Sediment Texture of the Sea Floor offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts

Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]

Metadata:

Identification_Information:
Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 2018
Title:
Sediment Texture of the Sea Floor offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts
Geospatial_Data_Presentation_Form: vector digital data
Series_Information:
Series_Name: data release
Issue_Identification: DOI:10.5066/P9E9EFNE
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/P9E9EFNE
Online_Linkage: Larger_Work_Citation:
Citation_Information:
Originator: Elizabeth A. Pendleton
Originator: Wayne E. Baldwin
Originator: David S. Foster
Originator: Seth D. Ackerman
Originator: Brian D. Andrews
Originator: Laura L. Brothers
Originator: William C. Schwab
Publication_Date: 2018
Title:
Geospatial Data Layers of Shallow Geology, Sea-Floor Texture, and Physiographic Zones from the Inner Continental Shelf of Martha’s Vineyard from Aquinnah to Wasque Point, and Nantucket from Eel Point to Great Point
Series_Information:
Series_Name: data release
Issue_Identification: DOI:10.5066/P9E9EFNE
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Other_Citation_Details:
Suggested citation: Pendleton, E.A., Baldwin, W.E., Foster, D.F., Ackerman, S.D., Andrews, B.D, Brothers, L.L., and Schwab, W.C., 2018, Geospatial data layers of shallow geology, sea-floor texture, and physiographic zones from the inner continental shelf of Martha's Vineyard from Aquinnah to Wasque Point, and Nantucket from Eel Point to Great Point: U.S. Geological Survey data release, https://doi.org/10.5066/P9E9EFNE.
Online_Linkage: https://doi.org/10.5066/P9E9EFNE
Online_Linkage:
Description:
Abstract:
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
Purpose:
These sea floor sediment texture distributions were created from geophysical and sample data collected from south of Martha's Vineyard and north of Nantucket, and are used to characterize the sea floor in the area. Sediment texture maps are important data layers for marine resource managers charged with protecting fish habitat, delineating marine boundaries, and assessing environmental change due to natural or human impacts.
Supplemental_Information:
This data release is a companion publication to USGS OFR 2018-1181: Pendleton, E.A., Baldwin, W.E., Ackerman, S.D, Foster, D.S., Andrews, B.D., Schwab, W.C., and Brothers, L.L. 2018, Sea-floor texture and physiographic zones of the inner continental shelf from Aquinnah to Wasque Point, Martha’s Vineyard, and Eel Point to Great Point, Nantucket Island, Massachusetts: U.S. Geological Survey Open-File Report 2018–1181, https://doi.org/10.3133/ofr20181181. The data in the source contributions used for this compilation are from field activities 2007-011-FA (https://cmgds.marine.usgs.gov/fan_info.php?fan=2007-011-FA), 2011-004-FA (https://cmgds.marine.usgs.gov/fan_info.php?fan=2011-004-FA), and 2013-003-FA (https://cmgds.marine.usgs.gov/fan_info.php?fan=2013-003-FA).
Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20070809
Ending_Date: 20130611
Currentness_Reference: ground condition of the source data used for the interpretation
Status:
Progress: Complete
Maintenance_and_Update_Frequency: None planned
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -70.8627
East_Bounding_Coordinate: -70.0341
North_Bounding_Coordinate: 41.3894
South_Bounding_Coordinate: 41.1958
Keywords:
Theme:
Theme_Keyword_Thesaurus: USGS Metadata Identifier
Theme_Keyword: USGS:5bfd6064e4b0815414ca39e1
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: U.S. Geological Survey
Theme_Keyword: USGS
Theme_Keyword: Coastal and Marine Geology Program
Theme_Keyword: CMGP
Theme_Keyword: Woods Hole Coastal and Marine Science Center
Theme_Keyword: WHCMSC
Theme_Keyword: Massachusetts Office of Coastal Zone Management
Theme_Keyword: CZM
Theme_Keyword: Sea floor
Theme_Keyword: Marine Geology
Theme_Keyword: Interpretation
Theme_Keyword: Bathymetry
Theme_Keyword: Backscatter
Theme_Keyword: Slope
Theme_Keyword: Topography
Theme_Keyword: Esri Shapefile
Theme_Keyword: Bottom type
Theme_Keyword: Sediment Cover
Theme_Keyword: Sediment Texture
Theme_Keyword: Sediment Distribution
Theme_Keyword: Bottom Photographs
Theme_Keyword: Sediment Samples
Theme_Keyword: Seismic-reflection Profiles
Theme_Keyword: U.S. Geological Survey Open-File Report 2008-1288
Theme_Keyword: U.S. Geological Survey Open-File Report 2012-1006
