AM CDT TUE SEP 04 2018

This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Gordon in September 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Subbottom and Sidescan Sonar Data Acquired in 2015 From Grand Bay, Mississippi and Alabama

From May 28 to June 3, 2015, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic evolution and estuarine sediment thickness in Grand Bay, Alabama and Mississippi. Specific objectives were to document the age and accumulation patterns of estuarine sediment to advance our understanding of sediment exchange with the adjacent marsh and sources of sediment to the coastal ocean. This investigation is part of the USGS Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project. SSIEES seeks to better understand material exchange between marshes and adjacent estuarine water bodies along the northern Gulf of Mexico and the Atlantic coast, and determine the role extreme events (hurricanes, floods, and strong frontal systems) and sea-level change have on coastal change. This publication serves as an archive of unprocessed, digital chirp subbottom and sidescan sonar data, geographic information system (GIS) data and formal Federal Geographic Data Committee (FGDC) metadata, as well as processed sidescan sonar mosaics. Processed subbottom profile images are also provided in the "images" folder of 2015-315-FA_arc.zip. The archived subbottom trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). The raw sidescan sonar backscatter data are in standard eXtensible Triton Framework (XTF)format. These data are available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, these data files can be downloaded from the USGS Coastal and Marine Geoscience Data System (https://cmgds.marine.usgs.gov).

Info
HLY1002_Averaged

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Chukchi Sea and Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect over 22,000 measurements of air and sea pCO2, pH, and DIC along a 9,450-km trackline during August 2010. In addition, 240 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
CTD_casts

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Chukchi Sea and Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect over 22,000 measurements of air and sea pCO2, pH, and DIC along a 9,450-km trackline during August 2010. In addition, 240 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
USGS Arctic Ocean Carbon Cruise 2010: Discrete Lab data

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Chukchi Sea and Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect over 22,000 measurements of air and sea pCO2, pH, and DIC along a 9,450-km trackline during August 2010. In addition, 240 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
Healy_Continuous

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Chukchi Sea and Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect over 22,000 measurements of air and sea pCO2, pH, and DIC along a 9,450-km trackline during August 2010. In addition, 240 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
Healy_Discrete

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months, when ice melt is at its greatest extent. However, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Chukchi Sea and Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect over 22,000 measurements of air and sea pCO2, pH, and DIC along a 9,450-km trackline during August 2010. In addition, 240 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
CTD_casts

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect approximately 9,000 measurements of air and sea pCO2, pH, and DIC along a 11,447-km trackline in August and September 2011. In addition, over 500 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
USGS Arctic Ocean Carbon Cruise 2011: Discrete Underway data

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect approximately 9,000 measurements of air and sea pCO2, pH, and DIC along a 11,447-km trackline in August and September 2011. In addition, over 500 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
Hurricane Harvey Assessment of Potential Coastal Change Impacts: NHC Advisory 020, 700 AM CDT FRI AUG 25 2017

This dataset defines storm-induced coastal erosion hazards for the Texas and Louisiana coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Harvey in August 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Tropical Storm Hermine Assessment of Potential Coastal Change Impacts: NHC Advisory 20, 0500 AM EDT FRI SEP 02 2016

This dataset defines storm-induced coastal erosion hazards for the Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Tropical Storm Hermine in September 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Continuous Resistivity Profiling, Electrical Resistivity Tomography and Hydrologic Data Collected in 2017 from Indian River Lagoon, Florida

Extending 200 kilometers (km) along the Atlantic Coast of Central Florida, Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States. The lagoon is characterized by shallow, brackish waters and a width that varies between 0.5 and 9.0 km; there is significant human development along both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center used continuous resistivity profiling (CRP, a towed electronic array) measurements, electrical resistivity tomography (ERT), and basic physical water column properties (for example, depth and temperature) to investigate submarine groundwater discharge at two locations, Eau Gallie North and Riverwalk Park, along the western shore of IRL. Eau Gallie North is near the central section of IRL and Riverwalk Park is approximately 20 km north of the Eau Gallie site. At each CRP study site, an 11-electrode marine resistivity array was towed over seven north–south shore parallel transects (EA–EG and RA–RG, respectively), situated between 75–1000 meters offshore, and approximately 1.5 km in length. Each transect was mapped three times in an alternating north–south direction to account for data collected by the concurrently-operating radon mapping system (Everhart and others, 2018). Repeat streaming resistivity surveys were collected bimonthly along these same tracklines, between March and November 2017, to determine seasonal and temporal variability. Since resistivity is a function of both geology and salinity, it is assumed that temporal shifts will reflect salinity changes, as the underlying geology will be presumed to remain constant. ERT study areas consisted of land- and shallow water-based surveys, where [DC] electrical current was injected into the ground via two current electrodes and received by nine potential electrodes. Electrode positions for both sites were recorded along six transects (T01-T06) and are provided in this data release as supplemental information (please see the ERT location map files included in, ERT_survey_maps.zip).

Info
Hurricane Irma Assessment of Potential Coastal Change Impacts: NHC Advisory 41, 800 AM EDT SAT SEPT 9 2017

This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia and South Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Irma in September 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Extratropical Storm Jan2016 Assessment of Potential Coastal Change Impacts: 1200 PM EST FRI JAN 22 2016

This dataset defines storm-induced coastal erosion hazards for the Virginia, Maryland, Delaware, New Jersey and New York coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct impact of the Extratropical Storm in January 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Hurricane Joaquin Assessment of Potential Coastal Change Impacts: NHC Advisory 27, 0800 AM EDT SUN OCT 04 2015

This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island and Massachusetts coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Joaquin in October 2015. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
EAARL Coastal Topography--Dauphin Island, Alabama, Post-Hurricane Katrina, 2005: Bare Earth

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL Coastal Topography--Dauphin Island, Alabama, Post-Hurricane Katrina, 2005: First Surface

ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over Dauphin Island, post-Hurricane Katrina (August 2005 hurricane), using the National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Coastal Topography—Long Island, New York, Post-Hurricane Irene, 30 August 2011

Binary point-cloud data were produced for Long Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Woolpert, Inc. using an Leica ALS50-II lidar sensor flown on a Cessna 404 aircraft. These data were collected post-Hurricane Irene on August 30, 2011.

Info
Coastal Topography—Long Island, New York, Post-Hurricane Irene, 30 August 2011

A digital elevation model (DEM) mosaic was produced for Long Island, New York, from remotely sensed, geographically referenced elevation measurements collected by Woolpert, Inc. using an Leica ALS50-II lidar sensor flown on a Cessna 404 aircraft. These data were collected post-Hurricane Irene on August 30, 2011.

Info
Massachusetts Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes for Massachusetts for data collected at various times between 2000 and 2013.

Info
Massachusetts raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Northeast Atlantic Ocean for Massachusetts for data collected at various times between 2000 and 2013

Info
Extratropical Storm March 2018 Assessment of Potential Coastal Change Impacts: 0800 AM EST FRI MAR 02 2018

This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island, Massachusetts, New Hampshire and Maine coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of an Extratropical Storm in March 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Hurricane Maria Assessment of Potential Coastal Change Impacts: NHC Advisory 41, 0800 AM EDT TUE SEPT 26 2017

This dataset defines storm-induced coastal erosion hazards for the North Carolina, Virginia, Maryland and Delaware coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Maria in September 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Hurricane Matthew Assessment of Potential Coastal Change Impacts: NHC Advisory 037, 800 AM EDT FRI OCT 07 2016

This dataset defines storm-induced coastal erosion hazards for the Florida, Georgia, South Carolina and North Carolina coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Matthew in October 2016. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
Hurricane Michael Assessment of Potential Coastal Change Impacts: NHC Advisory 15, 0400 AM CDT WED OCT 10 2018

This dataset defines storm-induced coastal erosion hazards for the Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Michael in October 2018. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Salvo to Duck, North Carolina Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives features of beach morphology from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Atlantic Ocean from Salvo to Duck, North Carolina for data collected at various times between 1996 and 2012.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Salvo to Duck, North Carolina Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives features of beach morphology from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Atlantic Ocean from Salvo to Duck, North Carolina for data collected at various times between 1996 and 2012.

Info
New Jersey Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes for New Jersey for data collected at various times between 2007 and 2014.

Info
New Jersey raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Northeast Atlantic Ocean for New Jersey for data collected at various times between 2007 and 2014

Info
Hurricane Nate Assessment of Potential Coastal Change Impacts: NHC Advisory 12, 0800 AM EDT SAT OCT 07 2017

This dataset defines storm-induced coastal erosion hazards for the Louisiana, Mississippi, Alabama and Florida coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Nate in October 2017. Storm-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of the three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Miami to Jupiter, Florida Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Atlantic Ocean from Miami to Jupiter, Florida for data collected at various times between 1999 and 2009.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Miami to Jupiter, Florida Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Atlantic Ocean from Miami to Jupiter, Florida for data collected at various times between 1999 and 2009.

Info
EAARL-B Topography—Suncook River, New Hampshire, 5-6 November 2013: Seamless (Bare Earth and Submerged)

Binary point-cloud data for part of the Suncook River in New Hampshire were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey. Elevation measurements were collected over the area on November 5 and 6, 2013 using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters. A peak sampling rate of 15–30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Submerged Topography—Saint Croix, U.S. Virgin Islands, 2014

A submerged topography digital elevation model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5–1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 13.5 centimeters. A peak sampling rate of 15–30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5?1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 13.5 centimeters. A peak sampling rate of 15?30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Submerged Topography–Saint Croix, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Croix, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 11, 19, and 21, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5?1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 13.5 centimeters. A peak sampling rate of 15?30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Submerged Topography—Saint Thomas, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 13.5 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
EAARL-B Submerged Topography--Saint Thomas, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 13.5 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-Derived Point Cloud for EAARL-B Submerged Topography–—Saint Thomas, U.S. Virgin Islands, 2014

ASCII XYZ point cloud data for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 13.5 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Lidar-Derived Digital Elevation Model (DEM) Mosaic for EAARL-B Submerged Topography-Saint Thomas, U.S. Virgin Islands, 2014

A submerged topography Digital Elevation Model (DEM) mosaic for a portion of the submerged environs of Saint Thomas, U.S. Virgin Islands, was produced from remotely sensed, geographically referenced elevation measurements collected on March 7, 8, 11, 12, 13, 14, 17, 18, and 24, 2014 by the U.S. Geological Survey, in collaboration with the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Conservation Program. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 13.5 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruises 13BIM02 and 13BIM07 Offshore of the Chandeleur Islands, Louisiana, 2013

On July 5–19 (13BIM02) and August 22–September 1 (13BIM07) of 2013, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the oil spill mitigation sand berm constructed at the north end and offshore of the Chandeleur Islands, La. This investigation is part of a broader USGS study, which seeks to understand barrier island evolution better over medium time scales (months to years). This report serves as an archive of unprocessed, digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are provided. These data are available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>).

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activities 93LCA01 and 94LCA01 in Kingsley, Orange, and Lowry Lakes, Northeast Florida, 1993 and 1994

In August and September of 1993 and January of 1994, the U.S. Geological Survey, under a cooperative agreement with the St. Johns River Water Management District (SJRWMD), conducted geophysical surveys of Kingsley Lake, Orange Lake, and Lowry Lake in northeast Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, observer's logbook, Field Activity Collection System (FACS) logs, and formal FGDC metadata. A filtered and gained GIF image of each seismic profile is also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and in-house (USGS) software for viewing SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/p/p193fl/html/p-1-93-fl.meta.html and http://walrus.wr.usgs.gov/infobank/p/p194fl/html/p-1-94-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 04SGI01 in the Withlacoochee River of West-Central Florida, March 2004

In March of 2004, the U.S. Geological Survey conducted a geophysical survey in the Withlacoochee River of west-central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/w/w104fl/html/w-1-04-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruise 94CCT02, South-Central South Carolina Coastal Region, August 1994

In August of 1994, the U.S. Geological Survey, in cooperation with Coastal Carolina University, conducted marine geophysical surveys in numerous water bodies adjacent to the south-central South Carolina coastal region. Data were collected aboard the MS Coastal in the Ashley, North Edisto, Wadmalaw, Dawho, South Edisto, and Ashepoo Rivers; the Wappoo, North, Steamboat, Bohicket, and Toogoodoo Creeks; Charleston Harbor; Wadmalaw Sound; Fenwick Cut; and the Atlantic Ocean from offshore Isle of Palms to Kiawah Island. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, observers' logbooks, Field Activity Collection System (FACS) logs, and FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/c/c294sr/html/c-2-94-sr.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruise 97CCT01 Offshore of Central South Carolina, June 1997

In June of 1997, the U.S. Geological Survey, in cooperation with Coastal Carolina University, conducted a geophysical survey of the shallow geologic framework of the continental shelf offshore of central South Carolina from the Isle of Palms to Bull Island. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, observers' logbooks, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g197sr/html/g-1-97-sr.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activities 95LCA03 and 96LCA02 in the Peace River of West-Central Florida, 1995 and 1996

In October and November of 1995 and February of 1996, the U.S. Geological Survey, in cooperation with the Southwest Florida Water Management District, conducted geophysical surveys of the Peace River in west-central Florida from east of Bartow to west of Arcadia. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, observers' logbooks, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/j/j395fl/html/j-3-95-fl.meta.html and http://walrus.wr.usgs.gov/infobank/j/j296fl/html/j-2-96-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 04SCC01 in Terrebonne, Timbalier, and Barataria Bays and Lake Pelto, Louisiana, June and July 2004

In June and July of 2004, the U.S. Geological Survey, in cooperation with the University of New Orleans, conducted geophysical surveys in Terrebonne Bay, Timbalier Bay, Lake Pelto, and Barataria Bay, Louisiana, and nearby waterbodies. This report serves as an archive of unprocessed digital boomer and chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g104la/html/g-1-04-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 03SCC03 in Lake Pelto and Timbalier and Terrebonne Bays, Louisiana, September 2003

In September of 2003, the U.S. Geological Survey conducted geophysical surveys in Lake Pelto, Timbalier Bay, Terrebonne Bay, and nearby waterbodies offshore south-central Louisiana. This report serves as an archive of unprocessed digital boomer and chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g103la/html/g-1-03-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Chirp Seismic Reflection Data Collected During USGS Cruise 05SCC01 Offshore of Port Fourchon and Timbalier Bay, Louisiana, August 2005

In August of 2005, the U.S. Geological Survey conducted geophysical surveys offshore of Port Fourchon and Timbalier Bay, Louisiana, and in nearby waterbodies. This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g105la/html/g-1-05-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Chirp Seismic Reflection Data Collected During USGS Cruise 06FSH01 Offshore of Siesta Key, Florida, May 2006

In May of 2006, the U.S. Geological Survey conducted geophysical surveys offshore of Siesta Key, Florida. This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g106fl/html/g-1-06-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Chirp Seismic Reflection Data Collected During USGS Cruise 06SCC01 Offshore of Isles Dernieres, Louisiana, June 2006

In June of 2006, the U.S. Geological Survey conducted a geophysical survey offshore of Isles Dernieres, Louisiana. This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic UNIX (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g106la/html/g-1-06-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital and Digitized Analog Boomer Seismic Reflection Data Collected During USGS Cruise 96CCT02 in Copano, Corpus Christi, and Nueces Bays and Corpus Christi Bayou, Texas, July 1996

In June of 1996, the U.S. Geological Survey conducted geophysical surveys from Nueces to Copano Bays, Texas. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, cruise log, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles and high resolution scanned TIFF images of the original paper printouts are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/b/b0296tx/html/b-02-96-tx.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 06FSH03 Offshore of Fort Lauderdale, Florida, September 2006

In September of 2006, the U.S. Geological Survey conducted geophysical surveys offshore of Fort Lauderdale, FL. This report serves as an archive of unprocessed digital boomer and Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/c/c106fl/html/c-1-06-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) earth science exploration and visualization applications

Info
Archive of Digital Chirp Seismic Reflection Data Collected During USGS Cruise 06SCC03 Offshore of Cheniere Caminada, Louisiana, July 2006

In July of 2006, the U.S. Geological Survey conducted a geophysical survey offshore of Cheniere Caminada, Louisiana. This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, GIS information, Field Activity Collection System (FACS) logs, observer's logbook, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g306la/html/g-3-06-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 96LCA04 in Lakes Mabel and Starr, Central Florida, August 1996

In August of 1996, the U.S. Geological Survey conducted geophysical surveys in Lakes Mabel and Starr, Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, cruise log, and formal FGDC metadata. For detailed information about the hydrologic setting of Lake Starr and the interpretation of some of these seismic reflection data, see Swancar and others (2000) at http://fl.water.usgs.gov/publications/Abstracts/wri00_4030_swancar.html. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/b/b496fl/html/b-4-96-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 02LCA02 in Lakes Ada, Crystal, Jennie, Mary, Rice, and Sylvan, Central Florida, July 2002

In July of 2002, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Ada, Crystal, Jennie, Mary, Rice, and Sylvan, Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/b/b402fl/html/b-4-02-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digitized Analog Boomer Seismic Reflection Data Collected from Lake Ponchartrain, Louisiana to Mobile Bay, Alabama, During Cruises Onboard the R/V ERDA-1, June and August, 1992

In June and August of 1992, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the shallow geologic framework from Lake Pontchartrain, Louisiana, to Mobile Bay, Alabama. This work was conducted onboard the Argonne National Laboratorys R/V ERDA-1 as part of the Mississippi/Alabama Pollution Project. This report is part of a series to digitally archive the legacy analog data collected from the Mississippi-Alabama SHelf (MASH). The MASH data rescue project is a cooperative effort by the USGS and the Minerals Management Service (MMS). This report serves as an archive of high resolution scanned Tagged Image File Format (TIFF) and Graphics Interchange Format (GIF) images of the original boomer paper records, navigation files, trackline maps, Geographic Information System (GIS) files, cruise logs, and formal Federal Geographic Data Committee (FGDC) metadata. For more information on the seismic surveys see http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=1992-010-FA and http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=1992-037-FA These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
EAARL Coastal Topography-Fire Island National Seashore 2007

A bare earth/first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Fire Island National Seashore in New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Natchez Trace Parkway 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DSM) of a portion of the Natchez Trace Parkway in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography-Sandy Hook 2007

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Gateway National Recreation Area's Sandy Hook Unit in New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Archive of Digital Boomer and CHIRP Seismic Reflection Data Collected During USGS Field Activity 08LCA03 in Lake Panasoffkee, Florida, May 2008

From May 13 to May 14 of 2008, the U.S. Geological Survey conducted geophysical surveys in Lake Panasoffkee, Florida. Thisreport serves as an archive of unprocessed digital boomer and CHIRP seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and (or) gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/j/j308fl/html/j-3-08-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 08LCA01 in 10 Central Florida Lakes, March 2008

In March of 2008, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Avalon, Big, Colby, Helen, Johns, Prevatt, Searcy, Saunders, Three Island, and Trout, located in central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/j/j108fl/html/j-1-08-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digitized Analog Boomer and Minisparker Seismic Reflection Data Collected from the Alabama-Mississippi-Louisiana Shelf During Cruises Onboard the R/V Carancahua and R/V Gyre, April and July, 1981

In April and July of 1981, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the shallow geologic framework of the Alabama-Mississippi-Louisiana Shelf in the northern Gulf of Mexico. Work was conducted onboard the Texas A&M University R/V Carancahua and the R/V Gyre to develop a geologic understanding of the study area and to locate potential hazards related to offshore oil and gas production. While the R/V Carancahua only collected boomer data, the R/V Gyre used a 400-Joule minisparker, 3.5-kilohertz (kHz) subbottom profiler, 12-kHz precision depth recorder, and two air guns. The authors selected the minisparker data set because, unlike with the boomer data, it provided the most complete record. This report is part of a series to digitally archive the legacy analog data collected from the Mississippi-Alabama SHelf (MASH). The MASH data rescue project is a cooperative effort by the USGS and the Minerals Management Service (MMS). This report serves as an archive of high-resolution scanned Tagged Image File Format (TIFF) and Graphics Interchange Format (GIF) images of the original boomer and minisparker paper records, navigation files, trackline maps, Geographic Information System (GIS) files, cruise logs, and formal Federal Geographic Data Committee (FGDC) metadata.

Info
Archive of Digitized Analog Boomer Seismic Reflection Data Collected from the Mississippi-Alabama-Florida shelf During Cruises Onboard the R/V Kit Jones, June 1990 and July 1991

In June of 1990 and July of 1991, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the shallow geologic framework of the Mississippi-Alabama-Florida shelf in the northern Gulf of Mexico, from Mississippi Sound to the Florida Panhandle. Work was done onboard the Mississippi Mineral Resources Institute R/V Kit Jones as part of a project to study coastal erosion and offshore sand resources. This report is part of a series to digitally archive the legacy analog data collected from the Mississippi-Alabama SHelf (MASH). The MASH data rescue project is a cooperative effort by the USGS and the Minerals Management Service (MMS). This report serves as an archive of high-resolution scanned Tagged Image File Format (TIFF) and Graphics Interchange Format (GIF) images of the original boomer paper records, navigation files, trackline maps, Geographic Information System (GIS) files, cruise logs, and formal Federal Geographic Data Committee (FGDC) metadata.

