Attribute_Accuracy_Report:
Marsh units, water and land boundaries inherit their accuracy from the accuracy of the U.S. Fish and Wildlife Service National Wetland Inventory (USFWS NWI) data dated 2017. However, the lineage of the source data indicates that the underlying data span over multiple years and the mapped features may have changed since the date of imagery. Accuracy of marsh unit delineation depends on the vertical and horizontal accuracy of the U.S. Geological Survey National Elevation Data (USGS NED) collected in 2011 and U.S. Department of Agriculture Digital Elevation Model (USDA DEM) with a processing date of 2016. Vegetated and unvegetated polygons accuracy is based on the 1-meter resolution National Agriculture Imagery Program (NAIP) imagery acquired in 2014. Any vegetated or unvegetated polygons less than 9 square meters were merged to the surrounding majority class. While creating marsh units conterminous polygons smaller than 900 square meters have been merged with the larger polygon of the same type.
Topological errors that occurred during geoprocessing were automatically removed by the topological rules used for the analysis. The polygons are checked for correct geometry and do not overlap. Small polygons (less than 9 square meters) during converting from raster to polygon were assumed to be marginal and were assigned the classification from the surrounding majority value. A visual comparison between NAIP imagery was performed at randomly selected sites to verify the land and water boundaries.
The marsh polygons are bound to the boundaries of the PIEPR areas that include Estuarine intertidal areas of 1) Emergent, 2) Scrub-shrub, 3) Rooted vascular aquatic bed, 4) Organic unconsolidated shore, and 5) channels of open water that are wider than 10 meters. Sliver polygons of open salt water along the marsh edges may also be included in some instances as a result of geoprocessing. A detailed on-the-ground analysis of a single site may result in a different interpretation of the wetland and marsh unit boundaries than established through this analysis.
Source_Information:
Source_Citation:
Citation_Information:
Originator:
U.S. Department of Agriculture Natural Resources Conservation Service Soils (USDA NRCS) - National Geospatial Center of Excellence
Publication_Date: 20110215
Title: LiDAR Elevation Dataset - Bare Earth DEM - 1 Meter
Geospatial_Data_Presentation_Form: Raster Digital Data Set
Publication_Information:
Publication_Place: Fort Worth, TX
Publisher: U.S. Department of Agriculture
Other_Citation_Details:
The following 1-meter DEM files were used in analyses:
1) lidar01m42070g8.tif
2) lidar01m42070g7.tif
3) lidar01m42070f7.tif
Online_Linkage: https://gdg.sc.egov.usda.gov/
Online_Linkage: https://gdg.sc.egov.usda.gov/GDGHome_DirectDownLoad.aspx
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2012
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: USDA DEM
Source_Contribution:
Elevation data from USDA 1-meter DEM were used in analyses. Projection was NAD 1983 UTM Zone 19N with the North American Vertical Datum of 1988 (NAVD 88). Download date was 2017/09/01.
Source_Information:
Source_Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 2012
Title: USGS National Elevation Dataset (NED) 1/9 arc-second
Geospatial_Data_Presentation_Form: Raster Digital Data Set
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Other_Citation_Details:
The following USGS NED ned19 tiles were used in analyses:
1) USGS NED ned19_n43x00_w071x00_ma_lftne_lot7_2011 1/9 arc-second 2012 15 x 15 minute IMG
2) USGS NED ned19_n42x75_w071x00_ma_lftne_lot7_2011 1/9 arc-second 2012 15 x 15 minute IMG
Online_Linkage: https://ned.usgs.gov/
Online_Linkage: https://nationalmap.gov/viewer.html
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2012
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NED
Source_Contribution:
Elevation data from USGS NED ned19 tiles were used in analyses. Projection was NAD 1983 UTM Zone 19N with the North American Vertical Datum of 1988 (NAVD 88). Download date was 2017/09/01.