Theme_Keyword: U.S. Geological Survey Open-File Report 2016-1168
Theme:
Theme_Keyword_Thesaurus: USGS Thesaurus
Theme_Keyword: marine geology
Theme_Keyword: unconsolidated deposits
Theme_Keyword: sea-floor characteristics
Theme_Keyword: sand deposits
Theme_Keyword: gravel deposits
Theme_Keyword: clay deposits
Theme_Keyword: sedimentology
Theme_Keyword: grain-size analysis
Theme_Keyword: surficial geologic units
Theme_Keyword: rocks and deposits
Theme_Keyword: maps and atlases
Theme_Keyword: geospatial datasets
Theme_Keyword: scientific interpretation
Theme:
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: oceans
Theme_Keyword: geoscientificInformation
Place:
Place_Keyword_Thesaurus: None
Place_Keyword: Vineyard Sound
Place_Keyword: Nantucket Sound
Place_Keyword: Atlantic Ocean
Place_Keyword: Martha's Vineyard
Place_Keyword: Nantucket
Place_Keyword: Cape Cod
Place_Keyword: Aquinnah
Place_Keyword: Chilmark
Place_Keyword: Squibnocket Point
Place_Keyword: Squibnocket Beach
Place_Keyword: Gay Head
Place_Keyword: South Beach
Place_Keyword: Katama Beach
Place_Keyword: Wasque point
Place_Keyword: Chappaquiddick Island
Place_Keyword: Long Point Wildlife Refuge
Place_Keyword: Tisbury
Place_Keyword: Nomans Land
Place_Keyword: Lucy Vincent Beach
Place_Keyword: Tisbury Great Pond Beach
Place_Keyword: Muskeget Island
Place_Keyword: Tuckernuck Island
Place_Keyword: Eel Point
Place_Keyword: Dionis Beach
Place_Keyword: Children's Beach
Place_Keyword: Coatue
Place_Keyword: Great Point
Place_Keyword: Nantucket Harbor
Place_Keyword: Wasque Shoal
Place_Keyword: Muskeget Channel
Place_Keyword: Tuckernuck Bank
Place_Keyword: Tuckernuck Shoal
Place_Keyword: Shovelful Shoal
Place_Keyword: Massachusetts
Stratum:
Stratum_Keyword_Thesaurus: None
Stratum_Keyword: Sea floor
Access_Constraints: None
Use_Constraints:
Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Please recognize the U.S. Geological Survey (USGS) as the source of this information. Additionally, there are limitations associated with qualitative sediment mapping interpretations. Because of the scale of the source geophysical data and the spacing of samples, not all changes in sea floor texture are captured. The data were mapped between 1:8,000 and 1:25,000, but the recommended scale for application of these data is 1:25,000.
Point_of_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Elizabeth A. Pendleton
Contact_Organization: U.S. Geological Survey
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Country: USA
Contact_Voice_Telephone: 508-548-8700 x2226
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: ependleton@usgs.gov
Browse_Graphic:
Browse_Graphic_File_Name: Browse_Graphic_File_Description:
Image of the sediment texture shapefile for offshore of western and southern Martha's Vineyard and north of Nantucket. The browse graphic is derived from the companion OFR (Pendleton and others, 2018).
Browse_Graphic_File_Type: PNG
Cross_Reference:
Citation_Information:
Originator: Kelley, J.T.
Originator: Barnhardt, W.A.
Originator: Belknap, D.F.
Originator: Dickson, S.M.
Originator: Kelley, A.R.
Publication_Date: 1998
Title:
The Seafloor Revealed: The Geology of the Northwestern Gulf of Maine Inner Continental Shelf
Series_Information:
Series_Name: Maine Geological Survey Open-File Report
Issue_Identification: 96-6
Publication_Information:
Publication_Place: Augusta, Maine
Publisher:
Maine Geological Survey, Natural Resources Information and Mapping Center
Online_Linkage: https://digitalmaine.com/mgs_publications/119/
Cross_Reference:
Citation_Information:
Originator: Barnhardt, W.A.
Originator: Kelley, J.T.
Originator: Dickson, S.M.
Originator: Belknap, D.F.
Publication_Date: 1998
Title:
Mapping the Gulf of Maine with Side-scan Sonar: a New Bottom-type Classification for Complex Seafloors
Series_Information:
Series_Name: Journal of Coastal Research
Issue_Identification: 14(2)
Publication_Information:
Publication_Place: Royal Palm Beach, FL
Publisher: Coastal Education and Research Foundation, Inc.
Cross_Reference:
Citation_Information:
Originator: McMullen, K.Y.
Originator: Paskevich, V.F.
Originator: Poppe, L.J.
Publication_Date: 2014
Title:
USGS East-coast Sediment Analysis: Procedures, Database, and GIS Data
Edition: 3.0
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2005-1001
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://pubs.usgs.gov/of/2005/1001/
Cross_Reference:
Citation_Information:
Originator: Ford, K.H.