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 08LCA04 in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, Central Florida, September 2008

From September 2 through 4, 2008, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/j/j408fl/html/j-4-08-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
ATM Coastal Topography--Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography and Imagery--Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

A digital elevation map (also known as a Digital Elevation Model, or DEM) of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Archive of Digital Boomer Seismic reflection Data Collected Offshore East-Central Florida During USGS Cruise 00FGS01, July 14-22, 2000

In July of 2000, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted a geophysical survey of the Atlantic Ocean offshore Florida's east coast from Brevard County to northern Martin County. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, digital and handwritten Field Activity Collection System (FACS) logs, and Federal Geographic Data Committee (FGDC) metadata. A filtered and gained digital image of each seismic profile is also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and (USGS) software for viewing SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g100fl/html/g-1-00-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
EAARL Coastal Topography--Chandeleur Islands, Louisiana, 2010: Bare Earth

A bare-earth digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Chandeleur Islands, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Gateway National Recreation Area, New Jersey and New York, 2009

A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Gateway National Recreation Area in New Jersey and New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Archive of Digital Chirp Sub-bottom Profile Data Collected During USGS Cruise 09CCT01 Offshore of Sabine Pass and Galveston, Texas, March 2009

In March of 2009, the U.S. Geological Survey and Texas A&M University at Galveston conducted geophysical surveys to investigate the shallow geologic framework from Sabine Pass to Galveston, TX, as part of the USGS's Coastal Change and Transport (CCT) study. This report serves as an archive of unprocessed digital Chirp sub-bottom profile data, trackline maps, navigation files, GIS information, FACS logs, observer's logbook, and formal FGDC metadata. Gained digital images of the sub-bottom profiles are also provided. The archived trace data are in standard SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/m/m109gm/html/m-1-09-gm.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Frances, 2004: First Surface

A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Frances, 2004: Bare Earth

A bare-earth digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Archive of Digital Chirp Sub-bottom Profile Data Collected During USGS Cruise 07SCC01 Offshore of the Chandeleur Islands, Louisiana, June 2007

In June of 2007, the U.S. Geological Survey (USGS), in cooperation with the Louisiana Department of Natural Resources (LDNR), conducted a geophysical survey offshore of the Chandeleur Islands, Louisiana. This report serves as an archive of unprocessed digital Chirp sub-bottom profile data, trackline maps, navigation files, GIS information, FACS logs, observer's logbook, and formal FGDC metadata. Gained digital images of the sub-bottom profiles are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g107la/html/g-1-07-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
EAARL Coastal Topography--Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

A digital elevation model (DEM) of a portion of the Mississippi and Alabama barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Sandy Hook Unit, Gateway National Recreation Area, New Jersey, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Sandy Hook Unit of the Gateway National Recreation Area in New Jersey, post-Nor'Ida (November 2009 nor'easter) was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Fire Island National Seashore, New York, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Fire Island National Seashore in New York, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography and Imagery--Assateague Island National Seashore, Maryland and Virginia, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Assateague Island National Seashore in Maryland and Virginia, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

A digital elevation model (DEM) of a portion of the eastern Louisiana barrier islands, post-Hurricane Gustav (September 2008 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Maryland and Delaware, post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the eastern Maryland and Delaware coastline, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: First Surface

A digital elevation model (DEM) of a portion of the National Park Service Southeast Coast Network's Cape Hatteras National Seashore in North Carolina, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography and Imagery--Fire Island National Seashore, New York, 2009

A digital elevation model (DEM) of a portion of the Fire Island National Seashore in New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Archive of Digital Chirp Sub-bottom Profile Data Collected During USGS Cruises 08CCT02 and 08CCT03, Mississippi Gulf Islands, July and September 2008

In July and September of 2008, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, MS, as part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp sub-bottom profile data, trackline maps, navigation files, GIS information, FACS logs, observer's logbook, and formal FGDC metadata. Gained digital images of the sub-bottom profiles are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/c/c208mi/html/c-2-08-mi.meta.html and http://walrus.wr.usgs.gov/infobank/s/s308mi/html/s-3-08-mi.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
10cct02_ss_v1_1m - Side scan sonar mosaic of Petit Bois Pass, Alabama, Mississippi Barrier Islands, March 2010

In March of 2010, the U.S. Geological Survey (USGS) conducted geophysical surveys offshore of Petit Bois Island, Mississippi, and Dauphin Island, Alabama. These efforts were part of the U.S. Geological Survey Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geologic stratigraphic framework of the Mississippi Barrier Island Complex.

Info
EAARL Coastal Topography--Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: Bare Earth

A digital elevation model (DEM) of a portion of the Cape Hatteras National Seashore in North Carolina, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Archive of Digital Boomer Sub-bottom Data Collected During USGS Field Activities 97LCA01, 97LCA02, and 97LCA03, West-Central and East Coast Florida, February through July 1997

From February through July of 1997, the U.S. Geological Survey conducted geophysical surveys of Lakes Dosson, Halfmoon and Round, Sebastian Inlet, and Indian River Lagoon, within west-central and offshore of the eastern Florida coast. Field activity 97LCA01 was conducted in cooperation with the Southwest Florida Water Management District (SWFWMD), and field activities 97LCA02 and 97LCA03 were conducted in cooperation with the St. Johns River Water Management District (SJRWMD). This report serves as an archive of unprocessed digital boomer sub-bottom data, trackline maps, navigation files, GIS information, cruise log, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. For detailed information about the hydrologic setting of Lakes Dosson, Halfmoon and Round and the interpretation of some of these sub-bottom data, see Metz and Sacks (2002) at http://fl.water.usgs.gov/PDF_files/wri02_4032_metz.pdf.

Info
EAARL Coastal Topography-Cape Canaveral, Florida, 2009: First Surface

A digital elevation model (DEM) of a portion of the eastern Florida coastline was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruises 09CCT03 and 09CCT04, Mississippi and Alabama Gulf Islands, June and July 2009

In June and July of 2009, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on island framework from Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study of Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/c/c309gm/html/c-3-09-gm.meta.html and http://walrus.wr.usgs.gov/infobank/g/g409gm/html/g-4-09-gm.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruises 10CCT01, 10CCT02, and 10CCT03, Mississippi and Alabama Gulf Islands, March and April 2010

In March and April of 2010 the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted geophysical surveys to investigate the geologic controls on island framework from just east of Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the subbottom profiles are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/c/c110gm/html/c-1-10-gm.meta.html, http://walrus.wr.usgs.gov/infobank/m/m210gm/html/m-2-10-gm.meta.html, and http://walrus.wr.usgs.gov/infobank/i/i310gm/html/i-3-10-gm.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
EAARL Coastal Topography--Northern Outer Banks, North Carolina, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the northern North Carolina coastline beachface, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography--Potato Creek Watershed, Georgia, 2010

A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on February 27, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography--Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010

A digital elevation model (DEM) of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area (bathymetry was irresolvable) using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 08CCT01, Mississippi Gulf Islands, July 2008

In July of 2008, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, Mississippi, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. Funding was provided through the Geologic Framework and Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php); this project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, observer's logbook, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g108mi/html/g-1-08-mi.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
EAARL Coastal Topography--Eastern Florida, Post-Hurricane Jeanne, 2004: Bare Earth

A digital elevation model (DEM) of a portion of the eastern Florida coastline, post-Hurricane Jeanne (September 2004 hurricane), was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Assateague Island National Seashore, Maryland and Virginia, 2010

A digital elevation model (DEM) of a portion of the Assateague Island National Seashore in Maryland and Virginia was produced from remotely sensed, geographically referenced elevation measurements collected cooperatively by the U.S. Geological Survey (USGS) and the National Park Service (NPS). Elevation measurements were collected over the area on March 19 and 24, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Virginia, Post-Nor'Ida, 2009

A digital elevation model (DEM) of a portion of the Virginia coastline beachface, post-Nor'Ida (November 2009 nor'easter), was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

Info
Archive of Digital Boomer Subbottom Data Collected During USGS Cruise 05FGS01, Offshore East-Central Florida, July 17-29, 2005

In July of 2005, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted a geophysical survey of the Atlantic Ocean offshore of Florida's east coast from Flagler Beach to Daytona Beach. This report serves as an archive of unprocessed digital boomer subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>)

Info
Archive of Digital Boomer Seismic Reflection Data Collected Offshore East-Central Florida during USGS Cruises 96FGS01 and 97FGS01 in November of 1996 and May of 1997

In November of 1996 and May of 1997, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted geophysical surveys of the shallow geologic framework of the continental shelf offshore east-central Florida from Cape Canaveral to Sebastian Inlet. This report serves as an archive of unprocessed digital boomer seismic reflection data, navigation files, trackline maps, GIS files, FACS logs, and FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists SEG Y format (rev. 0) (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov).

Info
EAARL Coastal Topography--Alligator Point, Louisiana, 2010

A digital elevation model (DEM) of a portion of Alligator Point, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. The Alligator Point data provided represent the last return pulses and were processed and filtered for bare-earth topography. However, in low-lying and emerging vegetation environments, bare-earth topography is not necessarily discernible from the last-return pulses. The difference in water levels between data collections on March 5 and 6 resulted in elevation variations in the merged data.

Info
EAARL Coastal Topography--Central Wetlands, Louisiana, 2010

A digital elevation model (DEM) of a portion of the Central Wetlands, Louisiana was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on March 4 and 5, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. The Central Wetlands data provided represent the last return pulses and were processed and filtered for bare-earth topography. The difference in water levels between data collections on March 4 and 5 resulted in elevation variations in the merged data.

Info
EAARL Coastal Topography--North Shore, Lake Pontchartrain, Louisiana, 2010

A digital elevation model (DEM) of a portion of the north shore of Lake Pontchartrain, Louisiana, was produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area on February 28, March 1, and March 5, 2010, using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. The data provided represent the last return pulses and were processed and filtered for bare-earth topography. However, in low-lying and emerging vegetation environments, bare-earth topography is not necessarily discernible from the last-return pulses. The difference in water levels between data collections on February 28, March 1, and March 5 resulted in elevation variations in the merged data.

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 10BIM04 Offshore Cat Island, Mississippi, September 2010

In September of 2010, the U.S. Geological Survey conducted a geophysical survey offshore of Cat Island, Miss., to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov)

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 11BIM01 Offshore of the Chandeleur Islands, Louisiana, June 2011

In June of 2011, the U.S. Geological Survey conducted a geophysical survey offshore of the Chandeleur Islands, LA to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov)

Info
Archive of Digital Boomer Subbottom Data Collected During USGS Cruises 99FGS01 and 99FGS02 Offshore Southeast and Southwest Florida, July and November, 1999

During July 19 - 26 and November 17 - 18 of 1999, the U.S. Geological Survey (USGS), in cooperation with the Florida Geological Survey (FGS), conducted geophysical surveys of the Atlantic Ocean offshore of Florida's southeast coast from Orchid to Jupiter, FL and the Gulf of Mexico offshore of Venice, FL. This report serves as an archive of unprocessed digital boomer subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition to this DVD, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>).

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 13GFP01, Brownlee Dam and Hells Canyon Reservoir, Idaho and Oregon, 2013

From March 16 - 31, 2013, the U.S. Geological Survey conducted a geophysical survey to investigate sediment deposits and long-term sediment transport within the Snake River from Brownlee Dam to Hells Canyon Reservoir, Idaho; this effort will help the USGS to better understand geologic processes. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are also available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>)

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 12BIM03 Offshore of the Chandeleur Islands, Louisiana, July 2012

In July of 2012, the U.S. Geological Survey conducted a geophysical survey offshore of the Chandeleur Islands, La. to investigate the geologic controls on barrier island framework. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) information, and formal Federal Geographic Data Committee (FGDC) metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>).

Info
Archive of Digital Chirp Subbottom Profile Data Collected During USGS Cruise 13CCT04 Offshore of Petit Bois Island, Mississippi, August 2013

In August of 2013, the U.S. Geological Survey conducted a geophysical survey offshore of Petit Bois Island, Mississippi to investigate the geologic controls on barrier island framework and long-term sediment transport. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are available for viewing using GeoMapApp (<http://www.geomapapp.org/>) and Virtual Ocean (<http://www.virtualocean.org/>) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (<http://cmgds.marine.usgs.gov>).

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruises 94CCT01 and 95CCT01, Eastern Texas and Western Louisiana, 1994 and 1995

In June of 1994 and August and September of 1995, the U.S. Geological Survey, in cooperation with the University of Texas Bureau of Economic Geology, conducted geophysical surveys of the Sabine and Calcasieu Lake areas and the Gulf of Mexico offshore eastern Texas and western Louisiana. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, observers' logbooks, GIS information, and formal FGDC metadata. In addition, a filtered and gained GIF image of each seismic profile is provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and in-house (USGS) software for viewing SEG-Y files (Zihlman, 1992) are also provided. Processed profile images, trackline maps, navigation files, and formal metadata may be viewed with a web browser. Scanned handwritten logbooks and Field Activity Collection System (FACS) logs may be viewed with Adobe Reader. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g194gm/html/g-1-94-gm.meta.html and http://walrus.wr.usgs.gov/infobank/g/g195gm/html/g-1-95-gm.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer and Chirp Seismic Reflection Data Collected During USGS Cruises 01RCE05 and 02RCE01 in the Lower Atchafalaya River, Mississippi River Delta, and Offshore Southeastern Louisiana, October 23-30, 2001, and August 18-19, 2002

In October of 2001 and August of 2002, the U.S. Geological Survey conducted geophysical surveys of the Lower Atchafalaya River, the Mississippi River Delta, Barataria Bay, and the Gulf of Mexico south of East Timbalier Island, Louisiana. This report serves as an archive of unprocessed digital marine seismic reflection data, trackline maps, navigation files, observers' logbooks, GIS information, and formal FGDC metadata. In addition, a filtered and gained GIF image of each seismic profile is provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and othes, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and in-house (USGS) software for viewing SEG-Y files (Zihlman, 1992) are also provided. Processed profile images, trackline maps, navigation files, and formal metadata may be viewed with a web browser. Scanned handwritten logbooks and Field Activity Collection System (FACS) logs may be viewed with Adobe Reader. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g601la/html/g-6-01-la.meta.html and http://walrus.wr.usgs.gov/infobank/g/g102gm/html/g-1-02-gm.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Digital elevation model (DEM)

A DEM was produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virgina, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar-extracted dune features

Dune crest and toe positions along a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York)using using airborne lidar sensors.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

Derived products of a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virgina, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors. Post-storm coastal dune and mean-high-water shoreline features, binary point-cloud data, and digital elevation model (DEM) data are included in this Data Series.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar point-cloud data (LAS)

Binary point-cloud data were produced for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), from remotely sensed, geographically referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Lidar and digital elevation model (DEM) tile index

This data represents the tile index for lidar data collected for the U.S. Geological Survey in November 2012 following Hurricane Sandy, which made landfall in the eastern United States on October 29th, 2012. The lidar LAS and derived-digital elevation model (DEM) data are divided into these tiles and filenames match the tile number. The index shows the extent of data collection (portions of the coastline of New York, Delaware, Maryland, Virginia, and North Carolina) and provides tile names to aid in identifying files for data download.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012: Mean-high-water shoreline

Mean-high-water (MHW) shoreline for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines were derived from lidar data collected following Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th). Data were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically-referenced elevation measurements collected by Photo Science, Inc. (Delaware, Maryland, Virginia, and North Carolina) and Woolpert, Inc. (Fire Island, New York) using airborne lidar sensors. Storms cause significant shoreline changes and this variation was not removed from these data, showing a highly variable MHW shoreline in many areas.

Info
Coastal Topography--Northeast Atlantic Coast, Post-Hurricane Sandy, 2012

Dune features (dune crest and toe elevations) and mean-high-water shoreline data for a portion of the New York, Delaware, Maryland, Virginia, and North Carolina coastlines, post-Hurricane Sandy (Sandy was an October 2012 hurricane that made landfall as an extratropical cyclone on the 29th), were produced by the U.S. Geological Survey (USGS) from remotely sensed, geographically referenced elevation measurements collected by Photo Science and Woolpert using using airborne lidar sensors. Binary point-cloud data, as well as digital elevation models (DEM), were also produced by Photo Science and Woolpert and are included in this Data Series.

Info
Archive of digital chirp subbottom profile data collected during USGS cruise 14BIM05 offshore of Breton Island, Louisiana, August 2014

In August of 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service (USFWS), conducted a geophysical survey offshore of Breton Island, Louisiana to investigate the geologic controls on barrier island framework and long-term sediment transport. Additional details related to this activity can be found by searching the USGS's Coastal and Marine Geoscience Data System (CMGDS), for field activity 2014-317-FA (also known as 14BIM05). This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS information, and formal FGDC metadata. Gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG Y revision 0 format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG Y files (Zihlman, 1992) are also provided. These data are available for viewing using GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) multi-platform open source software. In addition, the SEG Y files can also be downloaded from the USGS Coastal and Marine Geoscience Data System (http://cmgds.marine.usgs.gov).

Info
Topographic Lidar Survey of Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana, July 12-14, 2013 -- Bare Earth Digital Elevation Models (DEMs)

A topographic lidar survey was conducted on July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana. The data were collected at a nominal pulse space of 1 meter (m) and processed to identify bare earth elevations. Bare earth Digital Elevation Models (DEMs) were generated based on these data. Photo Science, Inc., was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The bare earth DEMs are 32-bit floating point ERDAS Imagine (IMG) files with a horizontal spatial resolution of 1-m by 1-m. They are projected to Universal Transverse Mercator (UTM), Zone 16, North American Datum (NAD) 1983, meters (m) coordinates. Their vertical datum is NAVD88 (GEOID12A) meters. Eighty-five DEMs, based on a 2-kilometer (km) by 2-km tiling scheme, cover the entire survey area. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.

Info
Topographic Lidar Survey of Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana, July 12-14, 2013 -- Classified Point Data

A topographic lidar survey was conducted July 12-14, 2013 over Dauphin Island, Alabama and Chandeleur, Stake, Grand Gosier and Breton Islands, Louisiana. Lidar data exchange format (LAS) 1.2 formatted classified point data files were generated based on these data. Photo Science, Inc. was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The lidar data were collected at a nominal pulse spacing (NPS) of 1.0 meter (m). The horizontal projection and datum of the data are Universe Transverse Mercator, zone 16N, North American Datum 1983 (UTM Zone 16N NAD83), meters. The vertical datum is North American Vertical Datum 1988, Geoid 2012a (NAVD88, GEOID12A), meters. Eighty-five LAS files, based on a 2-kilometer by 2-kilometer tiling scheme, cover the entire survey area. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public. Lidar_Information Lidar_Collection_Information Lidar_Specification USGS-NGP Base Lidar Specification v1.0 Lidar_Sensor Leica ALS 70 Lidar_Maximum_Returns 4 Lidar_Pulse_Spacing 0.64 Lidar_Density 1.57 Lidar_Flight_Height 1524 Lidar_Flight_Speed 130 Lidar_Scan_Angle 20.0 Lidar_Scan_Frequency 29.6 Lidar_Pulse_Rate 178.4 Lidar_Pulse_Duration 4 Lidar_Pulse_Width 0.35 Lidar_Central_Wavelength 1064 Lidar_Multiple_Pulses_In_Air 0 Lidar_Beam_Divergence 0.22 Lidar_Swath_Width 1109.38 Lidar_Swath_Overlap 11.46% Lidar_Coordinate_Reference_System_Name NAD_1983_UTM_Zone_16N_Meters Lidar_Geoid National Geodetic Survey (NGS) Geoid03 Lidar_Accuracy_Information Lidar_Calculated_Horizontal_Accuracy 0.012 Lidar_Raw_Fundamental_Vertical_Accuracy 0.01 Lidar_LAS_Information Lidar_LAS_Version 1.2 Lidar_LAS_Point_Record_Format 1 Lidar_LAS_Witheld_Point_Identifier Withheld (ignore) points were identified in these files using the standard LAS Withheld bit. Lidar_LAS_Overage_Point_Identifier Swath "overage" points were identified in these files by adding 16 to the standard classification values. Lidar_LAS_Radiometric_Resolution 8 Lidar_LAS_Classification Lidar_LAS_Class_Code 1 Lidar_LAS_Class_Description Processed, but unclassified Lidar_LAS_Classification Lidar_LAS_Class_Code 2 Lidar_LAS_Class_Description Bare earth ground Lidar_LAS_Classification Lidar_LAS_Class_Code 7 Lidar_LAS_Class_Description Noise Lidar_LAS_Classification Lidar_LAS_Class_Code 9 Lidar_LAS_Class_Description Water Lidar_LAS_Classification Lidar_LAS_Class_Code 10 Lidar_LAS_Class_Description Ignored ground Lidar_LAS_Classification Lidar_LAS_Class_Code 17 Lidar_LAS_Class_Description Overlap default (unclassified) Lidar_LAS_Classification Lidar_LAS_Class_Code 18 Lidar_LAS_Class_Description Overlap bare-earth ground

Info
Topographic Lidar Survey of the Alabama, Mississippi, and Southeast Louisiana Barrier Islands, from September 5 to October 11, 2012 -- Bare Earth Digital Elevation Models

A topographic lidar survey was conducted from September 5 to October 11, 2012, for the barrier islands of Alabama, Mississippi and southeast Louisiana, including the coast near Port Fourchon. Most of the data were collected September 5-10, 2012, with a reflight conducted on October 11, 2012, to increase point density in some areas. The data were collected at a nominal pulse space of 1-meter (m) and processed to identify bare earth elevations. Bare earth Digital Elevation Models(DEMs) were generated based on these data. Aero-Metric, Inc., was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The bare earth DEMs are 32-bit floating point ERDAS Imagine (IMG) files with a horizontal spatial resolution of 1-m by 1-m. They are projected to UTM zone 15N or 16N NAD83 meters. Their vertical datum is NAVD88 (GEOID12) meters. The DEMs are organized on a 2-kilometer (km) by 2-km tiling scheme that covers the entire survey area. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.

Info
Topographic Lidar Survey of the Alabama, Mississippi, and Southeast Louisiana Barrier Islands, from September 5 to October 11, 2012 -- Classified Point Data

This Data Series Report contains lidar elevation data collected September 5 to October 11, 2012, for the barrier islands of Alabama, Mississippi and southeast Louisiana, including the coast near Port Fourchon. Most of the data were collected September 5-10, 2012, with a reflight conducted on October 11, 2012, to increase point density in some areas. Lidar data exchange format (LAS) 1.2 formatted point data files were generated based on these data. The point cloud data were processed to extract bare earth data; therefore, the point cloud data are organized into only four classes: 1-unclassified, 2-ground, 7-noise and 9-water. Aero-Metric, Inc., was contracted by the U.S. Geological Survey (USGS) to collect and process these data. The lidar data were collected at a nominal pulse spacing (NPS) of 1.0 meter (m). The horizontal projection and datum of the data are Universe Transverse Mercator, zones 15N and 16N, North American Datum 1983 (UTM Zone 15N or 16N NAD83), meters. The vertical datum is North American Vertical Datum 1988, Geoid 2012 (NAVD88, GEOID12), meters. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.

