GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently anticipated questions:


What does this data set describe?

Title:
GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)
Abstract:
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University of New Brunswick.
Supplemental_Information:
Other data sets from this survey may be found in Butman and others (2016) (see larger work citation).
  1. How might this data set be cited?
    U.S. Geological Survey, 2016, GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84): data release DOI:10.5066/F7Z899GG, U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center, Woods Hole, MA.

    Online Links:

    This is part of the following larger work.

    Butman, Bradford, Danforth, William W., John E. Hughes Clarke, Signell, Richard P., and Schwab, William C., 2016, Bathymetry and backscatter intensity of the sea floor south of Long Island, New York: data release DOI:10.5066/F7Z899GG, U.S. Geological Survey, Reston, VA.

    Online Links:

  2. What geographic area does the data set cover?
    West_Bounding_Coordinate: -72.816667
    East_Bounding_Coordinate: -72.650004
    North_Bounding_Coordinate: 40.753333
    South_Bounding_Coordinate: 40.696671
  3. What does it look like?
    morich_srelief3m_browse.jpg (JPEG)
    Image of shaded-relief bathymetry of the sea floor offshore of Moriches Inlet, New York. File is located in the compressed zip file.
  4. Does the data set describe conditions during a particular time period?
    Beginning_Date: 07-Nov-1998
    Ending_Date: 07-Nov-1998
    Currentness_Reference:
    ground condition
  5. What is the general form of this data set?
    Geospatial_Data_Presentation_Form: remote-sensing image
  6. How does the data set represent geographic features?
    1. How are geographic features stored in the data set?
      This is a Raster data set. It contains the following raster data types:
      • Dimensions 2120 x 4744 x 1, type Pixel
    2. What coordinate system is used to represent geographic features?
      The map projection used is Mercator.
      Projection parameters:
      Standard_Parallel: 40.000000
      Longitude_of_Central_Meridian: -75.000000
      False_Easting: 0.000000
      False_Northing: 0.000000
      Planar coordinates are encoded using row and column
      Abscissae (x-coordinates) are specified to the nearest 3.000000
      Ordinates (y-coordinates) are specified to the nearest 3.000000
      Planar coordinates are specified in meters
      The horizontal datum used is D_WGS_1984.
      The ellipsoid used is WGS_1984.
      The semi-major axis of the ellipsoid used is 6378137.000000.
      The flattening of the ellipsoid used is 1/298.257224.
  7. How does the data set describe geographic features?
    morich_srelief3m.tif
    TIFF image of shaded relief multibeam bathymetry (Source: USGS)
    Entity_and_Attribute_Overview:
    The shaded-relief image (3-m resolution) was created by vertically exaggerating the topography four times and then artificially illuminating the relief by a light source positioned 45 degrees above the horizon from 60 degrees. In the resulting image, topographic features are enhanced by strong illumination on the eastward-facing slopes and by shadows cast on western slopes. The shaded-relief image accentuates small features that could not be effectively shown as contours alone at this scale. The illumination from 60 degrees, approximately parallel to the survey lines, helps minimize artifacts caused by small depth changes that may occur between lines. The image is an 8-bit grayscale (0-255); 255 is no data.
    Entity_and_Attribute_Detail_Citation: U.S. Geological Survey

Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
    • U.S. Geological Survey
  2. Who also contributed to the data set?
  3. To whom should users address questions about the data?
    U.S. Geological Survey
    Attn: Bradford Butman
    Woods Hole Coastal and Marine Science Center
    Woods Hole, MA
    USA

    508-548-8700 x2212 (voice)
    bbutman@usgs.gov

Why was the data set created?

This data release makes the multibeam echosounder data from the 1998 survey of the sea floor offshore of Moriches Inlet, New York, available in digital form. The GeoTIFF image of shaded-relief bathymetry provides a visualization of the bathymetry that accentuates small features that cannot be effectively shown as contours alone. The shaded-relief image was created by vertically exaggerating the bathymetry 4 times and then artificially illuminating the relief by a light source positioned 45 degrees above the horizon from an azimuth of 60 degrees. The illumination from 60 degrees, approximately parallel to the survey lines, minimizes artifacts caused by small depth changes that may occur between lines.

How was the data set created?

  1. From what previous works were the data drawn?
    none (source 1 of 1)
    Service, Canadian Hydrographic, Danforth, William w., and John E. Hughes Clarke, Unpublished Material, raw multibeam data.

