Records using themekt "http://remotesensing.usgs.gov/"

Results are color-coded by center: PCMSC SPCMSC WHCMSC

ATM Coastal Topography--Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Northeast Barrier Islands 2007: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Northeast Barrier Islands 2007: Bare Earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the northeast coastal barrier islands in New York and New Jersey was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide managers with a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the northern Gulf of Mexico barrier islands and Naval Live Oaks was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide managers with a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Topography--George Washington Birthplace National Monument 2008

A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the George Washington Birthplace National Monument in Virginia was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Pearl River Delta 2008: Bare Earth

A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the University of New Orleans (UNO), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development.

Info
EAARL Coastal Topography--Pearl River Delta 2008: First Surface

A first surface elevation map (also known as a Digital Elevation Model, or DEM) of the Pearl River Delta in Louisiana and Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the University of New Orleans (UNO), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Florida 2001: Western Panhandle

A first surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Florida 2001: Eastern Panhandle

A first surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning Lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Assateague Island National Seashore, 2008: First Surface

A first-surface elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
EAARL Coastal Topography--Assateague Island National Seashore, 2008: Bare Earth

A bare-earth elevation map (also known as a Digital Elevation Model, or DEM) of the Assateague Island National Seashore in Virginia and Maryland was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to land managers. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Texas, 2001: UTM Zone 14

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Texas, 2001: UTM Zone 15

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info
ATM Coastal Topography--Mississippi, 2001

A first-surface elevation map was produced cooperatively from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS) and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Airborne Topographic Mapper (ATM), a scanning lidar system that measures high-resolution topography of the land surface. The ATM system is deployed on a Twin Otter or P-3 Orion aircraft and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Info