Info
Topographic Lidar Survey of the Chandeleur Islands, Louisiana, February 6, 2012 -- Bare Earth DEMs

A topographic Lidar survey was conducted on February 6, 2012, over the Chandeleur Islands, Louisiana. The data were collected at a nominal pulse space of 0.5-meter (m) and processed to identify bare earth elevations. Bare earth digital elevation models (DEMs) were generated based on these data. Digital Aerial Solutions, LLC, was contracted by the U.S. Geological Survey (USGS) to collect and process the lidar data. The bare earth DEMs are 32-bit floating point ERDAS Imagine (IMG) files with a horizontal spatial resolution of 1-m by 1-m. They are in decimal degree geographic coordinates, North American Datum 1983, National Spatial Reference System 2007 (NAD83 NSRS2007)). Their vertical datum is North American Vertical Datum 1988, Geoid 2009, Geodetic Reference System 1980 (NAVD88 GEOID09 GRS80) in meters. Thirty-three DEMs, based on a 2-kilometer (km) by 2-km tiling scheme, cover the entire survey area. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.

Info
Topographic Lidar Survey of the Chandeleur Islands, Louisiana, February 6, 2012 -- Classified Point Data

This Data Series Report contains lidar elevation data collected February 6, 2012, over the Chandeleur Islands, Louisiana. LAS 1.2 formatted point data files were generated based on these data. The point cloud data were processed to extract bare earth data; therefore, the point cloud data are classified into only these classes: 1 and 17-unclassified, 2-ground, 9-water, and 10-breakline proximity. Digital Aerial Solutions, LLC, was contracted by the USGS to collect and process these data. The lidar data were collected at a nominal pulse spacing (NPS) of 0.5 meter (m). The data are in decimal degree geographic coordinates, North American Datum 1983, National Spatial Reference System 2007 (NAD83 NSRS2007)). The vertical datum is North American Vertical Datum 1988, Geoid 2009, Geodetic Reference System 1980 (NAVD88 GEOID09 GRS80) in meters. Thirty-three LAS files, based on a 2-kilometer by 2-kilometer tiling scheme, cover the entire survey area. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (dates_meta.txt)

Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Cat Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 268 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of our coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of our coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of our coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Dauphin Island, Alabama (Polygon: Individual Dates) is a dataset consisting of 223 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of our coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Horn Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 254 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of our coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of our coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of our coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Petit Bois Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 271 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of our coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Combined Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polyline: Individual Dates) is a line shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Combined Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Combined Dates) is a polygon shapefile representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Individual Dates)

Shorelines Extracted from 1984-2015 Landsat Imagery: Ship Island, Mississippi (Polygon: Individual Dates) is a dataset consisting of 280 polygon shapefiles representing shorelines generated from satellite imagery that was collected from 1984 to 2015. The sample frequency of satellite imagery is much higher, and the coverage much greater, than most routine high-resolution topographic surveys. Certain aspects of barrier island morphology, such as island size, shape and position, can be determined from these images and can indicate erosion, land loss, and island breakup. Studying how these characteristics evolve will help develop an understanding of how barrier islands will respond to climate change, sea level rise, and major storms in the future and that will serve to improve management of coastal resources.

Info
Archive of Boomer Seismic Reflection Data, collected on USGS Cruise 99ASR01, Lake Okeechobee, Florida, 29 June - 30 June, 1999.

This report consists of two-dimensional marine seismic reflection profile data from Lake Okeechobee, Fla., that were acquired in June of 1999 aboard the R/V G. K. Gilbert. These data are available in a variety of formats, including binary, ASCII and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g399fl/html/g-3-99-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 99SCE01, Little River Inlet to the entrance of Winyah Bay, South Carolina, 8 June - 16 June, 1999.

This report consists of two-dimensional marine seismic reflection profile data from South Carolina. These data were acquired in June of 1999 with the Research Vessel G.K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, and GIF images. Binary data are in Society of Exploration Geologists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with your Web browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g199sr/html/g-1-99-sr.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 99LCA01, Crescent Beach Spring, Florida, 26 April - 27 April, 1999.

This report consists of two-dimensional marine seismic reflection profile data from Crescent Beach Spring, Florida. These data were acquired in April of 1999 with the Research Vessel G.K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Trackline maps and GIF images of the profiles may be viewed with your WWW browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g199fl/html/g-1-99-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Boomer Seismic Reflection Profiles and Shotpoint Navigation Collected on USGS Field Activities 01ASR01, 01ASR02, 02ASR01, and 02ASR02,Miami, Florida, November and December, 2001, and January and February, 2002.

This appendix consists of two-dimensional marine seismic reflection profile data from Miami, Florida, canals. These data were acquired in November and December of 2001 and in January and February of 2002 using a 4.9 m (16 ft) jonboat. The data are available in a variety of formats, including ASCII,HTML, and GIF images. Reference maps and GIF images of the profiles may be viewed with your WWW browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/b/b101fl/html/b-1-01-fl.meta.html , http://walrus.wr.usgs.gov/infobank/b/b201fl/html/b-2-01-fl.meta.html , http://walrus.wr.usgs.gov/infobank/b/b102fl/html/b-1-02-fl.meta.html , and http://walrus.wr.usgs.gov/infobank/b/b202fl/html/b-2-02-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer Seismic Reflection Data Collected on USGS Cruise 97KEY01, Upper and Middle Florida Keys, 12 October - 1 November, 1997.

This report consists of two-dimensional marine seismic reflection profile data from the upper and middle Florida Keys. The area of operations extended from just north of Molasses Reef off north Key Largo (Upper Keys) to the east boundary of Looe Key National Marine Sanctuary (Lower Keys). These data were acquired in October and November of 1997 with the Charter Vessel Captain's Lady. The data are available in a variety of formats, including binary, ASCII, HTML, Shapefiles, JPG and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and JPG images of the profiles may be viewed with your WWW browser. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/c/c197fl/html/c-1-97-fl.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Chirp Seismic Reflection Data Collected During USGS Cruises 00SCC02 and 00SCC04, Barataria Basin, Louisiana, May 12-31 and June 17 - July 2, 2000

This archive consists of two-dimensional marine seismic reflection profile data collected in the Barataria Basin of southern Louisiana. These data were acquired in May, June, and July of 2000 aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper-Text Markup Language (HTML), shapefiles, and Graphics Interchange Format (GIF) and Joint Photographic Experts Group (JPEG) images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with a web browser. The Geographic Information Systems (GIS) information provided here is compatible with Environmental Systems Research Institute (ESRI) GIS software. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g100la/html/g-1-00-la.meta.html and http://walrus.wr.usgs.gov/infobank/g/g500la/html/g-5-00-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer Seismic Reflection Data Collected During USGS Cruise 96CCT01, Nearshore South Central South Carolina Coast, June 26 - July 1, 1996

This archive consists of marine seismic reflection profile data collected in four survey areas from southeast of Charleston Harbor to the mouth of the North Edisto River of South Carolina. These data were acquired June 26 - July 1, 1996, aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper Text Markup Language (HTML), Portable Document Format (PDF), Rich Text Format (RTF), Graphics Interchange Format (GIF) and Joint Photographic Experts Group (JPEG) images, and shapefiles. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with a web browser. The Geographic Information Systems (GIS) map documents provided were created with Environmental Systems Research Institute (ESRI) GIS software ArcView 3.2 and 8.1. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g196sr/html/g-1-96-sr.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Chirp Seismic Reflection Data Collected During USGS Cruises 01SCC01 and 01SCC02, Timbalier Bay and Offshore East Timbalier Island, Louisiana, June 30 - July 9 and August 1 - 12, 2001

This archive consists of two-dimensional marine seismic reflection profile data collected in Timbalier Bay and in the Gulf of Mexico offshore East Timbalier Island, Louisiana. These data were acquired in June, July, and August of 2001 aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper Text Markup Language (HTML), Portable Document Format (PDF), Rich Text Format (RTF), Graphics Interchange Format (GIF) and Joint Photographic Experts Group (JPEG) images, and shapefiles. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with a web browser. The Geographic Information Systems (GIS) information provided is compatible with Environmental Systems Research Institute (ESRI) GIS software. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g401la/html/g-4-01-la.meta.html and http://walrus.wr.usgs.gov/infobank/g/g501la/html/g-5-01-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean (http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer Seismic Reflection Data Collected During USGS Cruises 01SCC01 and 01SCC02, Timbalier Bay and Offshore East Timbalier Island, Louisiana, June - August 2001

This archive consists of two-dimensional marine seismic reflection profile data collected in Timbalier Bay and in the Gulf of Mexico offshore East Timbalier Island, Louisiana. These data were acquired June 30 - July 9 (01SCC01) and August 1 - 18 (01SCC02), 2001, aboard the R/V G.K. Gilbert and a University of New Orleans 21-foot Proline. Included here are data in a variety of formats including binary, American Standard Code for Information Interchange (ASCII), Hyper Text Markup Language (HTML), Portable Document Format (PDF), Rich Text Format (RTF), Graphics Interchange Format (GIF) and Joint Photographic Experts Group (JPEG) images, and shapefiles. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with a web browser. The Geographic Information Systems (GIS) map documents provided were created with Environmental Systems Research Institute (ESRI) GIS software ArcView 3.2 and 8.1. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g401la/html/g-4-01-la.meta.html and http://walrus.wr.usgs.gov/infobank/g/g501la/html/g-5-01-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer Seismic Reflection Data Collected During USGS Cruises 00SCC02 and 00SCC04, Barataria Basin, Louisiana, May 12 - 31 and June 17 - July 2, 2000

This archive consists of two-dimensional marine seismic reflection profile data collected in the Barataria Basin of southern Louisiana. These data were acquired in May, June, and July of 2000 aboard the R/V G.K. Gilbert. Included here are data in a variety of formats including binary, ASCII, HTML, PDF, RTF, shapefiles, and GIF and JPEG images. Binary data are in SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with a web browser. The GIS information provided here is compatible with ESRI GIS software. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g100la/html/g-1-00-la.meta.html and http://walrus.wr.usgs.gov/infobank/g/g500la/html/g-5-00-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Digital Boomer Seismic Reflection Data Collected During USGS Cruises 94GFP01, 95GFP01, 96GFP01, 97GFP01, and 98GFP02 in Lakes Pontchartrain, Borgne, and Maurepas, Louisiana, 1994-1998

The U.S. Geological Survey, in cooperation with the University of New Orleans, the Lake Pontchartrain Basin Foundation, the National Oceanic and Atmospheric Administration, the Coalition to Restore Coastal Louisiana, the U.S. Army Corps of Engineers, the Environmental Protection Agency, and the University of Georgia, conducted five geophysical surveys of Lakes Pontchartrain, Borgne, and Maurepas in Louisiana from 1994 to 1998. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, observers' logbooks, GIS information, and formal FGDC metadata. In addition, a filtered and gained GIF image of each seismic profile is provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Examples of SU processing scripts and in-house (USGS) software for viewing SEG-Y headers (Zihlman, 1992) are also provided. Processed profile images, trackline maps, navigation files, Field Activity Collection System (FACS) logs, and formal metadata may be viewed with a web browser, and scanned handwritten logbooks may be viewed with Adobe Reader. For more information on the seismic surveys see http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=1994-030-FA , http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=1995-031-FA , http://walrus.wr.usgs.gov/infobank/g/g196la/html/g-1-96-la.meta.html , http://walrus.wr.usgs.gov/infobank/g/g297la/html/g-2-97-la.meta.html , and http://walrus.wr.usgs.gov/infobank/g/g298la/html/g-2-98-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 01RCE02, Southern Louisiana, April and May 2001

This archive consists of two-dimensional marine seismic reflection profile data collected in the Mississippi River Delta, Atchafalaya River Delta, and Shell Island Pass in southern Louisiana. These data were acquired in April and May of 2001 aboard the R/V G. K. Gilbert. The data are available in a variety of formats, including binary, ASCII, HTML, shapefiles, and GIF and JPEG images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. Reference maps and GIF images of the profiles may be viewed with your web browser. The GIS information provided is compatible with ESRI's GIS software. For more information on the seismic surveys see http://walrus.wr.usgs.gov/infobank/g/g201la/html/g-2-01-la.meta.html These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Locations of convergences in the maximum alongshore current

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Locations of decelerations in the direction of flow in the maximum alongshore current

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Ratio of wave- and current-induced shear stress to critical values for oil-sand ball and sediment mobilization

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Surf-zone integrated alongshore potential flux for oil-sand balls

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: wave direction

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Significant wave height

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: peak wave period

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Scenarios_Grid

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Ratio of the wave- and current-induced shear stress to the critical value for oil-tar balls and sediment mobilization over a tidal cycle

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Ratio of the wave- and current-induced shear stress to the critical value for oil-tar balls and sediment mobilization weighted by probability of wave scenario occurrence

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Surf-zone integrated alongshore potential flux for oil-sand balls of varying sizes weighted by probability of wave scenario occurrence

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Offshore baseline for the northeastern Florida (FLne) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the northeastern Florida (FLne) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for northeastern Florida (FLne)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northeastern Florida (FLne)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for northeastern Florida (FLne)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for northeastern Florida (FLne)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the southeastern Florida (FLse) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the southeastern Florida (FLse) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for southeastern Florida (FLse)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for southeastern Florida (FLse)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for southeastern Florida (FLse)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for southeastern Florida (FLse)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Georgia (GA) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Georgia (GA) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Georgia (GA)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Georgia (GA)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Georgia (GA)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Georgia (GA)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the central North Carolina (NCcentral) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the central North Carolina (NCcentral) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for central North Carolina (NCcentral)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for central North Carolina (NCcentral)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for central North Carolina (NCcentral)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for central North Carolina (NCcentral)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the northern North Carolina (NCnorth) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the northern North Carolina (NCnorth) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for northern North Carolina (NCnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for northern North Carolina (NCnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for northern North Carolina (NCnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the southern North Carolina (NCsouth) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the southern North Carolina (NCsouth) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for southern North Carolina (NCsouth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for southern North Carolina (NCsouth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for southern North Carolina (NCsouth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for southern North Carolina (NCsouth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the western North Carolina (NCwest) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the western North Carolina (NCwest) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for western North Carolina (NCwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for western North Carolina (NCwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for western North Carolina (NCwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the South Carolina (SC) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the South Carolina (SC) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for South Carolina (SC)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for South Carolina (SC)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for South Carolina (SC)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for South Carolina (SC)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Alabama

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Alabama

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Alabama

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Alabama coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Alabama coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Alabama

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Florida north (FLnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Florida north (FLnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Florida north (FLnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Florida north (FLnorth) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Florida north (FLnorth) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Florida north (FLnorth)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Florida west (FLwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Florida west (FLwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Florida west (FLwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Florida west (FLwest) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Florida west (FLwest) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Florida west (FLwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Louisiana

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Louisiana

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Louisiana

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Louisiana coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Louisiana coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Louisiana

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Mississippi

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Mississippi

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Mississippi

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Mississippi coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Mississippi coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Mississippi

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Texas east (TXeast)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Texas east (TXeast)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Texas east (TXeast) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Texas east (TXeast) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Texas east (TXeast)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Long-Term Linear Regression Rate Calculations for Texas west (TXwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Texas west (TXwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Texas west (TXwest) coastal region generated to calculate shoreline change rates

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Texas west (TXwest) coastal region used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Texas west (TXwest)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
SEG-Y format of chirp seismic data collected offshore of the Chandeleur Islands, LA, 2007

In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an Edgetech 512i chirp subbottom profiling system. The long-term goal of this mapping effort is to produce high-quality geologic maps and geophysical interpretations that can be utilized to investigate the impact of Hurricane Katrina in 2005 and to identify sand resources within the region.

Info
SEG-Y format of EdgeTech SB-512i seismic-reflection profiles collected by the U.S. Geological Survey - Woods Hole Coastal and Marine Science Center offshore of the Gulf Islands, MS, 2010.

In 2010, the U.S. Geological Survey in Woods Hole, MA and St. Petersburg, FL, in partnership with the U.S. Army Corps of Engineers, Mobile District conducted geologic mapping to characterize the seafloor and shallow subsurface stratigraphy offshore of the Gulf Islands of Mississippi. The mapping was carried out during two cruises in March, 2010 on the R/V Tommy Munro of Biloxi, MS. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (both 234 kHz and 468 kHz systems), a Klein 3000 and a Klein 3900 dual frequency sidescan-sonar, and an Edgetech 512i chirp subbottom profiling system. The long-term goal of this mapping effort is to produce high-quality, high-resolution geologic maps and geophysical interpretations that can be utilized to identify sand resources within the region and better understand the Holocene evolution and anticipate future changes in this coastal system. More information on the field work can be accessed from the Woods Hole Coastal and Marine Science Center Field Activity webpage https://cmgds.marine.usgs.gov/fan_info.php?fan=2010-012-FA or the St. Petersburg Coastal and Marine Geology InfoBank https://walrus.wr.usgs.gov/infobank/m/m210gm/html/m-2-10-gm.meta.html.

Info
SEG-Y format of EdgeTech SB-512i and SB-424 chirp seismic-reflection profiles collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_SeismicProfiles)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters (5-30 m deep) of Massachusetts between the New Hampshire border and Cape Cod Bay. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reports (https://woodshole.er.usgs.gov/project-pages/coastal_mass/). This spatial dataset is from the study area located between Duxbury and Hull Massachusetts, and consists of high-resolution geophysics (bathymetry, backscatter intensity, and seismic reflection) and ground validation (sediment samples, video tracklines and bottom photographs). The data were collected during four separate surveys conducted between 2003 and 2007 (NOAA survey H10993 in 2003, USGS-WHSC survey 06012 in 2006, and USGS-WHSC surveys 07001 and 07003 in 2007) and cover more than 200 square kilometers of the inner continental shelf.

Info
SEG-Y format of EdgeTech SB-512i, EdgeTech SB-424, and Knudsen 3200 chirp seismic-reflection profiles collected by the U.S. Geological Survey offshore of Massachusetts within northern Cape Cod Bay.

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters of Massachusetts, primarily in depths between 3 and 30 meters. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reports (https://woodshole.er.usgs.gov/project-pages/coastal_mass/). This spatial dataset is from the study area located in northern Cape Cod Bay, and consists of high-resolution geophysics (bathymetry, backscatter intensity, and seismic reflection) and ground validation (sediment samples, video tracklines, and bottom photographs). The data were collected during five separate surveys conducted between 2003 and 2008 (USGS-WHSC surveys 06012 in 2006; 07001, 07002, and 07003 in 2007; and 08002 in 2008) and cover more than 480 square kilometers of the inner continental shelf. More information about the individual USGS surveys that are were conducted as part of the northern Cape Cod Bay project can be found on the Woods Hole Coastal and Marine Science Center Field Activity webpages: 06012: https://cmgds.marine.usgs.gov/fan_info.php?fa=2006-012-FA 07001: https://cmgds.marine.usgs.gov/fan_info.php?fa=2007-001-FA 07003: https://cmgds.marine.usgs.gov/fan_info.php?fa=2007-003-FA 07002: https://cmgds.marine.usgs.gov/fan_info.php?fa=2007-002-FA 08002: https://cmgds.marine.usgs.gov/fan_info.php?fa=2008-002-FA

Info
SEG-Y format of boomer seismic-reflection profiles collected in the Pulley Ridge study area 2001

These seismic data were collected to infer the paleodepositional environment of Pulley Ridge through seismic facies analysis. Without actual rock cores, remote sensing is the next best tool. It was uncertain if Pulley Ridge represented a drowned reef or paleoshoreline. Through seismic imaging, it was determined from the high-amplitude, level-bedded nature of material in the sub-surface that Pulley Ridge represents several stages of barrier-island development.

Info
Tidal_Grid

The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2014: Ground Based Lidar (1-Meter Digital Elevation Model)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, NC collaborated to gather alongshore ground-based lidar beach topography at Fire Island, NY. This high-resolution elevation dataset was collected on April 1, 2014, and is part of the USGS's ongoing beach monitoring effort under Hurricane Sandy Supplemental Project GS2-2B. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2014: Ground Based Lidar (ASCII XYZ Point Data)

The U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) and the U.S. Army Corps of Engineers Field Research Facility (USACE-FRF) of Duck, NC collaborated to gather alongshore ground-based lidar beach topography at Fire Island, NY. This high-resolution elevation dataset was collected on April 1, 2014, and is part of the USGS's ongoing beach monitoring effort under Hurricane Sandy Supplemental Project GS2-2B. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).

Info
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, May 2015

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collected terrestrial-based light detection and ranging (T-lidar) elevation data at Fire Island, New York. The data were collected on May 18, 2015 as part of the ongoing beach monitoring within Hurricane Sandy Supplemental Project GS2-2B, and will be used to document and assess the morphological storm response and post-storm beach recovery. The survey extended along 30 kilometers(km) of the Fire Island National Seashore, from the eastern boundary of Robert Moses State Park to the western boundary of Smith Point County Park. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). For further information regarding data collection and/or processing methods, refer to previously published USGS Data Series 980 (https://doi.org/10.3133/ds980).

Info
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, May 2015

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collected terrestrial-based light detection and ranging (T-lidar) elevation data at Fire Island, New York. The data were collected on May 18, 2015 as part of the ongoing beach monitoring within Hurricane Sandy Supplemental Project GS2-2B, and will be used to document and assess the morphological storm response and post-storm beach recovery. The survey extended along 30 kilometers(km) of the Fire Island National Seashore, from the eastern boundary of Robert Moses State Park to the western boundary of Smith Point County Park. This USGS Data Release includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM). For further information regarding data collection and/or processing methods, refer to previously published USGS Data Series 980 (https://doi.org/10.3133/ds980).