Source_Information:
Source_Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 2014
Title:
National Agriculture Imagery Program (NAIP) Imagery 3.75 x 3.75 minute JPEG2000 from The National Map
Geospatial_Data_Presentation_Form: Remote-sensing image
Publication_Information:
Publication_Place: Salt Lake City, Utah
Publisher: USDA-FSA-APFO Aerial Photography Field Office
Other_Citation_Details:
The following NAIP Imagery tiles were used in analyses:
1) NAIP Imagery m_4207010_sw_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
2) NAIP Imagery m_4207018_nw_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
3) NAIP Imagery m_4207017_ne_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
4) NAIP Imagery m_4207009_se_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
5) NAIP Imagery m_4207018_ne_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
6) NAIP Imagery m_4207010_se_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
7) NAIP Imagery m_4207010_nw_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
8) NAIP Imagery m_4207010_nw_19_1_20140712_20141007 3.75 x 3.75 minute JPEG2000 from The National Map
9) NAIP Imagery m_4207009_ne_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
10) NAIP Imagery m_4207010_ne_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
11) NAIP Imagery m_4207018_sw_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
12) NAIP Imagery m_4207017_se_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
13) NAIP Imagery m_4207018_se_19_1_20140712_20140923 3.75 x 3.75 minute JPEG2000 from The National Map
Online_Linkage: https://nationalmap.gov/viewer.html
Online_Linkage:
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2014
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NAIP
Source_Contribution:
Downloaded NAIP 1-meter resolution imagery from the USGS National Map. Projection was WGS 1984 Web Mercator Auxiliary Sphere. Download date was 2017/08/01.
Source_Information:
Source_Citation:
Citation_Information:
Originator: U.S. Fish and Wildlife Service
Publication_Date: 2017
Title: National Wetland Inventory Massachusetts Wetlands
Geospatial_Data_Presentation_Form: Vector Digital Data Set (Polygon)
Publication_Information:
Publication_Place: Madison, WI
Publisher: U.S. Fish and Wildlife Service
Online_Linkage: https://www.fws.gov/wetlands/data/Data-Download.html
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2017
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NWI
Source_Contribution:
Downloaded wetlands data for the state of Massachusetts in Shapefile format from the NWI download page. Projection was NAD 1983 Albers. Download date was 2017/08/01.
Process_Step:
Process_Description:
This process step and all subsequent process steps were performed by the same person, Zafer Defne, in ArcMap (ver. 10.5.1) using tools from ArcToolbox, unless otherwise stated. For complex operations, names of specific tools used are given in CAPITAL letters (any critical parameters used are given in parentheses, separated by a semicolon, immediately after the tool name). The input and output file names are provided in [square brackets] when necessary. Units for length and area calculations are meters (m) and square meters (m2) unless otherwise stated.
Set the data frame coordinate system and projection to NAD 1983 UTM Zone 19N. Prepare elevation dataset to be clipped to the boundaries polygon. MOSAIC TO NEW RASTER(Pixel type= 32 bit float; Mosaic operator=Mean; Cellsize=1 m) all of the USGS NED tiles and USDA DEM raster to a new raster dataset with 1 m resolution [elev_mosaic.tif]. Resolution is increased from 3 m to 1 m to have a finer representation of the polygon boundaries in the horizontal during this step.
Source_Used_Citation_Abbreviation: USDA DEM
Source_Used_Citation_Abbreviation: NED
Process_Date: 2018
Source_Produced_Citation_Abbreviation: elev_mosaic
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Zafer Defne
Contact_Position: Ocean Scientist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Contact_Voice_Telephone: 508-548-8700 x2254
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: zdefne@usgs.gov
Process_Step:
Process_Description:
Prepare mask polygon to define analysis boundaries. In order to account for the possible influence of the surrounding terrain on the analysis, first a mask area larger than the salt marsh extent is created [UVVR_mask]. At the end of the analysis the results are clipped to the boundaries of the salt marsh area [MU_mask]. Both UVVR_mask and MU_mask are edited to decide which interior polygons are removed.
a) EXPORT features from NWI dataset after SELECT("ATTRIBUTE" LIKE 'E2%EM%' OR "ATTRIBUTE" LIKE 'E2AB3%' OR "ATTRIBUTE" LIKE 'E2EM%' OR "ATTRIBUTE" LIKE 'E2SS%' OR "ATTRIBUTE" LIKE 'E2US4%') to select from estuarine intertidal areas of 1) Emergent, 2) Scrub-shrub, 3) Rooted vascular aquatic bed, 4) Organic unconsolidated shore classes [NWI_exclusive_select.shp].
b) BUFFER(Input features=[NWI_exclusive_select.shp]; Linear unit=5 meters; Dissolve type=All) to obtain the mask polygon [buff5m.shp] and ELIMINATE POLYGON PART(Condition=Percentage; Percentage=99; Eliminate contained part only) to obtain [UVVR_mask01.shp]. Apply buffer with -5 meters to obtain [MU_mask01.shp].