Originator: Voss, S.E
Publication_Date: 2010
Title:
Seafloor Sediment Composition in Massachusetts Determined Using Point Data
Series_Information:
Series_Name: Massachusetts Division of Marine Fisheries Technical Report
Issue_Identification: TR-45
Publication_Information:
Publication_Place: New Bedford, MA
Publisher: Massachusetts Division of Marine Fisheries
Cross_Reference:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 2013
Title: Geologic Mapping of the Seafloor Offshore of Massachusetts
Publication_Information:
Publication_Place: Woods Hole Coastal and Marine Science Center, Woods Hole, MA
Publisher: U.S. Geological Survey, Coastal and Marine Geology Program
Other_Citation_Details:
Geologic mapping of the Massachusetts inner continental shelf is a cooperative effort that was initiated in 2003 by the U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM). The National Oceanic and Atmospheric Administration (NOAA-NOS) is also an important partner and contributes hydrographic data that are integrated into the maps. The overall goal of this cooperative is to determine the geologic framework of the sea floor inside the 3-mile limit of State waters, using high-resolution geophysical techniques, sediment sampling, and sea-floor photography. Any source data used to generate interpretative maps and data products are cited in detail in the source citation section of this metadata file.
Online_Linkage: https://woodshole.er.usgs.gov/project-pages/coastal_mass/
Cross_Reference:
Citation_Information:
Originator: Wayne E. Baldwin
Originator: David S. Foster
Originator: Elizabeth A. Pendleton
Originator: Walter A. Barnhardt
Originator: William C. Schwab
Originator: Brian D. Andrews
Originator: Seth Ackerman
Publication_Date: 2016
Title:
Shallow geology, sea-floor texture, and physiographic zones of Vineyard and western Nantucket Sounds, Massachusetts
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2016-1119
Publication_Information:
Publication_Place: Reston, VA
Publisher: US Geological Survey
Online_Linkage: https://doi.org/10.3133/ofr20161119
Cross_Reference:
Citation_Information:
Originator: David S. Foster
Originator: Wayne E. Baldwin
Originator: Walter A. Barnhardt
Originator: William C. Schwab
Originator: Seth D. Ackerman
Originator: Brian D. Andrews
Originator: Elizabeth A. Pendleton
Publication_Date: 2015
Title:
Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2014-1220
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.3133/ofr20141220
Cross_Reference:
Citation_Information:
Originator: Elizabeth E. Pendleton
Originator: Walter A. Barnhardt
Originator: Wayne E. Baldwin
Originator: David S. Foster
Originator: William C. Schwab
Originator: Brian D. Andrews
Originator: Seth D Ackerman
Publication_Date: 2015
Title:
Sea-floor texture and physiographic zones of the inner continental shelf from Salisbury to Nahant, Massachusetts, including the Merrimack Embayment and Western Massachusetts Bay
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2015-1153
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.3133/ofr20151153
Cross_Reference:
Citation_Information:
Originator: Elizabeth A. Pendleton
Originator: Wayne E. Baldwin
Originator: Walter A. Barnhardt
Originator: Seth D. Ackerman
Originator: David S. Foster
Originator: Brian D. Andrews
Originator: William C. Schwab
Publication_Date: 2013
Title:
Shallow Geology, Seafloor Texture, and Physiographic Zones of the Inner Continental Shelf from Nahant to Northern Cape Cod Bay, Massachusetts
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2012-1157
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://pubs.usgs.gov/of/2012/1157/
Data_Quality_Information:
Logical_Consistency_Report:
These data were drawn and vetted for accuracy using the source input raster files and point sample data described in the processing steps and source contributions. Overlapping features and unintentional gaps within the survey area were identified using the topology checker in ArcMap (version 10.5) and corrected or removed. Not all digitized sea-floor features contained sample information, so often the sea-floor texture is characterized by the nearest similar feature that contains a sample. Conversely, sometimes a digitized feature contained multiple samples and not all of the samples within the feature were in agreement (of the same texture). In these cases all data (raster and sample) were considered, and the dominant sediment texture from sample analyses did not necessarily determine the primary texture assigned to a polygon. Samples from rocky areas often only consist of bottom photographs, because large particle size often prevents the recovery of a sediment sample. Bottom photo classification can be subjective, such that determining the sediment type that is greater than 50% of the view frame is estimated by the interpreter and may differ among interpreters. Bottom photo transects often reveal changes in the sea floor over distances of less than 100 m and these changes are often not resolved in acoustic data. Heterogeneous sea floor texture can change very quickly, and many small-scale changes will not be detectable or mappable at a scale of 1:25,000. The boundaries of polygons are often inferred on the basis of sediment samples, and even boundaries that are traced on the basis of amplitude changes in geophysical data are subject to migration. Polygon boundaries should be considered an approximation of the location of a change in texture.
Completeness_Report:
These sediment cover data are defined for areas where source data exists. In general, gaps in the coverage coincide with gaps in the source data. However, some small data gaps were interpreted through extrapolation. Areas of lower data quality and incomplete coverage are noted in a data confidence attribute field. All of the interpretive layer bounds in this report are a little short of the data bounds in western Vineyard Sound, this is because this dataset abuts the interpretive layers of Baldwin and others (2016), and are not redundant with that interpretation.