Info
Beach Topography— Terrestrial-Based Lidar Beach Topography of Fire Island, New York, June 2014

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Florida and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collaborated to gather alongshore terrestrial-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on June 11, 2014, to characterize beach topography and document ongoing beach evolution and recovery, and is part of the ongoing beach monitoring within the Hurricane Sandy Supplemental Project GS2-2B. This USGS data series includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).

Info
Terrestrial-Based Lidar Beach Topography of Fire Island, New York, June 2014

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in Florida and the USGS Lower Mississippi-Gulf Water Science Center (LMG WSC) in Montgomery, Alabama, collaborated to gather alongshore terrestrial-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on June 11, 2014, to characterize beach topography and document ongoing beach evolution and recovery, and is part of the ongoing beach monitoring within the Hurricane Sandy Supplemental Project GS2-2B. This USGS data series includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2013: Ground Based Lidar (1-Meter Digital Elevation Model)

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida and the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, collaborated to gather alongshore ground-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on April 10, 2013, to characterize beach topography following substantial erosion that occurred during Hurricane Sandy, which made landfall on October 29, 2012, and multiple, strong winter storms. The ongoing beach monitoring is part of the Hurricane Sandy Supplemental Project GS2-2B. This USGS data series includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).

Info
Beach Topography—Fire Island, New York, Post-Hurricane Sandy, April 2013: Ground Based Lidar (ASCII XYZ Point Data)

The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in Florida and the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina, collaborated to gather alongshore ground-based lidar beach elevation data at Fire Island, New York. This high-resolution elevation dataset was collected on April 10, 2013, to characterize beach topography following substantial erosion that occurred during Hurricane Sandy, which made landfall on October 29, 2012, and multiple, strong winter storms. The ongoing beach monitoring is part of the Hurricane Sandy Supplemental Project GS2-2B. This USGS data series includes the resulting processed elevation point data (xyz) and an interpolated digital elevation model (DEM).

Info
Hurricane Sandy Assessment of Potential Coastal Change Impacts: NHC Advisory 29, 1100 AM EDT MON OCT 29 2012

This dataset defines hurricane-induced coastal erosion hazards for the Delaware, Maryland, New Jersey, New York, and Virginia coastline. The analysis was based on a storm-impact scaling model that used observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast would respond to the direct landfall of Hurricane Sandy in October 2012. Hurricane-induced water levels, due to both surge and waves, were compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. All hydrodynamic and morphologic variables are included in this dataset.

Info
rm10cct03_mb_50m.tif: 50-m interpolated bathymetry grid of the entire survey from USGS Cruise 10cct03

In April of 2010, the U.S. Geological Survey (USGS) conducted a geophysical survey from the east end of West Ship Island, MSiss., extending to the middle of Dauphin Island, Ala. This survey had a dual purpose: (1) to interlink previously conducted nearshore geophysical surveys (shoreline to ~2 kilometers, km) with those of offshore surveys (~2 km to ~9 km) in the ares and (2) to extend the geophysical survey to include a portion of the Dauphin Island nearshore zone. The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex.

Info
10CCT03_ss_1m.tif: the 1-m resolution grid of the side scan sonar data from USGS Cruise 10cct03

In April of 2010, the U.S. Geological Survey (USGS) conducted a geophysical survey from the east end of West Ship Island, MSiss., extending to the middle of Dauphin Island, Ala. This survey had a dual purpose: (1) to interlink previously conducted nearshore geophysical surveys (shoreline to ~2 kilometers, km) with those of offshore surveys (~2 km to ~9 km) in the ares and (2) to extend the geophysical survey to include a portion of the Dauphin Island nearshore zone. The efforts were part of the USGS Gulf of Mexico Science Coordination partnership with the U.S. Army Corps of Engineers (USACE) to assist the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazards Susceptibility Project by mapping the shallow geological stratigraphic framework of the Mississippi Barrier Island Complex.

Info
rm08_09_50gv2.tif

During the summers of 2008 and 2009 the USGS conducted bathymetric surveys from West Ship Island, Miss., to Dauphin Island, Ala., as part of the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. The survey area extended from the shoreline out to approximately 2 kilometers and included the adjacent passes. The bathymetry was primarily used to create a topo-bathymetric map and provide a base-level assessment of the seafloor following the 2005 hurricane season. Additionally, these data will be used in conjunction with other geophysical data (chirp and side scan sonar) toward constructing a comprehensive geological framework of the Mississippi Barrier Island Complex. The culmination of the geophysical surveys will provide the data necessary for scientists to define, interpret, and provide baseline bathymetry and seafloor habitat for this area and to aid scientists in predicting future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data provide information for feasibility of barrier island restoration, particularly in Camille Cut, and efforts for the preservation of historical Fort Massachusetts.

Info
CatIsland_2010_Bathy_NAVD88_grid.tif

In September and October of 2010, the U.S. Geological Survey (USGS), in cooperation with the Army Corps of Engineers (USACE), conducted geophysical surveys around Cat Island, Miss. to collect bathymetry, acoustical backscatter, and seismic reflection data (seismic-reflection data have been published separately, Forde and others, 2012). The geophysical data along with sediment vibracore data (yet to be published) will be integrated to analyze and produce a report describing the geomorphology and geologic evolution of Cat Island. Interferometric swath bathymetry, and acoustical backscatter data were collected aboard the RV G.K. Gilbert during the first cruise which took place September 7-15, 2010. Single-beam bathymetry was collected in very shallow water around the island aboard the RV Streeterville from September 28 through October 2, 2010 to bridge the gap between the landward limit of the previous cruise and the shoreline. The survey area extended from the nearshore to approximately 5 kilometers (km) offshore to the north, south, and west, and approximately 2 km to the east. This report archives bathymetry and acoustical backscatter data and provides information and mapping products essential for completion of the project goals. The bathymetry will provide elevations and show geomorphic characteristics of the seafloor, while the backscatter and acoustical backscatter imagery will enhance the geomorphic characteristics and give insight to variations of sediment types on the seafloor. This file is the 50-m cell size grid of the combined swath and single-beam bathymetry around Cat Island, Miss.

Info
EAARL Bare Earth Topography-Colonial National Historical Park

Elevation maps (also known as Digital Elevation Models or DEMs) of Colonial National Historical Park were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ASCII text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each surface. Elevation measurements were collected in Virginia, over Colonial National Historical Park, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the area at approximately 60 meters per second while surveying the base areas of the park. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers can easily be surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
P22_Oct2012_Oct2014: Hurricane Sandy Beach Response and Recovery at Fire Island, New York: Shoreline and Beach Profile Data, October 2012 to October 2014.

This spreadsheet consists of Fire Island, NY pre- and post- storm cross-shore profiles collected from October 2012 to October 2014. This dataset contains a set of cross-shore profiles covering 16 dates from October 28 2012 to October 07 2014. As part of the assessment of beach and dune morphologic change associated with Hurricane Sandy and the series of winter storms that followed, DGPS elevation data were collected along ten shore-perpendicular profiles extending from just inland of the crest of the dune to the low-tide swash zone. Profile elevations were surveyed one day prior to landfall (October 28, 2012), three and four days immediately after the storm (November 01/02 2012), and at monthly and bi-monthly intervals for 24 months (to October 2014) in order to capture both the initial impact of the event and the ongoing recovery of the beach system. Monitoring is ongoing, and this data series will be updated as future surveys are completed.

Info
HLY1001_Averaged

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect approximately 9,000 measurements of air and sea pCO2, pH, and DIC along a 11,447-km trackline in August and September 2011. In addition, over 500 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
USGS Arctic Ocean Carbon Cruise 2011: Discrete Lab data

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect approximately 9,000 measurements of air and sea pCO2, pH, and DIC along a 11,447-km trackline in August and September 2011. In addition, over 500 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
Healy_Continuous

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect approximately 9,000 measurements of air and sea pCO2, pH, and DIC along a 11,447-km trackline in August and September 2011. In addition, over 500 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
Healy_Discrete

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent. However, few comprehensive data sets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Canada Basin that fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect approximately 9,000 measurements of air and sea pCO2, pH, and DIC along a 11,447-km trackline in August and September 2011. In addition, over 500 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
USGS Arctic Ocean Carbon Cruise 2012: Discrete Underway Laboratory data

Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be undersaturated in late summer months when ice melt is at its greatest extent; however, few comprehensive datasets of carbonate system parameters in the Arctic Ocean exist. Researchers from the U.S. Geological Survey (USGS) and University of South Florida (USF) collected high-resolution measurements of pCO2, pH, total dissolved inorganic carbon (DIC), total alkalinity (TA), and carbonate (CO3-2) from the Canada Basin to fill critical information gaps concerning Arctic carbon variability. A Multiparameter Inorganic Carbon Analyzer (MICA) was used to collect approximately 1,800 measurements of pH and DIC along an 11,965-km trackline in August and September 2012. In addition, over 500 discrete surface water samples were taken. These data are being used to characterize and model regional pCO2, pH, and carbonate mineral saturation state. A high-resolution, three-dimensional map of these results will be presented.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2019 from Rockaway Peninsula, New York

From September 27 through October 5, 2019, researchers from the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate shoreface morphology and geology near the Rockaway Peninsula, New York. The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM). Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y revision 0 format (Barry and others, 1975). In addition to this data release, the SEG-Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS) at, https://cmgds.marine.usgs.gov. Bathymetry and backscatter data were also collected during this survey and are available in Stalk and others (2020).

Info
Autonomous Flow-Thru (AFT) CO2 data of the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25 - 30, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples over a span of 1632 kilometer (km) track line, additionally 36 discrete samples were taken at ten stations, these were taken at various depths. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25 - 30, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples over a span of 1632 kilometer (km) track line, additionally 36 discrete samples were taken at ten stations, these were taken at various depths. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Forty-eight underway discrete samples were collected approximately hourly over a span of 1130 kilometer (km) track line. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM02

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred June 25-30, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Forty-eight underway discrete samples were collected approximately hourly over a span of 1130 kilometer (km) track line. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Autonomous Flow-Thru (AFT) CO2 data of the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-four underway discrete samples were collected approximately hourly over a span of 1632 kilometer (km) track line, additionally 44 discrete samples were taken at four stations, these were taken at various depths. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-four underway discrete samples were collected approximately hourly over a span of 1632 kilometer (km) track line, additionally 44 discrete samples were taken at four stations, these were taken at various depths. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Navigation and environmental data from R/V Weatherbird II for the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-four underway discrete samples were collected approximately hourly over a span of 1632 kilometer (km) track line, additionally 44 discrete samples were taken at four stations, these were taken at various depths. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Sonde data of continuous surface water flow-through system for the West Florida Shelf: USGS Cruise 11BHM01

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). This cruise occurred May 03 - 09, 2011, leaving from and returned to Saint Petersburg, Florida. The USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Thirty-four underway discrete samples were collected approximately hourly over a span of 1632 kilometer (km) track line, additionally 44 discrete samples were taken at four stations, these were taken at various depths. Flow-through conductivity-temperature-depth (CTD) data were collected, which includes temperature, salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
Autonomous Flow-Thru (AFT) pH data of the West Florida Shelf: USGS Cruise 11BHM04

The United States Geological Survey (USGS) is conducting a study on the effects of climate change on ocean acidification within the Gulf of Mexico; dealing specifically with the effect of ocean acidification on marine organisms and habitats. To investigate this, the USGS participated in two cruises in the West Florida Shelf and northern Gulf of Mexico regions aboard the R/V Weatherbird II, a ship of opportunity lead by Dr. Kendra Daly, of the University of South Florida (USF). The cruises occurred September 20 - 28 and November 2 -4, 2011. Both left from and returned to Saint Petersburg, Florida, but followed different routes (see Trackline). On both cruises the USGS collected data pertaining to pH, dissolved inorganic carbon (DIC), and total alkalinity in discrete samples. Discrete surface samples were taken during transit approximatly hourly on both cruises, 95 in September were collected over a span of 2127 km, and 7 over a trackline of 732 km line on the November cruise. Along with the surface samples, another set of samples were taken at various depths at stations; 27 in September at four stations and 15 in November at five stations. In addition to the discrete samples flow-through data was also collected on both cruises in a variety of forms. Surface CTD data was collected every five minutes which includes temperature, salinity, and pH. In addition, two more flow-through instruments were setup on both cruises that recorded pH and CO2 every 15 minutes. Corroborating the USGS data is the vertical CTD profiles collected by USF, using the following sensors: CTD, oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Additionally, discrete depth samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were collected.

Info
EAARL Coastal Topography-Northern Gulf of Mexico

ASCII xyz point cloud data were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS) and National Air and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3 to 4 hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Vicksburg National Millitary Park 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Jean Lafitte National Historical Park and Preserve 2006

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Jean Lafitte National Historical Park and Preserve in Louisiana was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Vicksburg National Millitary Park 2008: Bare Earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Submerged Topography-U.S. Virgin Islands 2003

A submerged topography elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the U.S. Virgin Islands was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Northeast Barrier Islands 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Northeast Barrier Islands 2007: Bare Earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide managers with a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide managers with a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography--George Washington Birthplace National Monument 2008

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the George Washington Birthplace National Monument in Virginia was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography-St. John, U.S. Virgin Islands 2003: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of St. John, U.S. Virgin Islands was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Pearl River Delta 2008: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the University of New Orleans (UNO), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Alabama 2001

A first surface elevation map was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a twin-otter or P3 aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially-corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of 10 to 20 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Florida 2001: Western Panhandle

A first surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Florida 2001: Eastern Panhandle

A first surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Assateague Island National Seashore, 2008: First Surface

A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Assateague Island National Seashore, 2008: Bare Earth

A bare-earth elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to land managers. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Texas, 2001: UTM Zone 14

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Texas, 2001: UTM Zone 15

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Mississippi, 2001

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: First Surface

A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Western Florida, Post-Hurricane Charley, 2004: Seamless (Bare Earth and Submerged)

A seamless (bare-earth and submerged) elevation map (also known as a Digital Elevation Model, or DEM) of a portion of western Florida, post-Hurricane Charley, was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
Biscayne National Park LIDAR GeoTIFF

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne lidar to measure the submerged topography of the north Florida reef tract; secondarily, the data will be assessed for its potential in terms of benthic characterization. Elevation measurements were collected over Biscayne National Park using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure subaerial and submarine coastal topography. With the NASA EAARL lidar system, submarine data is generally acquired to a maximum of approximately 1.5 secchi depths (a measure of water clarity). The system uses a high frequency laser beam directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The Experimental Advanced Airborne Research Lidar, developed by the National Aeronautics and Space Administration (NASA) Wallops Flight Facility (WFF) in Virginia, measures ground elevation with a vertical resolution of roughly 15 centimeters. A sampling rate of up to 3 kHz results in an extremely dense spatial elevation data set. The EAARL system is typically flown at 300 m altitude AGL, resulting in a 240 m swath for each flightline. Data collection occurred with approximately 50% overlap between flightlines, resulting in about one laser sounding per square meter. The data were processed by the USGS Center for Coastal and Watershed Studies to produce 1­meter resolution raster images that can be easily ingested into a Geographic Information System (GIS). The data were organized as 2 km by 2 km data tiles in 32­bit floating­point integer GeoTiff format. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Dry Tortugas National Park

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne lidar to measure the submerged topography of the Dry Tortugas reef tract and Subaerail topography of land features; secondarily, the data will be assessed for its potential in terms of benthic characterization. Elevation measurements were collected over Dry Tortugas National Park using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure subaerial and submarine coastal topography. With the NASA EAARL lidar system, submarine data is generally acquired to a maximum of approximately 1.5 secchi depths (a measure of water clarity). The system uses a high frequency laser beam directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The Experimental Advanced Airborne Research Lidar, developed by the National Aeronautics and Space Administration (NASA) Wallops Flight Facility (WFF) in Virginia, measures ground elevation with a vertical resolution of roughly 15 centimeters. A sampling rate of up to 3 kHz results in an extremely dense spatial elevation data set. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Bare Earth Topography-Fire Island National Seashore

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 m. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Fire Island National Seaashore

A first return elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 m. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Assateague Island National Seashore-Lidar GeoTIFF

LiDAR is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through it subsequent fluorescence. Airborne ranging LiDAR is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high data density. The USGS in cooperation with NASA and NPS is using airborne LiDAR to measure the topography of Assateague Island National Seashore land features. Elevation measurements were collected over Assateague Island National Seashore using the NASA Experimental Advanced Airborne Research LiDAR (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure subaerial and submarine coastal topography. With the NASA EAARL LiDAR system, submarine data is generally acquired to a maximum of approximately 1.5 secchi depths (a measure of water clarity). The system uses a high frequency laser beam directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The Experimental Advanced Airborne Research LiDAR, developed by the NASA Wallops Flight Facility (WFF) in Virginia, measures ground elevation with a vertical resolution of roughly 15 centimeters. A sampling rate of up to 3 kHz results in an extremely dense spatial elevation data set. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Thomas Stone National Historic Site

A first surface elevation map (also known as a Digital Elevation Model or DEM) of Thomas Stone National Historic Site was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 m. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography - Gateway National Recreation Area

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Gateway National Recreation Area was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 m. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography George Washington Birthplace National Monument

A bare earth elevation map (also known as a Digital Elevation Model or DEM) of George Washington Birthplace National Monument was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), the National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Cape Cod National Seashore

Elevation maps (also known as Digital Elevation Models or DEMs) of Cape Cod National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Massachusetts, over Cape Cod National Seashore using the NASA Experimental Advanced Airborne Research LiDAR (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Gulf Islands National Seashore-Mississippi

Abstract: Elevation maps (also known as Digital Elevation Models or DEMs) of Gulf Islands National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Florida, Mississippi and Texas, over Gulf Islands National Seashore, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Sagamore Hill National Historic Site

Elevation maps (also known as Digital Elevation Models or DEMs) of the Sagamore Hill National Historic Site were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in New York, over the Sagamore Hill National Historic Site using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Submarine Topography-Florida Keys National Marine Sanctuary

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through its subsequent fluorescence. Airborne ranging Lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high spatial density. The USGS in cooperation with NASA, NOAA, and NPS is using airborne Lidar to measure the submerged topography of the northern Florida reef tract; secondarily, the data will be assessed for its potential in terms of benthic characterization. Elevation measurements were collected over part of the Florida Keys National Marine Sanctuary (FKNMS) using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure subaerial and submarine topography. The system uses a high frequency laser beam directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The EAARL system, developed by the NASA Wallops Flight Facility (WFF) in Virginia, measures ground elevation with a vertical resolution of roughly 15 centimeters. A sampling rate of up to 3 kHz results in an extremely dense spatial elevation data set. The EAARL system is typically flown at 300 m altitude AGL, resulting in a 240 m swath for each flightline. Data collection occurred with approximately 50% overlap between flightlines, resulting in about one laser sounding per square meter. The data were processed by the USGS FISC (St. Petersburg office) to produce 1 meter resolution raster images that can be easily ingested into a Geographic Information System (GIS). The data were organized as 2 km by 2 km data tiles in 32 bit floating-point integer GeoTIFF format. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Gulf Islands National Seashore-Florida

Elevation maps (also known as Digital Elevation Models or DEMs) of Gulf Islands National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Florida, Mississippi and Texas, over Gulf Islands National Seashore, using the NASA Experimental Advanced Airborne Research LiDAR (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography-Padre Island National Seashore

Elevation maps (also known as Digital Elevation Models or DEMs) of Padre Island National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Texas, over Padre Island National Seashore, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Submarine Topography-Northern Florida Keys Reef Tract

Lidar is a remote sensing technique that uses laser light to detect, range, or identify remote objects based on light reflected by the object or emitted through its subsequent fluorescence. Airborne ranging lidar is now being applied in coastal environments to produce accurate, cost-efficient elevation datasets with high spatial density. The USGS, in cooperation with NASA and NPS, is using airborne lidar to measure the submerged topography of the Northern Florida Keys Reef Tract (NFKRT); secondarily, the data will be assessed for its potential in terms of benthic characterization. Elevation measurements were collected over the NFKRT using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure subaerial and submarine topography. The system uses a high frequency laser beam directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The EAARL system, developed by the NASA Wallops Flight Facility (WFF) in Virginia, measures ground elevation with a vertical resolution of roughly 15 centimeters. A sampling rate of up to 3 kHz results in an extremely dense spatial elevation data set. The EAARL system is typically flown at 300 m altitude AGL, resulting in a 240 m swath for each flightline. Data collection occurred with approximately 50% overlap between flightlines, resulting in about one laser sounding per square meter. The data were processed by the USGS, Florida Integrated Science Center (FISC] St. Petersburg office to produce 1 meter resolution raster images that can be easily ingested into a Geographic Information System (GIS). The data were organized as 2 km by 2 km data tiles in 32 bit floating-point integer GeoTIFF format. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
usSEABED CaLCulated data for the entire U.S. Atlantic Coast (ATL_CLC)

This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the calculated (CLC) output of the dbSEABED mining software. It contains results from calculating variables using empirical functions working on the results of extraction or parsing. The CLC data is the most derivative and certainly the least accurate; however, many clients appreciate that it extends the coverage of map areas with attributes, especially physical properties attributes.

Info
usSEABED EXTracted data for the entire U.S. Atlantic Coast (ATL_EXT)

This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the extracted (EXT) output of the dbSEABED mining software. It contains data items which were simply extracted from the data resources through data mining. The EXT data is usually based on instrumental analyses (probe or laboratory) but may apply to just a subsample of the sediment (eg. no large shells).