    Type_of_Source_Media: disc
    Source_Contribution:
    The multibeam data were collected with a Simrad EM1000 multibeam echosounder mounted on the starboard pontoon of the Canadian Coast Guard ship Frederick G. Creed. The multibeam system utilizes 60 electronically-aimed receive beams spaced at intervals of 2.5 degrees that insonify a strip of sea floor up to 7.5 times the water depth. The horizontal resolution of the beam on the sea floor is approximately 10 % of the water depth. Vertical resolution is approximately 1 % of the water depth. Data were collected along tracklines oriented approximately northeast-southwest, parallel to the local isobaths, and spaced about 100 m apart. The frequency of the sonar was 95 kHz. Sound velocity profiles were obtained and input into the Simrad processing system to correct for refraction. Navigation was by means of differential GPS. Operation of the Simrad EM1000 was carried out by hydrographers of the Canadian Hydrographic Service. The data were collected on Woods Hole Coastal and Marine Science Center field activity 1998-015-FA.
  2. How were the data generated, processed, and modified?
    Date: 2015 (process 1 of 6)
    A suite of processing software (called SwathEd) (www.omg.unb.ca/~jhc/SwathEd.html), developed by the Ocean Mapping Group at the University of New Brunswick, Canada, was used to process and grid the multibeam bathymetric soundings and backscatter intensity data, and to produce images. The metadata for the bathymetry grid (see link in larger work citation) describes the processing steps applied to the navigation and bathymetric soundings. The following processing steps produced the shaded-relief image for the Moriches data set:
    
    
    1. Create a 3-m grid of the bathymetric soundings for the Moriches site using the SwathEd routine weigh_grid.
    
    
    Command line: weigh_grid -fresh_start -omg -tide -coeffs -mindep -2 -maxdep -800 -beam_mask -beam_weight -custom_weight EM1000_Weights -butter -power 2 -cutoff 6 -lambda 1.5 gridFile filename.merged
    
    
    2. Create a shaded-relief image of the bathymetry using SwathEd routine addSUN (sun elevation of 45 degrees from 60, vertically exaggerating 4 times). The shaded relief file created from the grid is mapped into the same projection as the grid and carries over the projection information (custom Mercator projection, central meridian -75 degrees, latitude of true scale 40 degrees north) used to create the grid.
    
    
    Command line: addSUN -elev 45 -azi 60 -vert_exag 4.0 gridFile.r4 filename.shade
    
    
    3. Use a two-point linear contrast stretch (0-254; 255 is no data) to enhance the shaded-relief image:
    
    
    Command line: stretchacres -low 150 -high 200 -in filename.shade -out filename_shade.stretch
    
    
    Note: An error in the UNB processing software that incorrectly projected the multibeam observations onto a plane was discovered in 2003. These data were processed with corrected software. Person who carried out this activity:
    U.S. Geological Survey
    Attn: William W. Danforth
    Woods Hole Coastal and Marine Science Center
    Woods Hole, MA
    USA

    508-548-8700 x2274 (voice)
    wdanforth@usgs.gov
    Date: 2015 (process 2 of 6)
    Convert each contrast-stretched shaded-relief image from SwathEd format to a TIFF file using the netpbm utilities (http://netpbm.sourceforge.net/):
    
    
    Command line: rawtopgm -headerskip 1024 image_width image_height filename_shade.stretch | pnmtoTIFF -none - > filename.tif Person who carried out this activity:
    U.S. Geological Survey
    Attn: William W. Danforth
    Woods Hole Coastal and Marine Science Center
    Woods Hole, MA
    USA

    508-548-8700 x2274 (voice)
    wdanforth@usgs.gov
    Date: 2015 (process 3 of 6)
    Create a TIFF world file (tfw) for the shaded relief TIFF image for use in ArcGIS. Copy bounding box and resolution information from the jview program output to the tfw file.
    