Positional_Accuracy:
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report:
These data were produced qualitatively from acoustic and sample data with varying resolutions. Horizontal uncertainty associated with sample collection especially, can be quite high (100's of meters), much higher than positional uncertainty associated with acoustic data (usually less than 10's of meters). The date of sample collection and ship station positioning all contribute to sample position uncertainty. These qualitatively derived polygons outlining sea floor features are estimated to be within 50 meters, horizontally, but locally may be higher when delineation is based on sample information alone.
Lineage:
Source_Information:
Source_Citation:
Citation_Information:
Originator: Denny, J.F.
Originator: Danforth, W.W.
Originator: Foster, D.S.
Originator: Sherwood, C.R.
Publication_Date: 2009
Title:
Geophysical data collected off the south shore of Martha's Vineyard, Massachusetts
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2008-1288
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: http://pubs.usgs.gov/of/2008/1288/
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20070809
Ending_Date: 20070813
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: Denny and others, 2009
Source_Contribution:
This report provided source geophysical data (sidescan-sonar, bathymetry, and seismic-reflection profiles) for the area south of Martha's Vineyard surrounding the Martha's Vineyard Coastal Observatory. The 2007 mapping was conducted aboard the M/V Megan T. Miller. High-resolution chirp seismic-reflection profiles were collected during U.S. Geological Survey field activity 2007-011-FA using an EdgeTech Geo-Star full spectrum sub-bottom (FSSB) system and SB-0512i towfish. Thorough descriptions of acquisition and processing parameters for the survey are provided by Denny and others (2009) in the report and seismic-reflection metadata. Shallow geologic framework and surficial geology were interpreted from post-processed chirp seismic-reflection profiles.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Andrews, B.D.
Originator: Ackerman, S.D.
Originator: Baldwin, W.E.
Originator: Foster, D.S.
Originator: Schwab, W.C.
Publication_Date: 2014
Title:
High-Resolution Geophysical Data from the Inner Continental Shelf: Vineyard Sound, Massachusetts
Edition: 2.0
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2012-1006
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://pubs.usgs.gov/of/2012/1006/
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20110507
Ending_Date: 20110517
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: Andrews and others, 2014
Source_Contribution:
This report provided source geophysical data (sidescan-sonar, bathymetry, and seismic-reflection profiles) for the study area on the western side of Martha's Vineyard. The 2011 mapping was conducted on the R/V Scarlett Isabella during U.S. Geological Survey field activity 2011-004-FA. Chirp seismic-reflection data were collected using an EdgeTech Geo-Star FSSB subbottom profiling system and an SB-0512i towfish. Thorough descriptions of acquisition and processing parameters for each survey are provided by Andrews and others (2014) in the methods section and seismic-reflection metadata. Shallow geologic framework was interpreted from post-processed chirp seismic-reflection profiles. Only the data collected along the western shore of Martha’s Vineyard was used for this dataset.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Ackerman, S.D.
Originator: Brothers L.L.
Originator: Foster, D.S.
Originator: Andrews B.D.
Originator: Baldwin W.E.
Originator: Schwab W.C.
Publication_Date: 2016
Title:
High-Resolution Geophysical Data From the Inner Continental Shelf: South of Martha's Vineyard and North of Nantucket, Massachusetts
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2016-1168
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://pubs.usgs.gov/of/2016/1168/
Online_Linkage: https://doi.org/10.3133/ofr20161168
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20130522
Ending_Date: 20130611
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: Ackerman and others, 2016
Source_Contribution:
This report provided source geophysical data (sidescan-sonar, bathymetry, and seismic-reflection profiles) for the majority of this study including offshore of southern Martha's Vineyard and north of Nantucket. These areas were surveyed with the R/V Scarlett Isabella 2013 during U.S. Geological Survey field activity 2013-003-FA. Seismic-reflection data were collected using an EdgeTech Geo-Star FSSB subbottom profiling system and an SB-0512i towfish. Thorough descriptions of acquisition and processing parameters for each survey are provided by Ackerman and others (2016) in the methods section and seismic-reflection metadata. Shallow geologic framework and surficial geology were interpreted from post-processed chirp seismic-reflection profiles.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Brian Andrews
Originator: Wayne Baldwin
Originator: Daniel Sampson
Originator: William Schwab
Publication_Date: 2018
Title:
Continuous Bathymetry and Elevation Models of the Massachusetts Coastal Zone and Continental Shelf
Edition: 1.0
Series_Information:
Series_Name: data release
Issue_Identification: DOI:10.5066/F72806T7
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/f72806t7
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20110507
Ending_Date: 20130611
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: Andrews and others, 2018
Source_Contribution:
This report provided source bathymetry for the study area including offshore of southern Martha's Vineyard and north of Nantucket. Thorough descriptions of the merging and processing parameters are provided by Andrews and others (2018) in the metadata.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Ford, K.H.
Originator: Huntley, E.C.
Originator: Sampson, D.W.
Originator: Voss, S.