Info
usSEABED PaRSed data for the entire U.S. Atlantic Coast (ATL_PRS)

This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the parsed (PRS) output of the dbSEABED mining software. It contains the results of parsing descriptions in the data resources. The PRS data is less precise because it comes from word-based descriptions, but will include information on outsized elements, consolidation that are not usually in EXT data.

Info
Composite Grayscale Image of the Sidescan Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11076 of the Sea Floor in Quicks Hole, MA (H11076_GEO_1MSSS.TIF, Geographic)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. Interpretive data layers were derived from multibeam echo-sounder and sidescan sonar data collected in the vicinity of Quicks Hole, a passage through the Elizabeth Islands that extend in a chain southwestward off Cape Cod, Massachusetts. In June 2005, bottom photographs and surficial sediment data were acquired as part of a ground-truth reconaissance survey.

Info
Enhanced 1-meter Composite Grayscale Image of the Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of the Sea Floor in Great Round Shoal Channel, Offshore Massachusetts (H11079_UTM19_1MRSSS.TIF, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. While acceptable for charting purposes, the original data contained numerous tonal artifacts due to environmental conditions (such as sea state), variable system settings (such as gain changes), attitude variations in the flight path of the towfish, or processing (such as lack of line to line normalization). Many of these artifacts have now been removed by enhancing the imagery to provide a more continuous grayscale GeoTIFF that enhances the true backscatter character and trends of the sea floor.

Info
AA_Q01.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q02.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q03.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q04.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q05.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q06.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree area (or smaller) with a 50-meter pixel resolution were completed for the region.

Info
AA_Q07.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q08.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q09.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q10.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q11.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q12.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q13.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q14.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q15.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q16.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q17.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q18.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q19.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q20.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q21.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q22.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q22B.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (31 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q23.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q24.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q25.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q26.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q27.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q28.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q29.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
AA_Q30.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar data mosaic (30 of 31) (LCC, 50 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Exclusive Economic Zone (EEZ) region of the Aleutian Arc. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 31 digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
ALEU_250M_LCC_WGS84.TIF - Aleutian Arc U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)

During late July through September 1987 and June and July 1988 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Aleutian Arc Exclusive Economic Zone (EEZ) region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. Thirty-one digital mosaics of a 3 degree by 3 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Aleutian Arc Exclusive Economic Zone region.

Info
BS_250M_LCC_NAD27.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, Clarke1866)

From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period focused on the Bering Sea region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. The results of these surveys were 30 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
COW_250M_TM_NAD27.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar composite mosaic (TM, 250 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched the GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q01.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (1 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q02.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (2 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q03.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (3 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q04.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (4 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q05.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (5 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q06.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (6 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q07.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (7 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q08.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (8 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q09.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (9 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q10.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (10 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q11.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (11 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q12.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (12 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q13.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (13 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q14.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (14 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q15.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (15 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q16.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (16 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q17.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (17 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q18.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (18 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q19.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (19 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q20.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (20 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q21.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (21 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q22.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (22 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q23.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (23 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q24.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (24 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q25.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (25 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q26.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (26 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q27.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (27 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q28.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (28 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q29.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (29 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q30.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (30 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q31.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (31 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q32.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (32 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q33.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (33 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q34.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (34 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q35.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (35 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
COW_Q36.TIF - U.S. Pacific West Coast EEZ GLORIA sidescan-sonar data mosaic (36 of 36) (TM, 50 m, NAD27)

In March 1983, President Ronald Reagan signed a proclamation establishing an Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. territories and possessions. In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology began a program to map these areas of the EEZ. The U.S. Pacific Coast was the first EEZ region to be mapped and launched GLORIA (Geological LOng-Range Inclined Asdic) mapping program. The area covered by this survey extended from the Mexican to the Canadian borders and from the continental shelf edge, at about the 400-meter bathymetric contour, to 200 nautical miles from the coast. Survey of the U.S. Pacific West Coast EEZ was completed in four consecutive cruises conducted from late April through mid-August 1984. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 36 digital mosaics of an approximate 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the region.

Info
CYM_250M_MER_NAD27.TIF - Cayman Trough GLORIA sidescan-sonar composite mosaic (MER, 250 m, Clarke 1866)

From October 22 to November 22, 1985 the U.S. Geological Survey (USGS) conducted a single to survey to ensonify the Cayman Trough. The survey took place over the coastal region of the spreading ridge and along one line to the eastern extremity of the Trough. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. Two digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution were completed for the Cayman Trough south of the Cayman Islands.

Info
CYM_Q01.TIF - Cayman Trough GLORIA sidescan-sonar data mosaic (1 of 2) (Mercator, 50m, Clarke 1866)

From October 22 to November 22, 1985 the U.S. Geological Survey (USGS) conducted a single to survey to ensonify the Cayman Trough region. The survey took place over the coastal region of the spreading ridge and along one line to the eastern extremity of the Trough. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 2 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution were completed for the Cayman Trough south of the Cayman Islands.

Info
CYM_Q02.TIF - Cayman Trough GLORIA sidescan-sonar data mosaic (2 of 2) (Mercator, 50m, Clarke 1866)

From October 22 to November 22, 1985 the U.S. Geological Survey (USGS) conducted a single to survey to ensonify the Cayman Trough region. The survey took place over the coastal region of the spreading ridge and along one line to the eastern extremity of the Trough. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 2 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution were completed for the Cayman Trough south of the Cayman Islands.

Info
EC_250M_AEA_NAD27.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar composite mosaic (ACEA, 250 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 23 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin.

Info
EC_Q01.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (1 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q02.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (2 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q03.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (3 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q04.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (4 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q05.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (5 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q06.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (6 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q07.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (7 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q08.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (8 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q09.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (9 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q10.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (10 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q11.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (11 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q12.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (12 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q13.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (13 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q14.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (14 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q15.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (15 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q16.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (16 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q17.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (17 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q18.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (18 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q19.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (19 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q20.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (20 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q21.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (21 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q22.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (22 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
EC_Q23.TIF - U.S. Atlantic East Coast EEZ GLORIA sidescan-sonar data mosaic (23 of 23) (ACEA, 50 m, Clarke1866)

From February to May 1987 the U.S. Geological Survey (USGS) conducted five cruises to cover the U.S. Atlantic Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge, and from the Canadian border southward to the northern Blake Plateau off Florida. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Twenty-three digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Atlantic Continental Margin region.

Info
GAK_250M_LCC_WGS84.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)

The Gulf of Alaska U.S. EEZ GLORIA digital sidescan-sonar mosaic covers about 806,000 square kilometers (sq km) of sea-floor. The mosaic shows the sea-floor morphology from Uminak Pass to Dixon Entrance, from the shelf break seaward to about 400 km. An additional 70-km-wide swath was imaged along the British Columbia margin to follow the trace of the Queen Charlotte Fault south of the Dixon Entrance. Major features visible on the mosaic include continental-margin deformation structures and submarine-channel systems. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 30 digital mosaics with a 50-meter pixel resolution were assembled to complete the Gulf of Alaska overview mosaic.

Info
GAK_Q31.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q32.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q33.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q34.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q35.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q36.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q37.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q38.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q39.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q40.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q41.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q42.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q43.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q44.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q45.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q46.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q47.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q48.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q49.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q50.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q51.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q52.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q53.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q54.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q55.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q56.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q57.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q58.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q59.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GAK_Q60.TIF - Gulf of Alaska U.S. EEZ GLORIA sidescan-sonar data mosaic (30 of 30) (LCC, 50 m, WGS84)

GLORIA data for the Gulf of Alaska Exclusive Economic Zone (EEZ) were acquired during five cruises over a four year period. The first cruise conducted in 1986 (F-1-86-GA) surveyed an area of the north-central mosaic area and covered an area of approximately 40,000 square kilometers (sq km). The second two cruises (F-8-88-AA, F-9-88-WG) were conducted in 1988. One of the 1988 cruises (F-8-88-AA) focused on a survey of the Aleutian Arc. The eastern most portion of that survey extended outside of the Aleutian Arc survey area and covered an area of approximately 52,000 square kilometers (sq km) of seafloor on the western edge of the Gulf of Alaska. The final two cruises (F-6-89-GA, F-7-89-EG) were completed in 1989. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. Thirty digital mosaics with a 50-meter pixel resolution were completed for the region.

Info
GMX_250M_AEA_NAD27.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar composite mosaic (ACEA, 250 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q01.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (1 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q02.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (2 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q03.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (3 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q04.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (4 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q05.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (5 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q06.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (6 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q07.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (7 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q08.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (8 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q09.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (9 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q10.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (10 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q11.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (11 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q12.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (12 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q13.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (13 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q14.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (14 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q15.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (15 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
GMX_Q16.TIF - U.S. Gulf of Mexico EEZ GLORIA sidescan-sonar data mosaic (16 of 16) (ACEA, 50 m, Clarke1866)

During February 1982 and again from August 7 to October 22, 1985 the U.S. Geological Survey (USGS) conducted four cruises to cover the U.S. Gulf of Mexico Continental Margin Exclusive Economic Zone (EEZ) seaward of the continental shelf edge. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 16 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Gulf of Mexico region.

Info
HW1_250M_LCC_WGS84.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey a total of 29 mosaics of 50-meter resolution were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 29 digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q01.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q02.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q03.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q04.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q05.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q06.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q07.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q08.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q09.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q10.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q11.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q12.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q13.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q14.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q15.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q16.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q17.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q18.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q19.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q20.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q21.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q22.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q23.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q24.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q25.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q26.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q27.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q28.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW1_Q29.TIF - Hawaii I - Southeastern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 29) (LCC, 50 m, WGS84)

Survey of the southeastern Hawaiian Ridge was the fifth major segment of the Exclusive Economic Zone (EEZ) mapping program to have been initiated. Data acquisition for this region required approximately one-half year and were acquired during eight cruises over a four year period from 1986 through 1989, skipping 1987. At the conclusion of the survey 29 mosaics of a 2 degree by 2 degree were completed for the region. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of twenty-seven digital mosaics of a 2 degree by 2 degree area and 2 mosaics of 2.25 degree by 2 degree with a 50-meter pixel resolution were completed for the region.

Info
HW2_250M_LCC_WGS84.TIF - Hawaii II - Central Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, as part of that program, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted nine cruises within the U.S. EEZ off Hawaii. The surveys during that time period focused on the central Hawaiian region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor.

Info
HW3_250M_LCC_WGS84.TIF - Hawaii III - Northwestern Hawaiian Ridge U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_250M_LCC_WGS84.TIF - Johnston Atoll U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The surveys during that time period, and conducted in succession from 6 December 1990 to 21 February 1991, focused on the U.S. Exclusive Economic Zone surrounding the Johnston Atoll. The results of these surveys were 16 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
KP_250M_LCC_WGS84.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar composite mosaic (LCC, 250 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone surrounding the Kingman Reef and Palmyra Atoll. Unfortunately, the southwestern third of this EEZ was not imaged. The results of this single survey was 7 digital mosaics with a 50-meter pixel resolution.

Info
KP_Q01.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 7) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone surrounding the Kingman Reef and Palmyra Atoll. Unfortunately, the southwestern third of this EEZ was not imaged. The results of this single survey were 7 digital mosaics with a 50-meter pixel resolution.

Info
KP_Q02.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 7) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone surrounding the Kingman Reef and Palmyra Atoll. Unfortunately, the southwestern third of this EEZ was not imaged. The results of this single survey were 7 digital mosaics with a 50-meter pixel resolution.

Info
KP_Q03.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 7) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone surrounding the Kingman Reef and Palmyra Atoll. Unfortunately, the southwestern third of this EEZ was not imaged. The results of this single survey were 7 digital mosaics with a 50-meter pixel resolution.

Info
KP_Q04.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 7) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone surrounding the Kingman Reef and Palmyra Atoll. Unfortunately, the southwestern third of this EEZ was not imaged. The results of this single survey were 7 digital mosaics with a 50-meter pixel resolution.

Info
KP_Q05.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 7) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone surrounding the Kingman Reef and Palmyra Atoll. Unfortunately, the southwestern third of this EEZ was not imaged. The results of this single survey were 7 digital mosaics with a 50-meter pixel resolution.

Info
KP_Q06.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 7) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone surrounding the Kingman Reef and Palmyra Atoll. Unfortunately, the southwestern third of this EEZ was not imaged. The results of this single survey were 7 digital mosaics with a 50-meter pixel resolution.

Info
KP_Q07.TIF - Kingman Reef and Palmyra Atoll U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 7) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). For a one month period beginning 24 February 1991 and finishing on 25 March 1991, USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted a single survey within the Kingman Reef and Palmyra Atoll U.S. EEZ. The survey focused on the U.S. Exclusive Economic Zone surrounding the Kingman Reef and Palmyra Atoll. Unfortunately, the southwestern third of this EEZ was not imaged. The results of this single survey were 7 digital mosaics with a 50-meter pixel resolution.

Info
PR_250M_AEA_NAD27.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar composite mosaic (ACEA, 250 m, Clarke1866)

From 4 November to 3 December 1985 the U.S. Geological Survey (USGS) conducted a single cruise to map the entire sea-floor of the Exclusive Economic Zone (EEZ) of Puerto Rico and the U.S. Virgin Islands. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the sea-floor. A total of 9 digital mosaics of a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the U.S. Puerto Rico EEZ.

Info
PR_Q01.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 9) (ACEA, 50 m, Clarke1866)

The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. The study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 9 digital mosaics of approximately a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Puerto Rico U.S. EEZ.

Info
PR_Q02.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 9) (ACEA, 50 m, Clarke1866)

The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 9 digital mosaics of approximately a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Puerto Rico U.S. EEZ.

Info
PR_Q03.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 9) (ACEA, 50 m, Clarke1866)

The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 9 digital mosaics of approximately a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Puerto Rico U.S. EEZ.

Info
PR_Q04.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 9) (ACEA, 50 m, Clarke1866)

The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 9 digital mosaics of approximately a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Puerto Rico U.S. EEZ.

Info
PR_Q05.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 9) (ACEA, 50 m, Clarke1866)

The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 9 digital mosaics of approximately a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Puerto Rico U.S. EEZ.

Info
PR_Q06.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 9) (ACEA, 50 m, Clarke1866)

The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 9 digital mosaics of approximately a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Puerto Rico U.S. EEZ.

Info
PR_Q07.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 9) (ACEA, 50 m, Clarke1866)

The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 9 digital mosaics of approximately a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Puerto Rico U.S. EEZ.

Info
PR_Q08.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 9) (ACEA, 50 m, Clarke1866)

The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 9 digital mosaics of approximately a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Puerto Rico U.S. EEZ.

Info
PR_Q09.TIF - Puerto Rico U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 9) (ACEA, 50 m, Clarke1866)

The Puerto Rico U.S. EEZ study area includes the seafloor between the island of Puerto Rico and the Puerto Rico Trench floor and extends west to Mona Canyon and east to the U.S. Virgin Islands. South of the islands, it covers parts of the Muertos Trough and the Venezuelan Basin. As in earlier EEZ reconnaissance surveys, the USGS utilized the GLORIA (Geological LOng-Range Inclined Asdic) sidescan-sonar system to complete the geologic mapping. The collected GLORIA data were processed and digitally mosaicked to produce continuous imagery of the seafloor. A total of 9 digital mosaics of approximately a 2 degree by 2 degree (or smaller) area with a 50-meter pixel resolution were completed for the Puerto Rico U.S. EEZ.

Info
USGS Seafloor Mapping CORLISS 98014 Seismic Data

This CD-ROM contains digital high resolution seismic-reflection and bathymetric data collected during the USGS CORLISS 98014 cruise during Aug. 25 to Sept. 15, 1998.  The study area covers the Columbia River estuary, Willapa Bay, and the inner shelf off southern Washington.  The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic processing software.  Much of the information specific to the data are contained in the headers of the SEG-Y format files.  The file system format is ISO 9660 Romeo which can be read with Windows 95/98, Windows NT, Unix, and Macintosh operating systems with the appropriate CD-ROM driver software installed.  The navigation and bathymetric data are stored as an ASCII file with the navigation and depth information logged mostly at a 10 second interval.   Blatantly bad bathymetric values were replaced with a value of 9999.  Depths are presented in meters from the sea surface (assuming a speed of sound in water of 1450 m/sec).  Both raw and tidally corrected depths are present in the navigation file.

Info
ASCII formatted file of the 4-m bathymetry from the northern half of USGS survey 98015 of the Sea Floor off Eastern Cape Cod (CAPENORTH_GEO4M_XYZ.TXT, Geographic, NAD83)

This data set includes bathymetry of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system during USGS survey 98015, conducted November 9 - 25, 1998. The surveys were conducted using a Simrad EM 1000 multibeam echosounder mounted aboard the Canadian Coast Guard vessel Frederick G. Creed. This multibeam system utilizes 60 electronically aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up to 7.5 times the water depth (swath width of 100 to 200 m within the survey area). The horizontal resolution of the beam on the sea floor is approximately 10% of the water depth. Vertical resolution is approximately 1 percent of the water depth.

Info
Interpolated 3-m bathymetric grid of NOAA survey H11043 off Branford, Connecticut (H11043_BATHY3)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies of sea-floor sediment distribution, processes that control sediment distribution, nearshore environmental concerns, and the relation of benthic community structures to the sea-floor geology. The bathymetry data in this data set were collected during 2002 for charting applications as part of NOAA project OPR-B340-RU, survey H11043 aboard the NOAA Ship RUDE. The RUDE, which supports NOAA's east-coast nautical charting mission, is outfitted to acquire single-beam bathymetry with an Odom Echotrac DF-3200 duel frequency echosounder and shallow water multibeam bathymetry with a Reson 8125 system. The Reson multibeam system operates at 455 KHz with a 120 degree across track swath and 240 beams along its swath.

Info
2-m Bathymetric Grid of NOAA Survey H11255 in Long Island Sound (BATHY2M_UTM18, UTM Zone 18)

Digital terrain models (DTMs) produced from multibeam bathymetric data provide valuable base maps for marine geological interpretations. These maps help define the geological variability of the seafloor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, and the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, monitoring, and management activities. The bathymetric survey interpreted herein (National Oceanic and Atmospheric Administration (NOAA) survey H11255) covers roughly 95 km2 of seafloor in southeastern Long Island Sound. This bathymetry has been examined in relation to seismic reflection data collected concurrently, as well as archived seismic profiles acquired as part of a long-standing geologic mapping partnership between the State of Connecticut and the U.S. Geological Survey (USGS). The objective of this work was to use these acoustic data sets to interpret geomorphological attributes of the seafloor, and to use these interpretations to better understand the Quaternary geologic history and modern sedimentary processes.

Info
1-m Bathymetric ArcRaster Grid of NOAA Survey H11310 in Central Narragansett Bay (H11310_UTM19, UTM Zone 19)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The mosaic and bathymetry presented herein covers an area of the sea floor in central Narragansett Bay. The mosaic, bathymetry, and their interpretations serve many purposes, including: (1) defining the geological variability of the sea floor, which is one of the primary controls of benthic habitat diversity; (2) improving our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats and associated infaunal community structures; and (3) providing a detailed framework for future research, monitoring, and management activities. The sidescan sonar mosaics and bathymetry images also serve as base maps for subsequent sedimentological, geochemical, and biological observations, because precise information on environmental setting is important for selection of sampling sites and for accurate interpretations of point measurements.

Info
Enhanced Composite Sidescan Sonar Mosaic of NOAA Survey H11310 in Central Narragansett Bay, Rhode Island (H11310SS_GEO1M_INV.TIF, Geographic)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Association (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to interpret the distributions of surficial sediments and sedimentary environments in an area of Narragansett Bay using sidescan sonar imagery, high-resolution bathymetry, and sediment data. The mosaic presented herein covers an area of the sea floor in central Narragansett Bay. The mosaic and their interpretations serve many purposes, including: (1) defining the geological variability of the sea floor, which is one of the primary controls of benthic habitat diversity; (2) improving our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats and associated infaunal community structures; and (3) providing a detailed framework for future research, monitoring, and management activities. The sidescan sonar mosaics also serve as basemaps for subsequent sedimentological, geochemical, and biological observations, because precise information on environmental setting is important for selection of sampling sites and for accurate interpretation of point measurements.

Info
1-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11076 of Quicks Hole, Massachusetts (H11076_UTM_B, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. Interpretive data layers were derived from multibeam echo-sounder and sidescan sonar data collected in the vicinity of Quicks Hole, a passage through the Elizabeth Islands that extend in a chain southwestward off Cape Cod, Massachusetts. In June 2005, bottom photographs and surficial sediment data were acquired as part of a ground-truth reconaissance survey.

Info
2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11250 of Eastern Long Island Sound (H11250U, UTM, Zone 18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies of sea-floor sediment distribution, processes that control sediment distribution, nearshore environmental concerns, and the relation of benthic community structures to the sea-floor geology. Anthropogenic wastes, toxic chemicals, and changes in land-use patterns resulting from residential, commercial, and recreational development have stressed the environment of the Sound, causing degradation and potential loss of benthic habitats (Koppelman and others, 1976; Long Island Sound Study, 1994). Detailed maps of the sea floor are needed to help evaluate the extent of adverse impacts and to help manage resources wisely in the future. Therefore, in a continuing effort to better understand Long Island Sound, we have constructed and interpreted mulitbeam bathymetric data within specific areas of special interest. The gridded data presented herein covers a roughly 94 km square area of the sea floor in the area known as the Race at the eastern end of Long Island Sound. The original multibeam bathymetric data were collected during October 2003 as part of charting applications aboard the NOAA Survey Vessel Thomas Jefferson. A Simrad EM1002 multibeam system mounted on the hull of this vessel was used to acquire over 560 km of survey lines from the deeper water (>20 m) parts of the study area. Two 29-foot launches with hull-mounted Reson systems were deployed from the ship and were used to acquire an additional 637 km of survey lines from the shallower areas. The detailed bathymetic data and their interpretations serve many purposes, including: (1) defining the geological variability of the sea floor, which is one of the primary controls of benthic habitat diversity; (2) improving our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats and associated infaunal community structures; and (3) providing a detailed framework for future research, monitoring, and management activities. The bathymetric data models also serve as base maps for subsequent sedimentological, geochemical, and biological observations, because precise information on environmental setting is important for selection of sampling sites and for accurate interpretation of point measurements.