    
    Command line: jview filename_shade.stretch Person who carried out this activity:
    U.S. Geological Survey
    Attn: William W. Danforth
    Woods Hole Coastal and Marine Science Center
    Woods Hole, MA
    USA

    508-548-8700 x2274 (voice)
    wdanforth@usgs.gov
    Date: 2016 (process 4 of 6)
    Create GeoTIFF image using the Define Projection Tool in Data Management Tools, Projections and Transformations in ArcToolbox 9.3. Custom projection is Mercator, central meridian of -75.0 degrees, latitude of true scale 40.0 degrees north, false easting 0.0, false northing 0.0; Geographic Coordinate System WGS 1984. Person who carried out this activity:
    U.S. Geological Survey
    Attn: Bradford Butman
    Woods Hole Coastal and Marine Science Center
    Woods Hole, MA
    USA

    508-548-8700 x2212 (voice)
    bbutman@usgs.gov
    Date: 20-Jul-2018 (process 5 of 6)
    USGS Thesaurus keywords added to the keyword section. Person who carried out this activity:
    U.S. Geological Survey
    Attn: VeeAnn A. Cross
    Marine Geologist
    384 Woods Hole Road
    Woods Hole, MA

    508-548-8700 x2251 (voice)
    508-457-2310 (FAX)
    vatnipp@usgs.gov
    Date: 10-Aug-2020 (process 6 of 6)
    Added keywords section with USGS persistent identifier as theme keyword. Person who carried out this activity:
    U.S. Geological Survey
    Attn: VeeAnn A. Cross
    Marine Geologist
    384 Woods Hole Road
    Woods Hole, MA

    508-548-8700 x2251 (voice)
    508-457-2310 (FAX)
    vatnipp@usgs.gov
  3. What similar or related data should the user be aware of?
    Schwab, W.C., Thieler, E.R., Denny, J.F., and Danforth, W.W., 2000, Seafloor sediment distribution off southern Long Island, New York: Open-File Report 00-243, U.S. Geological Survey, Reston, VA.

    Online Links:


How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?
  2. How accurate are the geographic locations?
    These data were navigated with a Differential Global Positioning System (DGPS); they are accurate to +/- 3 meters, horizontally.
  3. How accurate are the heights or depths?
  4. Where are the gaps in the data? What is missing?
    This grid contains all data collected in the 1998 multibeam survey offshore of Moriches Inlet. There are a few gaps in the grid due to incomplete coverage by the multibeam system. Other data sets collected offshore of Long Island, New York, on WHCMSC field activity 1998-015-FA may be found in Butman and others (2016) (see larger work citation).
  5. How consistent are the relationships among the observations, including topology?
    All data were processed in the same manner. Some features in the multibeam data are artifacts of data collection and environmental conditions. They include small highs and lows and unnatural-looking features, and patterns oriented parallel or perpendicular to survey tracklines. The orientation of the tracklines is sometimes identified by parallel stripes in the image. During data acquisition, the electrically erasable programmable read only memory (EEPROM) within the transceiver that controls the beam launch angles was programmed with incorrect parameters for the outer ten beams on the port and starboard sides. This caused depth soundings to be deeper for these outer beams by approximately 0.1 m; these deeper soundings are not corrected. The Long Island surveys were assigned a block of line numbers beginning with 3000.

How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?
Access_Constraints None
Use_Constraints These data are not to be used for navigation purposes.
  1. Who distributes the data set? (Distributor 1 of 1)
    U.S. Geological Survey - ScienceBase
    Federal Center
    Denver, CO

    1-888-275-8747 (voice)
  2. What's the catalog number I need to order this data set? morich_srelief3m.zip: contains morich_srelief3m.tif, morich_srelief3m.tfw, and associated FGDC-compliant metadata (CSDGM format)
  3. What legal disclaimers am I supposed to read?
    Neither the U.S. Government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of these data or related materials. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
  4. How can I download or order the data?
  5. What hardware or software do I need in order to use the data set?
    The GeoTIFF image of shaded-relief bathymetry is compressed into a WinZip (version 14) file (morich_srelief3m.zip). To use these data, the user must have software capable of uncompressing the zip file and ArcGIS or another GIS application package capable of viewing the data.

Who wrote the metadata?

Dates:
Last modified: 19-Mar-2024
Metadata author:
U.S. Geological Survey
Attn: Bradford Butman
384 Woods Hole Road
Woods Hole, MA

508-548-8700 x2212 (voice)
whsc_data_contact@usgs.gov
Contact_Instructions:
The metadata contact email address is a generic address in the event the person is no longer with USGS. (updated on 20240319)
Metadata standard:
FGDC Content Standards for Digital Geospatial Metadata (FGDC-STD-001-1998)

This page is <https://cmgds.marine.usgs.gov/catalog/whcmsc/SB_data_release/DR_F7Z899GG/morich_srelief3m_meta.faq.html>
Generated by mp version 2.9.51 on Wed Jun 26 15:25:02 2024