Publication_Date: Unpublished Material
Title: Massachusetts Sediment Database
Other_Citation_Details:
This sample database has been compiled and vetted from existing samples and datasets by the Massachusetts Office of Coastal Zone Management. The data are currently unpublished, but may be acquired by contacting the CZM office: 251 Causeway St Boston, MA 02114 (617) 626-1000 czm@state.ma.us
Type_of_Source_Media: digital vector
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 19950101
Ending_Date: 20110101
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: CZM sample database
Source_Contribution:
Sediment sample databases of Ford and Voss (2010) and McMullen and others (2011) were combined then edited and supplemented with NOAA chart sampling data and bottom photos and descriptions by a group of GIS specialists at the Massachusetts Office of Coastal Zone Management (Emily Huntley, personal communication). These data contained sediment laboratory statistics when available, visual descriptions if sediment analysis was not performed or if the site was a bottom photograph, and classification fields of Barnhardt and others (1998), Shepard (1954), and Wentworth (1922) as well as average sediment statistics and phi size, when laboratory analysis was conducted.
Source_Information:
Source_Citation:
Citation_Information:
Originator:
U.S. Army Corps of Engineers - Joint Airborne Lidar Bathymetry Center of Expertise
Publication_Date: 2009
Title:
2005 - 2007 US Army Corps of Engineers (USACE) Topo/Bathy Lidar: Maine, Massachusetts, and Rhode Island
Publication_Information:
Publication_Place: Charleston, SC
Publisher:
NOAA National Ocean Service (NOS), Coastal Services Center (CSC)
Online_Linkage: Online_Linkage:
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20070527
Ending_Date: 20070527
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: USACE-JALBTCX, 2009
Source_Contribution:
The source lidar data for the very nearshore (less than -5 m) region along the western and southern shoreline of Martha's Vineyard. Lidar (Light Detection and Ranging) data were acquired with a SHOALS-1000T (for hydrographic and topographic data) using the Joint Airborne Joint Airborne LiDAR Bathymetry Center of Expertise (JALBTCX) lidar plane. These data are now publically available in LAS lidar format via NOAA's Digital Coast website.
Process_Step:
Process_Description:
The texture and spatial distribution of sea-floor sediment were qualitatively analyzed in ArcGIS using several input data sources (listed in the source contribution), including acoustic backscatter, bathymetry, seismic-reflection profile interpretations, bottom photographs, and sediment samples. The interpretation was initiated by creating a new polygon feature class in an ArcMap 10.5 file geodatabase based on the extent of the regional bathymetric DEM (Andrews and others, 2018, and clipped to the extent of this study area). The polygon was then partitioned into multiple sediment texture polygons using 'cut polygon' and 'auto-complete polygon' in an edit session. In general, polygon editing was done at scales between 1:8,000 and 1:25,000, depending on the size of the traced feature and the resolution of the source data. Some areas interpreted as a single sediment textural unit may contain multiple polygons that indicate different interpretation confidence levels. The following numbered steps outline the workflow of the data interpretation. 1. Backscatter intensity data was the first input. Changes in backscatter were digitized to outline possible changes in sea-floor texture on the basis of acoustic return. Areas of high backscatter (light colors) have strong acoustic reflections and suggest boulders, gravels, and generally coarse sea-floor sediments. Low-backscatter areas (dark colors) have weak acoustic reflections and are generally characterized by finer grained material such as muds and fine sands. 2. The polygons were then refined and edited using gradient, rugosity, and hillshaded relief images derived from interferometric and multibeam swath bathymetry. Areas of rough topography and high rugosity are typically associated with rocky areas, while smooth, lower-relief regions tend to be blanketed by fine-grained sediment. These bathymetric derivatives helped to refine polygon boundaries where changes from primarily rock to primarily gravel may not have been apparent in backscatter data, but could easily be identified in hillshaded relief and slope changes. 3. The third data input (where available) was the stratigraphic interpretation of seismic-reflection profiles, which further constrained the extent and general shape of sea-floor sediment distributions and rocky outcrops, and also provided insight concerning the likely sediment texture of the feature on the basis of glacial or post-glacial origin. Seismic lines and the surficial geologic maps derived from them are used here as input data and were collected at typically 100-meter spacing, with tie-lines generally spaced 1-km apart. 4. After all the sea-floor features were traced from the geophysical data, a spatial join was conducted to provide grain size statistics based on sediment samples. The fields that contain sediment texture statistics or mean water depth information were created and populated using data joins or zonal statistics functions within ArcMap (version 10.5). The fields beginning with "Avg_" and the 'Count_' field were automatically generated by computing a data join where the CZM sample database (vector points) was edited to include only the samples with laboratory sediment analysis and joined to the qualitatively derived polygon file. The fields beginning with "Avg_" and ending in "_1" were automatically generated by computing a data join where the CZM sample database (vector points) included samples with laboratory and visual sediment analysis. Each polygon was given an average of the numeric attributes of the points (with laboratory grain size analysis or with and without laboratory analysis) that fall inside it, and the count field shows how many laboratory analyzed points fall inside each polygon. 