Info
3-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11079 of Great Round Shoal Channel, Offshore Massachusetts (H11079_UTM_B, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities along this part of the Massachusetts coastline, show the composition and terrain of the seabed, and provide information on sediment transport and benthic habitat. Interpretive data layers were derived from multibeam echo-sounder and sidescan sonar data collected in Great Round Shoal Channel, a passage through the shoals at the eastern entrance to Nantucket Sound, off Cape Cod, Massachusetts. In June 2006, bottom photographs and surficial sediment data were acquired as part of a ground-truth reconaissance survey.

Info
Composite Sidescan Sonar Mosaic of National Oceanic and Atmospheric Administration (NOAA) Survey H11320 in Rhode Island Sound (H11320_1M_SSS_UTM19.TIF, UTM Zone 19, NAD83)

The U.S. Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan sonar imagery, multibeam bathymetry and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, including : (1) defining the geological variability of the sea floor, which is one of the primary controls of benthic habitat diversity; (2) improving our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats and associated infaunal community structures; and (3) providing a detailed framework for future research, monitoring, and management activities. The sidescan sonar mosaics and bathymetry images also serve as basemaps for subsequent sedimentological, geochemical, and biological observations, because precise information on environmental setting is important for selection of sampling sites and for accurate interpretations of point measurements.

Info
Composite 2-m Bathymetric ArcRaster Grid of National Oceanic and Atmospheric Administration (NOAA) Surveys H11252 and H11361 from Eastern Long Island Sound (COMP2M_UTM, UTM Zone 18)

The U.S. Geological Survey, in cooperation with the National Oceanic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies of sea-floor sediment distribution, processes that control sediment distribution, nearshore environmental concerns, and the relation of benthic community structures to the sea-floor geology. Anthropogenic wastes, toxic chemicals, and changes in land-use patterns resulting from residential, commercial, and recreational development have stressed the environment of the Sound, causing degradation and potential loss of benthic habitats (Koppelman and others, 1976; Long Island Sound Study, 1994). Detailed maps of the sea floor are needed to help evaluate the extent of adverse impacts and to help manage resources wisely in the future. Therefore, in a continuing effort to better understand Long Island Sound, we have constructed and interpreted multibeam bathymetric data within specific areas of special interest. The composite bathymetric grid in UTM Zone 18 projection presented herein covers a roughly 156 km square area (surveys h11252 and H11361) of the sea floor in the area near Six Mile Reef, eastern Long Island Sound. The original multibeam bathymetric data were collected during 2004 as part of charting applications aboard the NOAA Survey Vessel Thomas Jefferson. A Simrad EM1002 multibeam system mounted on the hull of this vessel was used to acquire data along survey lines from the deeper water (>20 m) parts of the survey areas. Two 29-foot launches with hull-mounted Reson systems were deployed from the ship and were used to acquire data along survey lines from the shallower areas. Detailed bathymetric data and their interpretations serve many purposes, including: (1) defining the geological variability of the sea floor, which is one of the primary controls of benthic habitat diversity; (2) improving our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats and associated infaunal community structures; and (3) providing a detailed framework for future research, monitoring, and management activities. The bathymetric data models also serve as base maps for subsequent sedimentological, geochemical, and biological observations, because precise information on environmental setting is important for selection of sampling sites and for accurate interpretation of point measurements.

Info
Stretched Sidescan-Sonar Image of National Oceanic and Atmospheric Administration (NOAA) Survey H11321 in Central Rhode Island Sound (H11321_1M_SSS_GEO_STR.TIF, Geographic)

The United States Geological Survey (USGS) is working cooperatively with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries along the coast of the northeastern United States. The purpose of our present study is to define the sea floor morphology and sedimentary environments in an area of Rhode Island Sound using sidescan-sonar imagery, multibeam bathymetry, and seismic records. The mosaic, bathymetry, and their interpretations serve many purposes, including: (1) defining the geological variability of the sea floor, which is one of the primary controls of benthic habitat diversity; (2) improving our understanding of the processes that control the distribution and transport of bottom sediments and their distribution of benthic habitats and associated infaunal community structures; and (3) providing a detailed framework for future research, monitoring, and management activities. The sidescan-sonar mosaics and bathymetry images also serve as base maps for subsequent sedimentological, geochemical, and biological observations, because precise information on environmental setting is important for selection of sampling sites and for accurate interpretations of point measurements.

Info
0.5-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11077 in the Vicinity of Woods Hole, Massachusetts (H11077_05UTM, UTM Zone 19)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretive data layers were derived from multibeam echo-sounder and sidescan-sonar data collected in the vicinity of Woods Hole, a passage between the Elizabeth Islands and Cape Cod, Massachusetts. In November 2007, bottom photographs, seismic-reflection profiles, and surficial sediment data were acquired as part of a ground-truth reconnaissance survey.

Info
0.5-m Stretched Grayscale Image of the Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11077 of the Sea Floor in the Vicinity of Woods Hole, Massachusetts (H11077_SSS100_GEO.TIF, Geographic)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretive data layers were derived from multibeam echo-sounder and sidescan-sonar data collected in the vicinity of Woods Hole, a passage between the Elizabeth Islands and Cape Cod, Massachusetts. In November 2007, bottom photographs, seismic-reflection profiles, and surficial sediment data were acquired as part of a ground-truth reconnaissance survey.

Info
10-m Interpolated Bathymetric Grid of the Northern Part of National Oceanic and Atmospheric Administration (NOAA) Survey H11044 off Milford, Connecticut (H11044N_10UTM, UTM Zone 18, WGS84)

During 2001 the NOAA Ship RUDE completed charting survey H11044 that covered a roughly 293 km2 area of the sea floor in north-central Long Island Sound, off Milford Connecticut. Although 100 percent coverage was achieved with sidescan sonar for charting purposes, only reconnaissance (spaced line) bathymetry was acquired with shallow-water multibeam and single-beam systems. Therefore, further processing was conducted at the USGS's Woods Hole Science Center to provide bathymetric datasets with more continuous coverage. This project produced grids and GeoTIFF imagery of the combined and interpolated shallow-water multibeam and single-beam bathymetry generated from the northern part of this data set. Anthropogenic wastes, toxic chemicals, and changes in land-use patterns resulting from residential, commercial, and recreational development have stressed the environment of the Sound, causing degradation and potential loss of benthic habitats. Detailed maps of the sea floor are needed to help evaluate the extent of adverse impacts and to help manage resources wisely in the future. Therefore, in a continuing effort to better understand Long Island Sound, we have interpolated and gridded shallow-water multibeam and single-beam bathymetric data within specific areas of special interest.

Info
Color Shaded-Relief GeoTIFF Image Showing the 25-m Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Survey H11346 in the vicinity of Edgartown Harbor, MA (H11346_MB25M_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretive data layers were derived from the combined single-beam and multibeam echo-sounder data and sidescan-sonar data collected in the vicinity of Edgartown Harbor, Massachusetts. During August 2008 seismic-reflection profiles (Boomer and Chirp) were acquired, and during September 2008 bottom photographs and surficial sediment data were acquired as part of two ground-truth reconnaissance surveys.

Info
Seismic-Reflection Profiles in SEG-Y Format From Western Rhode Island Sound (1980)

During 1980, a Uniboom seismic-reflection survey was conducted by the U.S. Geological Survey (USGS) in western Rhode Island Sound aboard the Research Vessel NeechoThe cruise consisted fo 2 legs and had a total of 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. As a result of recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and converted to TIFF images and SEG-Y data files. In order to scan the lines, some of the paper records were cut and scanned in sections. These sections are labeled with lower-case letters and differ from the names of lines in the logbook. Some SEG-Y files were further divided in order for each file to contain continuous data collected at the same ship speed; these line segments have been labeled _1, _2, or _3 after the section label. Navigation data were converted from LORAN-C time delays to latitudes and longitudes that are available in ESRI shapefile format and as eastings and northings in space-delimited text format.

Info
Seismic-Reflection Profiles in SEG-Y Format from Eastern Rhode Island Sound Collected in 1975

During 1975, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in eastern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 8 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and converted to TIFF images and SEG-Y data files. Navigation data were converted from LORAN-C time delays to latitudes and longitudes, which are available in ESRI shapefile format and as eastings and northings in space-delimited text format.

Info
Seismic-Reflection Profiles in SEG-Y Format From Southern Rhode Island Sound

During 1980, the U.S. Geological Survey (USGS) conducted a seismic-reflection survey utilizing Uniboom seismics in southern Rhode Island Sound aboard the Research Vessel Asterias. This cruise totalled 3 survey days. Data from this survey were recorded in analog form and archived at the USGS. Due to recent interest in the geology of Rhode Island Sound and in an effort to make the data more readily accessible while preserving the original paper records, the seismic data from this cruise were scanned and converted to TIFF images and SEG-Y data files. Navigation data were converted from LORAN-C time delays to latitudes and longitudes, which are available in ESRI shapefile format and as eastings and northings in space-delimited text format.

Info
Color Shaded-Relief GeoTIFF Image Showing the Combined 4-m Multibeam and LIDAR Bathymetry Generated from National Oceanic and Atmospheric Administration (NOAA) Surveys H11442, H11441, H11224, and H11225 Offshore of New London and Niantic, CT (NLNB_MBLIDAR_GEO.TIF, Geographic, WGS84)

Nearshore areas within Long Island Sound are of great interest to the Connecticut and New York research and management communities because of their ecological, recreational, and commercial importance. However, although advances in multibeam echosounder technology permit the construction of detailed digital terrain models of seafloor topography within deeper waters, limitations inherent with collecting multibeam data make using this technology in shallower waters (<10-m deep) more difficult and expensive. These limitations have often resulted in gaps of no data between multibeam bathymetric datasets and the adjacent shoreline. To address this problem, complete-coverage multibeam bathymetry acquired offshore of New London and Niantic Bay, Connecticut, has been integrated with hydrographic LIDAR acquired along the nearshore. The result is a more continuous seafloor perspective and a much smaller gap between the digital bathymetric data and the shoreline. These datasets are provided as ESRI grid and GeoTIFF formats in order to facilitate access, compatibility, and utility.

Info
Enhanced Grayscale TIFF Image of the 1-m Sidescan-Sonar Data From National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_1MSSS_GEO.TIF, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA completed hydrographic survey H11251 offshore of Rocky Point, New York and during November 2009, bottom photographs and surficial sediment data were acquired as part of a ground-truth reconnaissance survey of this area. Interpretive data layers were derived from the multibeam echo-sounder and sidescan-sonar data and the ground-truth data used to verify them. For more information on the ground-truth survey see https://cmgds.marine.usgs.gov/fan_info.php?fan=2009-059-FA

Info
2-m Bathymetric Grid of National Oceanic and Atmospheric Administration (NOAA) Survey H11251 Offshore of Rocky Point, New York (H11251_2M_GEO, Geographic, WGS84)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During October 2008 NOAA completed hydrographic survey H11251 offshore of Rocky Point, New York and during November 2009, bottom photographs and surficial sediment data were acquired as part of a ground-truth reconnaissance survey of this area. Interpretive data layers were derived from the multibeam echo-sounder and sidescan-sonar data and the ground-truth data used to verify them. For more information on the ground-truth survey see https://cmgds.marine.usgs.gov/fan_info.php?fan=2009-059-FA

Info
BS_Q01.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q02.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q03.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q04.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q05.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q06.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q06B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (27 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q07.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q08.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q09.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q10.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q11.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q12.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q13.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q13B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (28 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q14.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q14B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (29 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q15.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q16.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q17.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q18.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q19.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q20.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q21.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q22.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q22B.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (30 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q23.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q24.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q25.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (25 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
BS_Q26.TIF - Bering Sea U.S. EEZ GLORIA sidescan-sonar data mosaic (26 of 30) (LCC, 50 m, Clarke1866)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1986 through 1989, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Alaska. Four surveys during that time period (1986-1987) focused on the Bering Sea region. The results of these surveys were 30 digital mosaics of a 3 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q30.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q30A.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (24 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q31.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q32.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q33.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q34.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q35.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q36.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q37.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q38.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q39.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q40.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q41.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q42.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q43.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q44.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q45.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q46.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q47.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q48.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q49.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q50.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q51.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW2_Q52.TIF - Hawaii II - Central Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (23 of 24) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1988 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the U.S. EEZ off Hawaii. Nine surveys during that time period focused on the central Hawaii region. The results of these surveys were 24 digital mosaics of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q53.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q54.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q55.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q56.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q57.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q58.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q59.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q60.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q61.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q62.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q63.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q64.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q65.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q66.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q67.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q68.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q69.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (17 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q70.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (18 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q71.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (19 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q72.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (20 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q73.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (21 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
HW3_Q74.TIF - Hawaii III - Northwestern Hawaii U.S. EEZ GLORIA sidescan-sonar data mosaic (22 of 22) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From 1989 through 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted several surveys within the EEZ off Hawaii. Six surveys during that time period focused on the northwestern Hawaii region. The results of these surveys were 22 digital mosaics of approximately of approximately a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q01.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (1 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q02.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (2 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q03.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (3 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q04.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (4 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q05.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (5 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q06.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (6 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q07.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (7 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q08.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (8 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q09.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (9 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q10.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (10 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q11.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (11 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q12.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (12 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q13.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (13 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q14.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (14 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q15.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (15 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
JI_Q16.TIF - Johnston Island U.S. EEZ GLORIA sidescan-sonar data mosaic (16 of 16) (LCC, 50 m, WGS84)

In 1984, the U.S. Geological Survey (USGS), Office of Marine Geology, launched a program using the Geological LOng-Range Inclined Asdic (GLORIA) sidescan-sonar system to study the entire U.S. Exclusive Economic Zone (EEZ). From December 1990 through February 1991, the USGS and IOS (Institute of Oceanographic Sciences, U.K.) scientists conducted three surveys within the Johnston Atoll U.S. EEZ surrounding Johnston Island. The results of these surveys were 16 digital mosaics of a 2 degree by 2 degree area with a 50-meter pixel resolution.

Info
The 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_95th_perc.shp, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
The half interpercentile range of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_hIPR, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
The median of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_median.shp, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
Recurrence interval of sediment mobility at select points in the Gulf of Maine south into the Middle Atlantic Bight for May, 2010 - May, 2011 (GMAINE_mobile_freq, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
Percentage of time sediment is mobile for May, 2010 - May, 2011 at select points in the Gulf of Maine south into the Middle Atlantic Bight (GMAINE_mobile_perc.SHP, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
The 95th percentile of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_95th_perc, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
The half-interpercentile range of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_hIPR, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
The median of bottom shear stress for the Gulf of Mexico, May 2010 to May 2011 (GMEX_median, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
Recurrence interval of sediment mobility at select points in the Gulf of Mexico for May 2010 to May 2011 (GMEX_mobile_freq, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
Percentage of time sediment is mobile for May 2010 to May 2011 at select points in the Gulf of Mexico (GMEX_mobile_perc, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.04-0.06 degree (5-7 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
95th percentile of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_95th_perc.SHP)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
Half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_hIPR.SHP)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
Median of wave-current bottom shear stress in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_median.SHP)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
Recurrence interval of sediment mobility at select points in the Middle Atlantic Bight for May, 2010 - May, 2011 (MAB_mobile_freq_v1_1.SHP, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
Percentage of time sediment is mobile for May, 2010 - May, 2011 at select points in the Middle Atlantic Bight (MAB_mobile_perc.SHP)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
U.S. Geological Survey calculated 95th percentile of wave-current bottom shear stress for the South Atlantic Bight for May 2010 to May 2011 (SAB_95th_perc, polygon shapefile, Geographic, WGS84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
U.S. Geological Survey calculated half interpercentile range (half of the difference between the 16th and 84th percentiles) of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_hIPR.shp, polygon shapefile, Geographic, WGS84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
U.S. Geological Survey calculated median of wave-current bottom shear stress in the South Atlantic Bight from May 2010 to May 2011 (SAB_median, polygon shapefile, Geographic, WGS84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
U.S. Geological Survey calculated recurrence interval of sediment mobility at select points in the South Atlantic Bight for May 2010 to May 2011 (SAB_mobile_freq, Geographic, WGS 84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
U.S. Geological Survey calculated percentage of time sediment is mobile for May 2010 to May 2011 at select points in the South Atlantic Bight (SAB_mobile_perc, point shapefile, Geographic, WGS84)

The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 5 km resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2021 Near Pensacola Beach, Florida

From June 2 through 9, 2021, researchers from the U.S. Geological Survey (USGS) conducted an inshore and offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Pensacola Beach, Florida (FL). The Coastal Resource Evaluation for Management Applications (CREMA) project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM). Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y revision 0 format (Barry and others, 1975). In addition to this data release, the SEG-Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS) at, https://cmgds.marine.usgs.gov. Coastal multibeam bathymetry data were also collected for this project offshore of the Santa Rosa Island coast (during USGS Field Activity Number 2019-326-FA) and are provided in another data release (Farmer and others, 2020).

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 8, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 21, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 6, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 16, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (December 18, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 15, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (March 3, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (April 21, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (June 16, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 9, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (August 26, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 24, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 10, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (December 8, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 9, 2016)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 30, 2016)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected From Madeira Beach, Florida (February 17, 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (May 9, 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 14, 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (November, 9 2017)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Multibeam acoustic-backscatter data collected in 2015 near Cross Sound, southeast Alaska, during field activity 2015-629-FA

These metadata describe acoustic-backscatter collected during a 2015 multibeam echosounder survey near Cross Sound, southeast Alaska. Data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game (ADFG) aboard the ADFG R/V Solstice during USGS field activity 2015-629-FA. The acoustic-backscatter data are provided as a GeoTIFF.

Info
Multibeam bathymetry data collected in 2015 near Cross Sound, southeast Alaska, during field activity 2015-629-FA

These metadata describe bathymetry collected during a 2015 multibeam echosounder survey near Cross Sound, southeast Alaska. Data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game (ADFG) aboard the ADFG R/V Solstice during USGS field activity 2015-629-FA. The bathymetry data are published here as a 32-bit GeoTIFF image.

Info
Navigation tracklines from a 2015 multibeam survey near Cross Sound, southeast Alaska, during field activity 2015-629-FA

These metadata describe navigation tracklines from a 2015 multibeam echosounder survey near Cross Sound, southeast Alaska. Data were collected by the U.S. Geological Survey (USGS) and the Alaska Department of Fish and Game (ADFG) aboard the ADFG R/V Solstice during USGS field activity 2015-629-FA. The trackline data are provided as a GIS shapefile.

Info
Northern California cross-shore transects for CoSMoS 3.2

Cross-shore transects (CSTs) developed for Coastal Storm Model (CoSMoS) work in Northern California 3.2 are presented. 3,528 CSTs are numbered consecutively from 8067 at Golden Gate Bridge to 11,594 at the California/Oregon state border. Each of the profiles extend from the approximate -15 m isobath to at least 10 m above NAVD88 (truncated in cases where a lagoon or other waterway exists on the landward end of the profile), and are spaced approximately 100-250 m apart.

Info
Nearshore total water level (TWL) proxies (2018-2100) for Northern California

Nearshore proxies for total water level (TWL) developed for Coastal Storm Model (CoSMoS) work in Northern California 3.2 are presented. Deterministic dynamical modeling of future climate conditions and associated hazards, such as flooding, can be computationally-expensive if century-long time-series of waves, sea level variations, and overland flow patterns are simulated. To focus such modeling on storm events of interest, local impacts over long time periods and large geographical areas are estimated. Nearshore proxies for total water level (TWL) are generated via a computationally simple approach, assuming a linear superposition of the important processes contributing to overall total water level. A time series of TWL proxies is used as the basis for 1) identifying coastal segments that respond similarly to region-wide coastal storms, 2) selecting storm events for detailed hydrodynamic modeling within CoSMoS, and 3) to drive long-term shoreline change and bluff retreat models.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2015 Offshore of Dauphin Island, Alabama

From September 16 through 23, 2015, researchers from the U.S. Geological Survey (USGS) conducted an offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Dauphin Island, Alabama (AL). The Alabama Barrier Island Restoration Feasibility Study project objective includes the investigation of nearshore geologic controls on surface morphology. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM). Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y revision 0 format (Barry and others, 1975). In addition to this data release, the SEG-Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS) at, https://cmgds.marine.usgs.gov. Coastal multibeam bathymetry and sidescan sonar data were collected and processed for this project by the U.S. Army Corps of Engineers (USACE).

Info
CoSMoS 3.2 Northern California Tier 1 FLOW-WAVE model input files

This data set consists of physics-based Delft3D-FLOW and WAVE hydrodynamic model input files used for Coastal Storm Modeling System (CoSMoS) Tier 1 simulations. Tier 1 simulations cover the Northern California open-coast region, from the Golden Gate Bridge to the California/Oregon state border, and they provide boundary conditions to higher-resolution simulations. Simulations are run for several storm events (covering a range of no storm, 1-year, 20-year, and 100-year coastal storm conditions) and sea-level rise (SLR) scenarios.

Info
Acoustic-backscatter data for Santa Cruz Harbor, California collected during USGS field activity 2022-609-FA

1-m resolution acoustic-backscatter data were collected during a January 2022 SWATHPlus survey in and near the Santa Cruz harbor, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2022-609-FA. The 1-m acoustic-backscatter data are provided as a GeoTIFF file.

Info
Bathymetry data for Santa Cruz Harbor, California collected during USGS field activity 2022-609-FA

1-m resolution bathymetry data were collected during a January 2022 SWATHPlus survey in and near the Santa Cruz harbor, California. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2022-609-FA. The 1-m bathymetry data are provided as a GeoTIFF file.