153 samples were analyzed in the laboratory. Several fields that were not needed were deleted after the join. A mean water depth (NAVD 88) field was created using ArcMap (version 10.5): ArcToolbox - Spatial Analyst Tools > Zonal > Zonal Statistics as Table, where the mean water depth for each polygon (input zone data using the zone field sed_type) was derived from the regional bathymetric DEM (see Andrews and others, 2018). No data raster values were ignored in determining the output value for each polygon zone. The output was saved to a table, which was joined with the sediment type polygon shapefile. All of the joined fields except MEAN were turned off. 5. A new field was created in the shapefile called 'Barnhardt'. Seafloor composition observations from sediment samples and bottom photographs/video were used to define sediment texture for the polygons using Barnhardt and others (1998) classification. Samples with laboratory grain size analysis were preferred over visual descriptions when defining sediment texture throughout the study area; however within large polygons with a small number of samples (1 or 2), visual samples were considered and used to provide additional insight on the mean sediment texture. Bottom photo stations are typically around 2-km apart, but do not always provide a clear view of the sea floor, and the density of sediment samples varies throughout the study area. Some polygons contained more than one sample with grain-size statistics, while others contained none. For multiple samples within a polygon, the dominant sediment texture was used to classify sediment type (often aided by the 'data join' sediment statistics described in an earlier processing step). In rocky areas, bottom photos were used in the absence of sediment samples to qualitatively define sediment texture. Polygons that lacked sample information were texturally defined through extrapolation from adjacent or proximal polygons of similar acoustic character that did contain sediment samples.
Process_Date: 2017
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Elizabeth Pendleton
Contact_Organization: U.S. Geological Survey
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Country: USA
Contact_Voice_Telephone: 508-548-8700 x2259
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: ependleton@usgs.gov
Process_Step:
Process_Description:
After some additional qualitative polygon editing and reshaping was done in order to create a sediment map that was in the best agreement with all input data: lidar, bathymetry, backscatter, seismic interpretations, bottom photographs, and sediment samples, 4 more fields were added (ArcMap version 9.3.1). The first field, 'simple' is just 3 classes: sand, mud, or hardbottom. A field 'Confidence' was added as a data interpretation confidence, which describes how confident we are in the interpretation on the basis of the number and quality of the input data sources (see the entity and attribute sections for more information on these fields). The last 2 ('Carbonate' and 'Biogenic_C') fields were added and populated manually to incorporate percent carbonate information that accompanied sample analyses in Nantucket Sound. Finally, a second join was conducted similar to the previous processing steps, but allowing all samples with analysis (visual and laboratory) to be incorporated into the statistics.
The polygon feature class containing the sediment texture units was assigned topology rules, (i.e. no gaps and no overlaps). Topology errors were identified and remedied using the topology toolbar in ArcMap (10.5). Finally, the sediment texture was exported from the geodatabase as a shapefile.
Source_Used_Citation_Abbreviation: polygons containing sediment texture units
Process_Date: 2017
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Elizabeth Pendleton
Contact_Organization: U.S. Geological Survey
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Country: USA
Contact_Voice_Telephone: 508-548-8700 x2259
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: ependleton@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword.
Process_Date: 20200807
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Spatial_Data_Organization_Information:
Direct_Spatial_Reference_Method: Vector
Point_and_Vector_Object_Information:
SDTS_Terms_Description:
SDTS_Point_and_Vector_Object_Type: G-polygon
Point_and_Vector_Object_Count: 438
Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:
Geographic:
Latitude_Resolution: 0.0197427722
Longitude_Resolution: 0.0261514554
Geographic_Coordinate_Units: Decimal seconds
Geodetic_Model:
Horizontal_Datum_Name: WGS_1984
Ellipsoid_Name: WGS_84
Semi-major_Axis: 6378137.0
Denominator_of_Flattening_Ratio: 298.257223563
Entity_and_Attribute_Information:
Detailed_Description:
Entity_Type:
Entity_Type_Label: MV_ACK_sedtexture.shp
Entity_Type_Definition: Sediment texture shapefile
Entity_Type_Definition_Source: U.S. Geological Survey
Attribute:
Attribute_Label: FID
Attribute_Definition: Internal feature number.
Attribute_Definition_Source: Esri
Attribute_Domain_Values:
Unrepresentable_Domain:
Sequential unique whole numbers that are automatically generated.
Attribute:
Attribute_Label: Shape
Attribute_Definition: Feature geometry.
Attribute_Definition_Source: Esri
Attribute_Domain_Values:
Unrepresentable_Domain: Coordinates defining the features.
Attribute:
Attribute_Label: Barnhardt
Attribute_Definition:
Bottom-type classification on the basis of twelve composite units that represent combinations of four end-member units (R= rock; G= gravel; S= sand; M= mud).
Attribute_Definition_Source: Barnhardt and others (1998)
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: G
Enumerated_Domain_Value_Definition:
The end-member texture (= or greater than 90%) Gravel (G) is the primary texture.
Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: Gs
Enumerated_Domain_Value_Definition:
The dominant texture (greater than 50%) Gravel (G) is given the upper case letter and the subordinate texture (less than 50%) sand (s) is given a lower case letter.
Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: S
Enumerated_Domain_Value_Definition:
The end-member texture (= or greater than 90%) Sand (S) is the primary texture.
Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: Sg
Enumerated_Domain_Value_Definition:
The dominant texture (greater than 50%) Sand (S) is given the upper case letter and the subordinate texture (less than 50%) gravel (g) is given a lower case letter.
Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: Sm
Enumerated_Domain_Value_Definition:
The dominant texture (greater than 50%) Sand (S) is given the upper case letter and the subordinate texture (less than 50%) mud (m) is given a lower case letter.
Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: Ms
Enumerated_Domain_Value_Definition:
The dominant texture (greater than 50%) Mud (M) is given the upper case letter and the subordinate texture (less than 50%) sand (s) is given a lower case letter.
Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: Rs
Enumerated_Domain_Value_Definition:
The dominant texture (greater than 50%) Rock (R) is given the upper case letter and the subordinate texture (less than 50%) sand (s) is given a lower case letter.
Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: Sr
Enumerated_Domain_Value_Definition:
The dominant texture (greater than 50%) Sand (S) is given the upper case letter and the subordinate texture (less than 50%) rock (r) is given a lower case letter.
Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
Attribute:
Attribute_Label: Confidence
Attribute_Definition:
Each interpreted polygon was assigned a data interpretation confidence value from 1-4 (more to less confident) on the basis of the quality and number of input data sources.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: 1
Enumerated_Domain_Value_Definition:
Sediment texture regions that were defined on the basis of the highest resolution bathymetry (10m) and backscatter (1m), bottom photos, sediment samples with laboratory analysis, and seismic interpretations were given the highest data interpretation confidence value of 1.
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: 2
Enumerated_Domain_Value_Definition:
Sediment texture regions that were defined on the basis of the highest resolution bathymetry (10m), backscatter (1m), and seismic interpretations, and possibly bottom photos and/or qualitative descriptions of sediment samples, but no sediment samples with laboratory analysis were given the data interpretation confidence value of 2
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: 3
Enumerated_Domain_Value_Definition:
Sediment texture regions that were defined on the basis of the highest resolution bathymetry (10m) and/or lidar bathymetry, and sediment samples with laboratory analysis and/or qualitative descriptions, but no acoustic backscatter or seismic interpretations were given the data interpretation confidence value of 3.
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: 4
Enumerated_Domain_Value_Definition:
Sediment texture regions that were defined on the basis of the highest resolution bathymetry (10m) and/or lidar bathymetry, but no sediment samples with laboratory analysis and/or qualitative descriptions, and no acoustic backscatter or seismic interpretations were given the data interpretation confidence value of 3.
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute:
Attribute_Label: Count_
Attribute_Definition:
The number of sediment samples (with laboratory analyzed grain size statistics) that occur within each qualitatively derived polygon. This field was automatically generated by Esri when point data (sample database) is joined to a polygon (sediment texture interpretation). A value of -999 indicates there are no samples within that polygon.
Attribute_Definition_Source: Esri
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 1
Range_Domain_Maximum: 33
Attribute_Units_of_Measure: count
Attribute_Measurement_Resolution: 1
Attribute:
Attribute_Label: Avg_GRAVEL
Attribute_Definition:
Average percent weight (%) gravel (as determined from samples with laboratory analyzed grain size statistics) within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation). A value of -999 indicates that no sample was available within a particular feature.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 30.73
Attribute_Units_of_Measure: percent
Attribute:
Attribute_Label: Avg_SAND
Attribute_Definition:
Average percent weight (%) sand within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation). A value of -999 indicates that no sample was available within a particular feature.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 25.27
Range_Domain_Maximum: 100
Attribute_Units_of_Measure: percent
Attribute:
Attribute_Label: Avg_MUD
Attribute_Definition:
Average percent weight (%) silt and clay within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation). A value of -999 indicates that no sample was available within a particular feature.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 73.2
Attribute_Units_of_Measure: percent
Attribute:
Attribute_Label: Carbonate
Attribute_Definition:
Average percent weight (%) of carbonate within each qualitatively derived polygon. A few samples from Nantucket sound had received carbonate analysis and these data were incorporated into the CZM sample database. A value of -999 indicates that no sample was available within a particular feature.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.02
Range_Domain_Maximum: 23.25
Attribute_Units_of_Measure: percent
Attribute:
Attribute_Label: Biogenic_c
Attribute_Definition:
Description of carbonate sediment based on percent weight of carbonate.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: trace
Enumerated_Domain_Value_Definition:
The weight percent of the coarse fraction (sand + gravel) that is carbonate is less than 2 percent
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: present
Enumerated_Domain_Value_Definition:
The weight percent of the coarse fraction (sand + gravel) that is carbonate is more than 2 percent but less than 10 percent
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: abundant
Enumerated_Domain_Value_Definition:
The weight percent of the coarse fraction (sand + gravel) that is carbonate is more than 10 percent but less than 50 percent
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: unknown
Enumerated_Domain_Value_Definition:
The weight percent of the coarse fraction (sand + gravel) that is carbonate is unknown because no carbonate analysis was performed.