Info
Core descriptions and sedimentologic data from vibracores and sand augers collected in 2021 and 2022 from Fire Island, New York

In 2021 and 2022, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) and the USGS New York Water Science Center (NYWSC), on behalf of SPCMSC, conducted sediment sampling and ground penetrating radar (GPR) surveys at Point O' Woods and Ho-Hum Beach (NYWSC, 2021) and Watch Hill, Long Cove, and Smith Point (SPCMSC, 2022), Fire Island, New York. These data complement previous SPCMSC GPR and sediment sampling surveys conducted at Fire Island in 2016 (Buster and others, 2018; Forde and others, 2018).

Info
Ground Penetrating Radar and Global Positioning System Data Collected from Fire Island, New York, March-April 2021

Fire Island, New York (NY) is a 50-kilometer (km) long barrier island system fronting the southern coast of Long Island, NY with relatively complex geology. In 2016, the U.S. Geological Survey (USGS) conducted ground penetrating radar (GPR) surveys and sediment sampling at Fire Island to characterize and quantify spatial variability in the subaerial geology (Forde and others, 2018; Buster and others, 2018). These surveys, in combination with historical data, allowed for a preliminary reconstruction of the barrier’s long-term evolution. In 2021, scientists from the USGS New York Water Science Center (NYWSC), on behalf of the USGS St. Petersburg Coastal and Marine Science Center (SPCMSC), conducted additional GPR and sediment sampling surveys at Point O' Woods (POW) and Ho-Hum Beach (HHB) on Fire Island to fill in gaps in the timeline of Fire Island’s development and illuminate relationships between different geomorphic structures observed along the island. This information will be used to calibrate a model of barrier island development, quantifying historic sediment fluxes within the Fire Island system.

Info
Beach Profile Data Collected from Madeira Beach, Florida (February 4, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (March 7, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (April 8, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (May 23, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 6, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (September 15, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (October 5, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 14, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 21, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Digital Sidescan-Sonar Mosaic collected within the Gulf of the Farallones, National Marine Sanctuary (FARALLONES.TIF, UTM 10, WGS84)

In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques such as sub-bottom profiling, sidescan-sonar and bathymetric mapping, gravity core and grab sampling, and photography. These data were used to define the surficial sediment distribution, underlying structure and sea floor morphology of the study area. The primary focus of this report is to present a georeferenced, digital sidescan-sonar mosaic of the study region. The sidescan-sonar data were acquired with the AMS-120 (120kHz) sidescan-sonar system during USGS cruise F9-89-NC. The dataset covers approximately 1000 km2 of the continental shelf between Point Reyes, California and Half Moon Bay, California, extending west to the continental shelf break near the Farallon Islands. The sidescan-sonar mosaic displays a heterogenous sea-floor environment, containing outcropping rock, ripples, dunes, lineations and depressions, as well as flat, featureless sea floor (Karl and others, 2002). These data, along with sub-bottom interpretation and ground truth data define the geologic framework of the region. The sidescan-sonar mosaic can be used with supplemental remote sensing and sampling data as a base for future research, helping to define the local current regime and predominant sediment transport directions and forcing conditions within the Gulf of Farallones.

Info
CoSMoS 3.2 Northern California sub-regional tier 2 FLOW-WAVE model input files

This data set consists of physics-based Delft3D-FLOW and WAVE hydrodynamic model input files used for Coastal Storm Modeling System (CoSMoS) sub-regional tier 2 simulations. Sub-regional tier 2 simulations cover portions of the Northern California open-coast region, from Point Arena to the California/Oregon state border, and they provide boundary conditions to higher-resolution simulations. Simulations are run for several storm events (covering a range of no storm, 1-year, 20-year, and 100-year coastal storm conditions) and sea-level rise (SLR) scenarios.

Info
Bathymetry and seafloor acoustic backscatter of mobile subaqueous sand dunes in the lower Columbia River, Washington and Oregon, 2021

Bathymetry and seafloor acoustic backscatter data were collected at four sites (SKM, SLG, LDB, WLW) using a SWATHPlus interferometric sonar (234 kHz) pole mounted to the R/V Parke Snavely during a June 2021 survey of the lower Columbia River, Washington and Oregon. Each site was surveyed repeatedly between June 5 and June 9, 2021 to quantify bathymetric changes resulting from migration of subaqueous sand dunes. The bathymetry and seafloor acoustic backscatter data from each site are provided as GeoTIFF images.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2022 Offshore of Breton Island, Louisiana

On August 5, 2022, researchers from the U.S. Geological Survey (USGS) conducted an offshore geophysical survey to map the shoreface and determine Holocene stratigraphy near Breton Island, Louisiana (LA). The Breton Island Post Construction Monitoring project objective includes the investigation of nearshore geologic controls on surface morphology in addition to mapping the seafloor to evaluate coastal change. This publication (Forde and others, 2023) serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM). Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y revision 0 format (Barry and others, 1975). In addition to this data release, the SEG-Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS) at, https://cmgds.marine.usgs.gov.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in June 2022 Near Panama City, Florida

As part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey to map back-barrier and lagoonal areas, as well as characterizing stratigraphy near Panama City, Florida (FL) in June 2022. The purpose of this study was to conduct a geologic assessment (including bathymetric mapping) of the environs near Panama City, FL, in support of efforts to construct an artificial, living oyster reef near Tyndall Air Force Base. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM). Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y revision 0 format (Barry and others, 1975). In addition to this data release, the SEG-Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS) at, https://cmgds.marine.usgs.gov.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2022 from Seven Mile Island, New Jersey

From April 29 through May 2, 2022, researchers from the U.S. Geological Survey (USGS) conducted a nearshore geophysical survey to map the shoreface and inner shelf, as well as characterizing stratigraphy near Seven Mile Island, New Jersey (NJ). The Coastal Sediment Availability and Flux project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. The goal of this study included the investigation of nearshore geologic controls on surface morphology and assessing barrier island resilience after Hurricane Sandy (U.S. landfall was October 29, 2012). This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM). Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y revision 0 format (Barry and others, 1975). In addition to this data release, the SEG-Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS) at, https://cmgds.marine.usgs.gov.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in 2022 from Boca Chica Key, Florida

As part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey at the nearshore ledge offshore of Boca Chica Key, Florida (FL) November 8-13, 2022. The objective of the project was to collect bathymetric maps and conduct a geologic assessment of the nearshore ledge off Boca Chica Key in support of efforts to construct an artificial coral reef offshore of Naval Air Station Key West. This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM). Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y revision 0 format (Barry and others, 1975). In addition to this data release, the SEG-Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS) at, https://cmgds.marine.usgs.gov.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 17, 2018)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 19, 2019)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (August 7, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 7, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (December 7, 2020)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (February 3, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (April 1, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (May 19, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (July 28, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 9, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (October 8, 2021)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (February 22, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (June 7, 2022)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (January 27, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (July 21, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 8, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Beach Profile Data Collected from Sand Key Beach in Clearwater, Florida (September 11, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Sand Key Beach in Clearwater, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B vertical coordinate system.

Info
Swath acoustic-backscatter data collected in 2013 off the islands of Maui and Kaho`olawe, Hawaii, during field activity A-01-13-HW

1-m resolution acoustic-backscatter data were collected during a February 2013 SWATHPlus survey offshore of the Hawaiian Islands of Maui and Kaho`olawe. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), with fieldwork activity number A-01-13-HW. The 1-m backscatter data are provided as a GeoTIFF file.

Info
Swath bathymetry data collected in 2013 off the islands of Maui and Kaho`olawe, Hawaii, during field activity A-01-13-HW

1-m resolution bathymetry data were collected during a February 2013 SWATHPlus survey offshore of the Hawaiian Islands of Maui and Kaho`olawe. Data were collected and processed by the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), with fieldwork activity number A-01-13-HW. The 1-m bathymetry data are provided as a GeoTIFF file.

Info
Archive of Chirp Subbottom Profile, Imagery, and Geospatial Data Collected in May 2023 from Oahu, Hawaii

As part of the Coastal Sediment Availability and Flux and Defense Advanced Research Protection Agency (DARPA) Reefense projects, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted a nearshore geophysical survey to map the shoreface and inner shelf, as well as characterizing stratigraphy near Oahu, Hawaii (HI) May 7-13, 2023. The purpose of this study was to conduct a geologic assessment (including bathymetric mapping) near Fort Hase Beach, Oahu, in support of efforts to construct an artificial coral reef offshore of Marine Corps Base Hawaii (MCBH). This publication serves as an archive of high-resolution chirp subbottom trace data, survey trackline map, navigation files, geographic information system (GIS) data, and formal Federal Geographic Data Committee (FGDC) Content Standard for Digital Geospatial Metadata (CSDGM). Processed subbottom profile images are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y revision 1 format (Norris and others, 2002). In addition to this data release, the SEG-Y files can be downloaded from the USGS Coastal and Marine Geoscience Data System (CMGDS) at, https://cmgds.marine.usgs.gov.

Info
Ground Penetrating Radar and Global Positioning System Data Collected from Central Florida Gulf Coast Barrier Islands, Florida, February-March 2021

A morphologically diverse and dynamic group of barrier islands along the Central Florida (FL) Gulf Coast (CFGC) form a 75-kilometer-long chain stretching from Anclote Key in the north to Egmont Key in the south. In 2021, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted ground penetrating radar (GPR) surveys on barrier islands located along the CFGC, in Pinellas County, FL. This study investigated the past evolution of the CFGC from field sites at Anclote Key, Caladesi and Honeymoon Islands, and Fort DeSoto to quantify changes that occurred along these barrier systems prior to the 20th century.

Info
usSEABED component and features data for the entire U.S. Atlantic Coast (ATL_CMP)

This component data layer (_CMP.txt) file gives information about selected components (minerals, rock type, microfossils, benthic biota) and seafloor features (bioturbation, structure, ripples) at a given site. Values in the attribute fields represent the membership to that attribute's fuzzy set. For components such as minerals, rocks, micro-biota and plants, and/or epifauna and infauna, corals and other geologic and biologic information, the value depends on sentence structure and other components in description. For features (denoted by an asterisk) such as ripples, ophiuroids, sponges, shrimp, worm tubes, lamination, lumps, grading, and/or bioturbation, the value of the fuzzy set depends on the development of the attribute. Only the relative fuzzy presence of components and features can be determined; the absence of information does not indicate a lack of the attribute, only lack of information about that attribute.

Info
usSEABED facies data for the entire U.S. Atlantic Coast (ATL_FAC)

The facies data layer (_FAC.txt) is a point coverage of known sediment samplings, inspections, and probings from the usSEABED data collection and integrated using the software system dbSEABED. The facies data layer (_FAC.txt)represents concatenated information about components (minerals and rock type), genesis (igneous, metamorphic, carbonate, terrigenous), and other appropriate groupings of information about the seafloor. The facies data are parsed from written descriptions from cores, grabs, photographs, and videos, and may apply only to a subsample as denoted by the Top, Bottom, and SamplePhase fields. Lack of values in a defined facies field does not necessarily imply lack of the components defining that field, but may imply a lack of data for that field.

Info
usSEABED CaLCulated data for the entire U.S. Gulf of Mexico and Caribbean (GMX_CLC, Puerto Rico and U.S. Virgin Islands)

This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the calculated (CLC) output of the dbSEABED mining software. It contains results from calculating variables using empirical functions working on the results of extraction or parsing. The CLC data is the most derivative and certainly the least accurate; however, many clients appreciate that it extends the coverage of map areas with attributes, especially physical properties attributes.

Info
usSEABED component and features data for the entire U.S. Gulf of Mexico and Caribbean (GMX_CMP, Puerto Rico and U.S. Virgin Islands)

This component data layer (_CMP.txt) file gives information about selected components (minerals, rock type, microfossils, benthic biota) and seafloor features (bioturbation, structure, ripples) at a given site. Values in the attribute fields represent the membership to that attribute's fuzzy set. For components such as minerals, rocks, micro-biota and plants, and/or epifauna and infauna, corals and other geologic and biologic information, the value depends on sentence structure and other components in description. For features (denoted by an asterisk) such as ripples, ophiuroids, sponges, shrimp, worm tubes, lamination, lumps, grading, and/or bioturbation, the value of the fuzzy set depends on the development of the attribute. Only the relative fuzzy presence of components and features can be determined; the absence of information does not indicate a lack of the attribute, only lack of information about that attribute.

Info
usSEABED EXTracted data for the entire U.S. Gulf of Mexico and Caribbean (GMX_EXT, Puerto Rico and U.S. Virgin Islands)

This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the extracted (EXT) output of the dbSEABED mining software. It contains data items which were simply extracted from the data resources through data mining. The EXT data is usually based on instrumental analyses (probe or laboratory) but may apply to just a subsample of the sediment (eg. no large shells).

Info
usSEABED facies data for the entire U.S. Gulf of Mexico and Caribbean (GMX_FAC, Puerto Rico and U.S. Virgin Islands)

The facies data layer (_FAC.txt) is a point coverage of known sediment samplings, inspections, and probings from the usSEABED data collection and integrated using the software system dbSEABED. The facies data layer (_FAC.txt)represents concatenated information about components (minerals and rock type), genesis (igneous, metamorphic, carbonate, terrigenous), and other appropriate groupings of information about the seafloor. The facies data are parsed from written descriptions from cores, grabs, photographs, and videos, and may apply only to a subsample as denoted by the Top, Bottom, and SamplePhase fields. Lack of values in a defined facies field does not necessarily imply lack of the components defining that field, but may imply a lack of data for that field.

Info
usSEABED PaRSed data for the entire U.S. Gulf of Mexico and Caribbean (GMX_PRS, Puerto Rico and U.S. Virgin Islands)

This data layer is a point coverage of known sediment samplings, inspections and probings from the usSEABED data collection and integrated using the software system dbSEABED. This data layer represents the parsed (PRS) output of the dbSEABED mining software. It contains the results of parsing descriptions in the data resources. The PRS data is less precise because it comes from word-based descriptions, but will include information on outsized elements, consolidation that are not usually in EXT data.

Info
USGS Seafloor Mapping ALPH 98013 Chirp Subbottom Data offshore of the New York - New Jersey metropolitan area

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ALPH 98013 cruise. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed.

Info
USGS Seafloor Mapping ALPH 98013 Water Gun Data offshore of the New York - New Jersey metropolitan area, collected in 1998

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ALPH 98013 cruise. The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed.

Info
USGS Seafloor Mapping ATSV 99044 Chirp Data off Myrtle Beach, South Carolina

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ATSV 99044 cruise. The coverage is the nearshore of the northern South Carolina. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed.

Info
Archive of Boomer and Sparker Data Collected During USGS Cruise DIAN 97032 Long Island, NY Inner Shelf -- Fire Island, 24 September - 19 October, 1997

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS Diane G 97032 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed.

Info
USGS Seafloor Mapping DIAN 97032 Chirp Subbottom Data offshore of the New York - New Jersey metropolitan area

This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97032 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate DVD-ROM driver software installed.

Info
Archive of Datasonics SIS-1000 Boomer and Sparker Subbottom Data Collected During USGS Cruise DIAN 97011 Long Island, NY Inner Shelf

This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97011 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate DVD-ROM driver software installed.

Info
Archive of Boomer Subbottom Data Collected During USGS Cruise SEAX 96004, New York Bight, 1 May - 9 June, 1996

This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS SEAX 96004 cruise.The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate DVD-ROM driver software installed.

Info
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise DIAN 96040 Long Island, NY Inner Shelf -- Fire Island, NY, 4-24 September, 1996

This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 96040 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate DVD-ROM driver software installed.

Info
Archive of Water Gun Subbottom Data Collected During USGS Cruise SEAX 96004, New York Bight, 1 May - 9 June, 1996

This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS SEAX 96004 cruise. The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is UDF (Universal Disc Format--ISO 9660 equivalent) which can be read with DOS, Unix, and MAC operating systems with the appropriate DVD-ROM driver software installed.

Info
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise MGNM 00014, Central South Carolina, 13-30 March 2000

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS MGNM 00014 cruise. The coverage is the nearshore of central South Carolina. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed.

Info
Archive of Boomer Subbottom Data Collected During USGS Cruise DIAN 96040, Fire Island, New York, 4-24 September 1996

This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97011 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate DVD-ROM driver software installed.

Info
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise SEAX 96004 New York Bight, 1 May - 9 June, 1996

This DVD-ROM contains copies of the navigation and field chirp subbottom data collected aboard the R/V Seaward Explorer, from 1 May - 9 June, 1996. The coverage is in the New York Bight area. This DVD-ROM (Digital Versatile Disc-Read Only Memory) has been produced in accordance with the UDF (Universal Disc Format) DVD-ROM Standard (ISO 9660 equivalent) and is therefore capable of being read on any computing platform that has appropriate DVD-ROM driver software installed. Access to the data and information contained on this DVD-ROM was developed using the HyperText Markup Language (HTML) utilized by the World Wide Web (WWW) project. Development of the DVD-ROM documentation and user interface in HTML allows a user to access the information by using a variety of WWW information browsers (i.e. NCSA Mosaic, Netscape) to facilitate browsing and locating information and data. To access the information contained on this disk with a WWW client browser, open the file 'index.htm' at the top level directory of this DVD-ROM with your selected browser. The HTML documentation is written utilizing some HTML 4.0 enhancements. The disk should be viewable by all WWW browsers but may not properly format on some older WWW browsers. Also, some links to USGS collaborators and other agencies are available on this DVD-ROM. These links are only accessible if access to the Internet is available during browsing of the DVD-ROM. The archived Chirp subbottom data are in standard Society of Exploration Geologists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded for processing with software such as Seismic Unix or SIOSEIS. The subbottom data were recorded on the ISIS data acquisition system in QMIPS format. Chirp subbottom channel extracted from raw QMIPS format sonar files and converted to 16-bit Int. SEG-Y format using the program QMIPSTOSEGY. Even though the data are in SEG-Y format, it is not the conventional time series data (e.g. voltages or pressures), but rather instantaneous amplitude or envelope detected and therefore all of the amplitudes are positive (though not simply rectified). DOS and Microsoft Windows compatible software for plotting SEG-Y files (PLOTSEIS) and viewing SEG-Y headers (DUMPSEGY) is located in the PLOTSEIS directory. Processed chirp profiles (GIF images) may be viewed on this DVD-ROM with your WWW browser. For more information on the seismic surveys see https://cmgds.marine.usgs.gov/fan_info.php?fan=1996-004-FA These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Datasonics SIS-1000 Chirp Subbottom Data Collected During USGS Cruise SEAX 95007 New York Bight, 7-25 May, 1995

This DVD-ROM contains copies of the navigation and field chirp subbottom data collected aboard the R/V Seaward Explorer, from 7-25 May, 1995. The coverage is in the New York Bight area. This DVD-ROM (Digital Versatile Disc-Read Only Memory) has been produced in accordance with the UDF (Universal Disc Format) DVD-ROM Standard (ISO 9660 equivalent) and is therefore capable of being read on any computing platform that has appropriate DVD-ROM driver software installed. Access to the data and information contained on this DVD-ROM was developed using the HyperText Markup Language (HTML) utilized by the World Wide Web (WWW) project. Development of the DVD-ROM documentation and user interface in HTML allows a user to access the information by using a variety of WWW information browsers (i.e. NCSA Mosaic, Netscape) to facilitate browsing and locating information and data. To access the information contained on this disk with a WWW client browser, open the file 'index.htm' at the top level directory of this DVD-ROM with your selected browser. The HTML documentation is written utilizing some HTML 4.0 enhancements. The disk should be viewable by all WWW browsers but may not properly format on some older WWW browsers. Also, some links to USGS collaborators and other agencies are available on this DVD-ROM. These links are only accessible if access to the Internet is available during browsing of the DVD-ROM. The archived Chirp subbottom data are in standard Society of Exploration Geologists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded for processing with software such as Seismic Unix or SIOSEIS. The subbottom data were recorded on the ISIS data acquisition system in QMIPS format. Chirp subbottom channel extracted from raw QMIPS format sonar files and converted to 16-bit Int. SEG-Y format using the program QMIPSTOSEGY. Even though the data are in SEG-Y format, it is not the conventional time series data (e.g. voltages or pressures), but rather instantaneous amplitude or envelope detected and therefore all of the amplitudes are positive (though not simply rectified). DOS and Microsoft Windows compatible software for plotting SEG-Y files (PLOTSEIS) and viewing SEG-Y headers (DUMPSEGY) is located in the PLOTSEIS directory. Processed chirp profiles (GIF images) may be viewed on this DVD-ROM with your WWW browser. For more information on the seismic surveys see https://cmgds.marine.usgs.gov/fan_info.php?fan=1995-007-FA These data are also available via GeoMapApp (http://www.geomapapp.org/) and Virtual Ocean ( http://www.virtualocean.org/) earth science exploration and visualization applications.

Info
Archive of Water Gun Subbottom Data Collected During USGS Cruise SEAX 95007 New York Bight, 7-25 May, 1995

This DVD-ROM contains copies of the navigation and field water gun subbottom data collected aboard the R/V Seaward Explorer, from 7-25 May, 1995. The coverage is in the New York Bight area. This DVD-ROM (Digital Versatile Disc-Read Only Memory) has been produced in accordance with the UDF (Universal Disc Format) DVD-ROM Standard (ISO 9660 equivalent) and is therefore capable of being read on any computing platform that has appropriate DVD-ROM driver software installed. Access to the data and information contained on this DVD-ROM was developed using the HyperText Markup Language (HTML) utilized by the World Wide Web (WWW) project. Development of the DVD-ROM documentation and user interface in HTML allows a user to access the information by using a variety of WWW information browsers (i.e. NCSA Mosaic, Netscape) to facilitate browsing and locating information and data. To access the information contained on this disk with a WWW client browser, open the file'index.htm' at the top level directory of this DVD-ROM with your selected browser. The HTML documentation is written utilizing some HTML 4.0 enhancements. The disk should be viewable by all WWW browsers but may not properly format on some older WWW browsers. Also, some links to USGS collaborators and other agencies are available on this DVD-ROM. These links are only accessible if access to the Internet is available during browsing of the DVD-ROM. The archived water gun subbottom data are in standard Society of Exploration Geologists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded for processing with software such as Seismic Unix or SIOSEIS. DOS and Microsoft Windows compatible software for plotting SEG-Y files (PLOTSEIS) and viewing SEG-Y headers (DUMPSEGY) is located in the PLOTSEIS directory. Processed water gun profiles (GIF images) may be viewed on this DVD-ROM with your WWW browser.

Info
Composite Sidescan-Sonar Mosaic, Pulley Ridge: UTM, Zone 17 Projection (COMPOSITE_UTM.TIF)

Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in the southeastern Gulf of Mexico about 250 km west of Cape Sable, Florida. This barrier island chain formed during the initial stage of the Holocene marine transgression. These islands were then submerged and left abandoned near the outer edge of the Florida Platform. The southern portion of Pulley Ridge hosts zooxanthellate scleractinian corals, green, red and brown macro algae, and a mix of deep and typically shallow-water tropical fishes. This reef community is in unusually deep water, and its extent and the controls on its distribution were unknown. To address these questions scientists from the U.S. Geological Survey Coastal and Marine Geology Program in cooperation with scientists from the University of South Florida Department of Marine Sciences have completed a detailed mapping of the southernmost 35 km of Pulley Ridge. The area was mapped using multibeam bathymetry, sidescan-sonar imagery, and high-resolution seismic-reflection profiling to define the geologic framework on which the reef is established. Submersible dives, remotely operated vehicle (ROV) transects, and transects of bottom photographs and video were collected to identify the corals and to map their distribution. This extensive suite of data has been compiled and preliminary analysis of the data suggests that the reefs are not tied to the ridge system, but instead are more broadly distributed. Whether reef distribution is controlled by oceanographic conditions or by subtle differences in the substrate that overlies the barrier island system is unclear, and are topics of continued research.

Info
Composite Sidescan-Sonar Mosaic collected by the U.S. Geological Survey offshore of the Grand Strand, SC (1999 to 2003) (MOSAIC, GeoTIFF)

In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium, began a study to investigate processes affecting shoreline change along the northern coast of South Carolina, focusing on the Grand Strand region. Previous work along the U.S. Atlantic coast shows that the structure and composition of older geologic strata located seaward of the coast heavily influences the coastal behavior of areas with limited sediment supply, such as the Grand Strand. By defining this geologic framework and identifying the transport pathways and sinks of sediment, geoscientists are developing conceptual models of the present-day physical processes shaping the South Carolina coast. The primary objectives of this research effort are: 1) to provide a regional synthesis of the shallow geologic framework underlying the coastal upland, shoreface and inner continental shelf, and define its role in coastal evolution and modern beach behavior; 2) to identify and model the physical processes affecting coastal ocean circulation and sediment transport, and to define their role in shaping the modern shoreline; and 3) to identify sediment sources and transport pathways; leading to construction of a regional sediment budget.

Info
Multibeam Bathymetry 2 meter/pixel of Boston Harbor and Approaches (bh_2mmbbath)

These data are high-resolution bathymetric measurements of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km² of sidescan sonar and bathymetric data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed and gridded by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS).

Info
1m Sidescan-Sonar Mosaic of Apalachicola Bay, Florida (APBAYMOS1M.TIF)

These data were collected under a cooperative mapping program between the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration Coastal Services Center (NOAA\CSC), and the Apalachicola National Estuarine Research Reserve (NERR). The primary objectives of this program were to collect marine geophysical data to develop a suite of seafloor maps to better define the extent of oyster habitats, the overall seafloor geology of the bay and provide updated information for management of this resource. In addition to their value for management of the bay's oyster resources, the maps also provide a geologic framework for scientific research and the public. High resolution bathymetry, backscatter intensity, and seismic profile data were collected over a 230 square kilometers of the floor of the bay. The study focused on the Apalachicola Bay and Western St. George Sound portions of the estuary in mostly in depths > 2.0 meters.

Info
1 meter Klein 3000 sidescan-sonar backscatter GeoTIFF mosaic of the nearshore portion of the Cape Ann to Salisbury Beach Massachusetts survey area (KLEIN_BS1M.tif, UTM Zone 19, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Science Center. Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine reserves, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters (5-30m deep) of Massachusetts between the New Hampshire border and Cape Cod Bay. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reports<http://woodshole.er.usgs.gov/project-pages/coastal_mass/>. This spatial dataset is from the Cape Ann and Salisbury Beach Massachusetts project area. They were collected in two separate surveys in 2004 and 2005 and cover approximately 325 square kilometers of the inner continental shelf. High resolution bathymetry and backscatter intensity were collected in 2004 and 2005. Seismic profile data, sediment samples and bottom photography were also collected in 2005.

Info
High-Resolution Seismic-Reflection Profiles in SEG-Y and JPEG Formats From the Cruise RAFA07034 in the Vicinity of Woods Hole, Offshore Massachusetts

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretive data layers were derived from multibeam echo-sounder and sidescan-sonar data collected in the vicinity of Woods Hole, a passage through the Elizabeth Islands, off Cape Cod, Massachusetts. In November 2007, bottom photographs, high-resolution seismic-reflection data, and Surficial sediment data were acquired as part of a ground-truth reconnaissance survey.

Info
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of the Chandeleur Islands, LA, 2006 (MOSAIC_06015, UTM Zone 16N GeoTIFF)

In 2006 and 2007, the U.S. Geological Survey, in partnership with Louisiana Department of Natural Resources and the University of New Orleans, conducted geologic mapping to characterize the sea floor and shallow subsurface stratigraphy offshore of the Chandeleur Islands in Eastern Louisiana. The mapping was carried out during two cruises on the R/V Acadiana. Data were acquired with the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, and an Edgetech 512i chirp subbottom profiling system. The long-term goal of this mapping effort is to produce high-quality geologic maps and geophysical interpretations that can be utilized to investigate the impact of Hurricane Katrina in 2005 and to identify sand resources within the region.

Info
Sidescan-sonar mosaic collected by the U.S. Geological Survey off the southern shore of Martha's Vineyard, MA, 2007. (GeoTIFF IMAGE, SONAR_05M.TIF)

The USGS Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory (MVCO) in August 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research (ONR) Ripples Directed-Research Initiative (DRI) studies at MVCO by providing data collection and modeling. The geophysical data will be used to provide initial conditions for wave and circulation models for the study area. Ultimately, geophysical mapping, oceanographic measurements and modeling will help to improve our understanding of coastal sediment-transport processes. The geophysical mapping utilized a suite of high-resolution instrumentation to map the surficial sediment distribution, depth and sub-surface geology: dual-frequency 100/500 KHz sidescan-sonar system, 234-KHz interferometric sonar, and 500 Hz -12 KHz chirp sub-bottom profiler. The survey was conducted aboard the M/V Megan Miller August 9-13, 2007. The study area covers 35 square kilometers from about 0.2 km to 5-km offshore of the south shore of Martha's Vineyard, and ranges in depth from ~ 5 to 20 meters.

Info
High-Resolution Seismic-Reflection Boomer Profiles in SEG-Y and JPEG Formats From Cruise RAFA08034 off Edgartown, Massachusetts (08034_BOOMERPROFILES)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretive data layers were derived from the combined single-beam and multibeam echo-sounder data and sidescan-sonar data collected in the vicinity of Edgartown Harbor, Massachusetts. During August 2008 seismic-reflection profiles (Boomer and Chirp) were acquired, and during September 2008 bottom photographs and surficial sediment data were acquired as part of two ground-truth reconnaissance surveys.

Info
High-Resolution Seismic-Reflection Chirp Profiles in SEG-Y and JPEG Formats From Cruise RAFA08034 off Edgartown, Massachusetts (08034_KELPROFILES)

The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), is producing detailed geologic maps of the coastal sea floor. Imagery, originally collected by NOAA for charting purposes, provides a fundamental framework for research and management activities along this part of the Massachusetts coastline, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. Interpretive data layers were derived from multibeam echo-sounder and sidescan-sonar data collected in the vicinity of Edgartown Harbor, Massachusetts. During August 2008 seismic-reflection profiles (Boomer and Chirp) were acquired, and during September 2008 bottom photographs and surficial sediment data were acquired as part of two ground-truth reconnaissance surveys.

Info
Bathymetric data collected by the U.S. Geological Survey and the National Oceanic and Atmospheric Administration offshore of Massachusetts between Duxbury and Hull (DH_bathy5m, Esri binary grid, UTM Zone 19, WGS84)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters (5-30 m deep) of Massachusetts between the New Hampshire border and Cape Cod Bay. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reports (http://woodshole.er.usgs.gov/project-pages/coastal_mass/). This spatial dataset is from the study area located between Duxbury and Hull Massachusetts, and consists of high-resolution geophysics (bathymetry, backscatter intensity, and seismic reflection) and ground validation (sediment samples, video tracklines and bottom photographs). The data were collected during four separate surveys conducted between 2003 and 2007 (NOAA survey H10993 in 2003, USGS-WHSC survey 06012 in 2006, and USGS-WHSC surveys 07001 and 07003 in 2007) and cover more than 200 square kilometers of the inner continental shelf.

Info
Composite sidescan-sonar mosaic collected by the U.S. Geological Survey offshore of Massachusetts between Duxbury and Hull (DH_USGS_backscatter1m, UTM Zone 19N, GeoTIFF)

These data were collected under a cooperative agreement with the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Science Center (WHSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of sea-floor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters (5-30 m deep) of Massachusetts between the New Hampshire border and Cape Cod Bay. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reports (http://woodshole.er.usgs.gov/project-pages/coastal_mass/). This spatial dataset is from the study area located between Duxbury and Hull Massachusetts, and consists of high-resolution geophysics (bathymetry, backscatter intensity, and seismic reflection) and ground validation (sediment samples, video tracklines and bottom photographs). The data were collected during four separate surveys conducted between 2003 and 2007 (NOAA survey H10993 in 2003, USGS-WHSC survey 06012 in 2006, and USGS-WHSC surveys 07001 and 07003 in 2007) and cover more than 200 square kilometers of the inner continental shelf.

Info
SEG-Y Formatted Seismic-Reflection Profile Data Collected in the Potomac River/Chesapeake Bay from Sept. 6, 2006 to Sept. 8, 2006

In order to test hypotheses about groundwater flow under and into Chesapeake Bay, geophysical surveys were conducted by U.S. Geological Survey (USGS) scientists on Chesapeake Bay and the Potomac River Estuary in September 2006. Chesapeake Bay resource managers are concerned about nutrients that are entering the estuary via submarine groundwater discharge, which are contributing to eutrophication. The USGS has performed many related studies in recent years to provide managers with information necessary to make informed decisions about this issue. The research carried out as part of the study described here was designed to help refine nutrient budgets for Chesapeake Bay by characterizing submarine groundwater flow and discharge of groundwater beneath part of the mainstem and a major tributary, the Potomac River Estuary.

Info
Offshore baseline for Cape Cod coastal region generated to calculate shoreline change rates from Provincetown to the southern end of Monomoy Island, Massachusetts (CapeCod_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Cape Cod region from Provincetown to the southern end of Monomoy Island, Massachusetts (CapeCod_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Cape Cod coastal region from Provincetown to the southern end of Monomoy Island, Massachusetts, used in shoreline change analysis (CapeCod_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Cape Cod region from Provincetown to the southern end of Monomoy Island, Massachusetts (CapeCod_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for Delmarva North coastal region generated to calculate shoreline change rates from Cape Henlopen, Delaware to the southern end of Assateague Island, Virginia (DelmarvaN_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Delmarva North region from Cape Henlopen, Delaware to the southern end of Assateague Island, Virginia (DelmarvaN_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Delmarva North coastal region from Cape Henlopen, Delaware to the southern end of Assateague Island, Virginia, used in shoreline change analysis (DelmarvaN_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Delmarva North region from Cape Henlopen, Delaware to the southern end of Assateague Island, Virginia (DelmarvaN_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Delmarva South/Southern Virginia region generated to calculate shoreline change rates from Wallops Island, Virginia to the Virginia/North Carolina border (DelmarvaS_SVA_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Delmarva South/Southern Virginia region from Wallops Island, Virginia to the Virginia/North Carolina border (DelmarvaS_SVA_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Delmarva South and Southern Virginia coastal region from Wallops Island, Virginia to the Virginia/North Carolina border, used in shoreline change analysis (DelmarvaS_SVA_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Delmarva South/Southern Virginia region from Wallops Island, Virginia to the Virginia/North Carolina border (DelmarvaS_SVA_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for Greater Boston coastal region from the southern side of Cape Ann, Massachusetts to Sandy Neck Beach in Sandwich, Massachusetts, generated to calculate shoreline change rates (GreaterBoston_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Greater Boston region from the southern side of Cape Ann, Massachusetts to Sandy Neck Beach in Sandwich, Massachusetts (GreaterBoston_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Greater Boston coastal region from the southern side of Cape Ann, Massachusetts to Sandy Neck Beach in Sandwich, Massachusetts, used in shoreline change analysis (GreaterBoston_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Greater Boston region from the southern side of Cape Ann, Massachusetts to Sandy Neck Beach in Sandwich, Massachusetts (GreaterBoston_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for Long Island coastal region generated to calculate shoreline change rates for the Long Island region from Montauk Point to the entrance of Raritan Bay, New York (LongIsland_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Long Island region from Montauk Point to the entrance of Raritan Bay, New York (LongIsland_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Long Island coastal region used in shoreline change analysis for the Long Island region from Montauk Point to the entrance of Raritan Bay, New York (LongIsland_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Rate Calculations for the Long Island region from Montauk Point to the entrance of Raritan Bay, New York (LongIsland_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for Massachusetts Islands coastal region generated to calculate shoreline change rates for Martha's Vineyard and Nantucket (MA_Islands_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the Massachusetts Islands Region including Martha's Vineyard and Nantucket (MA_Islands_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Massachusetts Islands coastal region including Martha's Vineyard and Nantucket, used in shoreline change analysis (MA_Islands_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the Massachusetts Islands Region including Martha's Vineyard and Nantucket (MA_Islands_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for New England North coastal region from Popham Beach, Maine to the northern side of Cape Ann, Massachusetts, generated to calculate shoreline change rates (NE_North_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the New England North region from Popham Beach, Maine to the northern side of Cape Ann, Massachusetts (NewEnglandN_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the New England North coastal region from Popham Beach, Maine to the northern side of Cape Ann, Massachusetts, used in shoreline change analysis (NewEnglandN_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the New England North region from Popham Beach, Maine to the northern side of Cape Ann, Massachusetts (NewEnglandN_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for New England South coastal region from Dartmouth, Massachusetts to Napatree Point, Rhode Island, generated to calculate shoreline change rates (NE_South_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the New England South region from Dartmouth, Massachusetts to Napatree Point, Rhode Island (NewEnglandS_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the New England South coastal region used in shoreline change analysis from Dartmouth, Massachusetts to Napatree Point, Rhode Island (NewEnglandS_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the New England South region from Dartmouth, Massachusetts to Napatree Point, Rhode Island (NewEnglandS_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for New Jersey North coastal region generated to calculate shoreline change rates from Sandy Hook to Little Egg Inlet, New Jersey (NJN_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the New Jersey North region from Sandy Hook to Little Egg Inlet, New Jersey (NewJerseyN_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the New Jersey North coastal region used in shoreline change analysis from Sandy Hook to Little Egg Inlet, New Jersey (NewJerseyN_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the New Jersey North region from Sandy Hook to Little Egg Inlet, New Jersey (NewJerseyN_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for New Jersey South coastal region generated to calculate shoreline change rates from Little Egg Inlet to Cape May, New Jersey (NJS_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Long-Term Rate Calculations for the New Jersey South region from Little Egg Inlet to Cape, May, New Jersey (NewJerseyS_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the New Jersey South coastal region used in shoreline change analysis from Little Egg Inlet to Cape May, New Jersey (NewJerseyS_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.1 Transects with Short-Term Rate Calculations for the New Jersey South region from Little Egg Inlet to Cape, May, New Jersey (NewJerseyS_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiE_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along East Kauai, Hawaii (Papaa to Nawiliwili)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiE_LT - Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Kauai east region from Papaa to Nawiliwili, Hawaii

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiE_shorelines - Shorelines of the eastern coastal region of Kauai, Hawaii, from Papaa to Nawiliwili, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiE_ST- Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Kauai east region from Papaa to Nawiliwili, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiN_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along North Kauai, Hawaii (Haena to Moloaa)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiN_LT - Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Kauai north region from Haena to Moloaa, Hawaii

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiN_shorelines - Shorelines of the northern coastal region of Kauai, Hawaii, from Haena to Moloaa, used in shoreline change analysis

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiN_ST - Digital Shoreline Analysis System (DSAS) version 4.2 transects with weighted linear regression short-term rate calculations for the Kauai north region from Haena to Moloaa, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiS_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along South Kauai, Hawaii (Waimea to Kipu Kai)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiS_LT - Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Kauai south region from Waimea to Kipu Kai, Hawaii

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiS_shorelines - Shorelines of the southern coastal region of Kauai, Hawaii, from Waimea to Kipu Kai, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiS_ST- Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Kauai south region from Waimea to Kipu Kai, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiW_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along West Kauai, Hawaii (Oomano to Polihale)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiW_LT - Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Kauai west region from Oomano to Polihale, Hawaii

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiW_shorelines - Shorelines of the western coastal region of Kauai, Hawaii, from Oomano to Polihale, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
KauaiW_ST - Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Kauai west region from Oomano to Polihale, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiK_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along the Kihei Coast of Maui, Hawaii (Maalaea to Makena)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiK_LT - Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Maui Kihei region from Maalaea to Makena, Hawaii

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiK_shorelines - Shorelines of the Kihei coastal region of Maui, Hawaii, from Maalaea to Makena, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiK_ST - Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Maui Kihei region from Maalaea to Makena, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiN_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along the North Coast of Maui, Hawaii (Waihee to Kuau)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiN_LT- Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Maui North region from Waihee to Kuau, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiN_shorelines - Shorelines of the northern coastal region of Maui, Hawaii, from Waihee to Kuau, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiN_ST - Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Maui North region from Waihee to Kuau, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiW_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along the West Coast of Maui, Hawaii (Ukumehame to Honolua)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiW_LT- Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Maui West region from Ukumehame to Honolua, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiW_shorelines - Shorelines of the western coastal region of Maui, Hawaii, from Ukumehame to Honolua, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
MauiW_ST - Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Maui West region from Ukumehame to Honolua, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuE_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along East Oahu, Hawaii (Kahuku to Makapuu)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuE_LT - Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Oahu East region from Kahuku to Makapuu, Hawaii

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuE_shorelines - Shorelines of the eastern coastal region of Oahu, Hawaii, from Kahuku to Makapuu, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuE_ST - Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Oahu East region from Kahuku to Makapuu, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuN_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along North Oahu, Hawaii (Camp Erdman to Kahuku)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuN_LT - Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Oahu north region from Camp Erdman to Kahuku, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuN_shorelines - Shorelines of the northern coastal region of Oahu, Hawaii, from Camp Erdman to Kahuku, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuN_ST - Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Oahu North region from Camp Erdman to Kahuku, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuS_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along South Oahu, Hawaii (Barbers Point to Sandy Beach)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuS_LT - Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Oahu south region from Barbers Point to Sandy Beach, Hawaii

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuS_shorelines - Shorelines of the southern coastal region of Oahu, Hawaii, from Barbers Point to Sandy Beach, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuS_ST- Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Oahu south region from Barbers Point to Sandy Beach, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuW_baseline - Offshore baseline used to cast shore-perpendicular transects for measurement of historical shoreline positions along West Oahu, Hawaii (Yokohama to Tracks Beach)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuW_LT- Digital Shoreline Analysis System (DSAS) version 4.2 transects with long-term weighted linear regression rate calculations for the Oahu west region from Yokohama to Tracks Beach, Hawaii

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuW_shorelines - Shorelines of the western coastal region of Oahu, Hawaii, from Yokohama to Tracks Beach, used in shoreline change analysis.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. Shoreline vectors derived from historic and modern sources represent the low water mark (beach toe). There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
OahuW_ST- Digital Shoreline Analysis System (DSAS) version 4.2 transects with short-term weighted linear regression rate calculations for the Oahu west region from Yokohama to Tracks Beach, Hawaii.

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Oregon coastal region generated to calculate shoreline change rates (OR_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Oregon (OR_shorelines_uncertainty.dbf)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Oregon coastal region used in shoreline change analysis (OR_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.2 Transects with Long-Term Linear Regression Rate Calculations for Oregon (OR_transects_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.2 Transects with Short-Term End Point Rate Calculations for Oregon (OR_transects_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Offshore baseline for the Washington coastal region generated to calculate shoreline change rates (WA_baseline.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for Washington (WA_shorelines_uncertainty.dbf)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Shorelines of the Washington coastal region used in shoreline change analysis (WA_shorelines.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.2 Transects with Long-Term Linear Regression Rate Calculations for Washington (WA_transects_LT.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
Digital Shoreline Analysis System version 4.2 Transects with Short-Term End Point Rate Calculations for Washington (WA_transects_ST.shp)

Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.

Info
1998 Fall Gulf Coast Lidar-Derived Dune Crest, Toe and Shoreline

The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1998 Fall Gulf Coast (Louisiana to Florida) lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.

Info
Beach Profile Data Collected from Madeira Beach, Florida (January 25, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (April 21, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (May 25, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (August 21, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (August 31, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (October 2, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (November 2, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (December 1, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info
Beach Profile Data Collected from Madeira Beach, Florida (July 6, 2023)

This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 North (17N), referenced to the North American Datum of 1983 (NAD 83); the elevation data are referenced to the North American Vertical Datum of 1988 (NAVD 88), GEOID12B.

Info