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute:
Attribute_Label: Avg_GRAVEL_1
Attribute_Definition:
Average percent weight (%) gravel (as determined from samples WITH and WITHOUT laboratory analyzed grain size statistics) within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation). A value of -999 indicates that no sample was available within a particular feature.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 100
Attribute_Units_of_Measure: percent
Attribute:
Attribute_Label: Avg_SAND_1
Attribute_Definition:
Average percent weight (%) sand (as determined from samples WITH and WITHOUT laboratory analyzed grain size statistics) within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation). A value of -999 indicates that no sample was available within a particular feature.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 100
Attribute_Units_of_Measure: percent
Attribute:
Attribute_Label: Avg_MUD_1
Attribute_Definition:
Average percent weight (%) mud (as determined from samples WITH and WITHOUT laboratory analyzed grain size statistics) within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation). A value of -999 indicates that no sample was available within a particular feature.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 100
Attribute_Units_of_Measure: percent
Attribute:
Attribute_Label: simple
Attribute_Definition:
sediment nomenclature on the basis of 3 simple classes: sand, mud, hardbottom as defined in the CZM sample database
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: sand
Enumerated_Domain_Value_Definition: Sediment whose primary component (greater than 50%) is sand
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: hardbottom
Enumerated_Domain_Value_Definition:
Sediment whose primary component is rock, boulder, cobble, or coarse gravel
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Enumerated_Domain:
Enumerated_Domain_Value: mud
Enumerated_Domain_Value_Definition:
Sediment whose primary component (greater than 50%) is silt and clay
Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
Attribute:
Attribute_Label: water_dept
Attribute_Definition:
Average seafloor elevation in meters below NAVD 88 within each qualitatively derived polygon.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: -31.45
Range_Domain_Maximum: -3.49
Attribute_Units_of_Measure: meters
Attribute_Measurement_Resolution: 0.01
Distribution_Information:
Distributor:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: GS ScienceBase
Contact_Address:
Address_Type: mailing address
Address: Denver Federal Center, Building 810, Mail Stop 302
City: Denver
State_or_Province: CO
Postal_Code: 80225
Country: United States
Contact_Voice_Telephone: 1-888-275-8747
Contact_Electronic_Mail_Address: sciencebase@usgs.gov
Resource_Description:
MV_ACK_sedtexture (and the related shapefile componensts) contains qualitatively derived polygons that define sea floor sediment texture offshore of western and southern Martha's Vineyard and north of Nantucket, MA. The dataset also contains a browse graphic (MV_ACK_sedtexture_browse.png), and the associated CSDGM metadata in XML format.
Distribution_Liability:
Neither the U.S. Government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the U.S. Geological Survey in the use of these data or related materials. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: shapefile
Format_Version_Number: ArcGIS v. 10.5.1 shapefile
Transfer_Size: 0.39
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information: Access_Instructions:
To download the data, it is recommended that you go to the page containing the data and take advantage of the large file handler. The first link is to the page containing the data. The second is a direct link to download all data available from the page as a zip file. And the final link is to the publication landing page.
Digital_Form:
Digital_Transfer_Information:
Format_Name: WMS
Format_Information_Content:
ArcGIS v. 10.5.1 shapefile provided through a WMS (web mapping service).
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information: Access_Instructions:
The first link in the network resources accesses the data through a coverage service, the second is to the page containing the data, and the third link is to the publication landing page.
Digital_Form:
Digital_Transfer_Information:
Format_Name: WFS
Format_Information_Content:
ArcGIS v. 10.5.1 shapefile provided through a WFS (web feature service).
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information: Access_Instructions:
The first link in the network resources accesses the data through a mapping service, the second is to the page containing the data, and the third link is to the publication landing page.
Fees: None
Technical_Prerequisites:
These data are available in Environmental Systems Research Institute (Esri) shapefile format. The user must have software capable of importing and processing this data type.
Metadata_Reference_Information:
Metadata_Date: 20200807
Metadata_Review_Date: 2017
Metadata_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Elizabeth A Pendleton
Contact_Organization: U.S. Geological Survey
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Country: USA
Contact_Voice_Telephone: 508-548-8700 x2259
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: ependleton@usgs.gov
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001-1998
Metadata_Time_Convention: local time
Metadata_Access_Constraints: None
Metadata_Use_Constraints: None

This page is <https://cmgds.marine.usgs.gov/catalog/whcmsc/SB_data_release/DR_P9E9EFNE/MV_ACK_sedtexture_meta.html>
Generated by mp version 2.9.50 on Tue Sep 21 18:19:01 2021