c) EXPORT features from NWI dataset after SELECT("ATTRIBUTE" NOT LIKE 'E%' OR "ATTRIBUTE" LIKE '%FO')to obtain features that are not estuarine or are forested estuarine. MULTIPART TO SINGLEPART to separate individual polygons [NWI_inclusive_single.shp].
d)To exclude the voids in the NWI map during the analysis these interior polygons need to be removed from the mask. Create a rectangular polygon that covers the domain [extent.shp]. ERASE [NWI_excusive_select.shp] from [extent.shp] and MULTIPART TO SINGLEPART to get [NWI_voids_single.shp].
e) SELECT BY LOCATION from [NWI_inclusive_single.shp] that are completely within the [MU_mask01.shp], and SELECT BY LOCATION from [NWI_voids_single.shp] that are completely within the [MU_mask01.shp]. If any of additional polygons need to be removed from the mask include them in a new feature layer [erase_mask_manual.shp]. Merge all three feature sets to get polygons to be excluded [erase_inside.shp] from the final masks.
f) ERASE [erase_inside.shp] from [MU_mask01.shp] and [UVVR_mask01.shp] to obtain [MU_mask.shp] and [UVVR_mask.shp], respectively.
Source_Used_Citation_Abbreviation: NWI
Process_Date: 2018
Source_Produced_Citation_Abbreviation: UVVR_mask
Process_Step:
Process_Description:
Define preliminary boundaries for marsh units by basin analysis:
a) EXTRACT BY MASK from mosaicked elevation dataset using [UVVR_mask.shp] polygon.
b) FILL(no Z limit) sinks in extracted elevation raster.
c) Calculate FLOW DIRECTION(do not force edge cells flow outward) raster.
d) Calculate BASIN based on flow direction raster [basin_buff5m.tif].
e) Apply MAJORITY FILTER(Number of neighbors=8) to clean the raster and convert RASTER TO POLYGON. CLIP the polygon with 1-meter buffered marsh units mask [MU_mask_buff1m.shp]. This additional buffer is necessary to prevent any polygon smoothing algorithm from changing the exterior boundaries and will be removed by clipping to the [MU_mask.shp] later. MULTIPART TO SINGLEPART and ADD GEOMETRY ATTRIBUTES(Geometry properties=Area_geodesic; Area unit=Square_meters) to get [basin_single.shp]
Source_Used_Citation_Abbreviation: elev_mosaic
Source_Used_Citation_Abbreviation: UVVR_mask
Process_Date: 2018
Source_Produced_Citation_Abbreviation: basin_single
Process_Step:
Process_Description:
This step merges the "orphan marsh units", units that are less than 5000 m2 in area to the nearest to "parent marsh units", units that are larger than 5000 m2 to obtain the preliminary marsh units. A Python script that iteratively calls a list of ArcMap tools to aggregate orphan units on parent units is used:
a) Create orphan marsh units features by exporting marsh units with an area less than 5000 m2 [lt5000.shp].
b) Create parent marsh units features by exporting marsh units with an area greater than or equal to 5000 m2 [ge5000.shp].
c) Run Python script (hydUnitloop.py). At each iteration step the script uses NEAR tool to find orphan marsh units within 1 m of a parent marsh unit and merges them to the parent using UNION and DISSOLVE tools. The orphan units merged with a parent unit are removed from the orphan units data set. Script will iterate until there is no change in the number of parent or orphan marsh units.
d) The remaining orphan marsh units are those that are more than 1 m away from any parent. DISSOLVE them to create larger orphan units by grouping the orphans attached together into larger units.
e) MULTIPART TO SINGLEPART to have single part polygons with unique identifiers.
f) UNION(with gaps) single part features with parent units to obtain preliminary marsh units [pMUopt1.shp].
g) SMOOTH POLYGON(Smoothing algorithm=PAEK; Smoothing tolerance=15 meters) to get the smoothed marsh units polygon [pMUopt1_smooth.shp].
h) CLIP the extra buffer around the smoothed marsh units using the marsh units mask, [MU_mask.shp]. If this results in any additional marsh units with an area less than 5000 m2, dissolve into the nearest parent units repeating the same steps above to obtain [pMUopt1_clip_final.shp]
i) Compute the final marsh units by removing any artefacts from [pMuOpt1_clip_final.shp] using ELIMINATE and REPAIR GEOMETRY tools. ELIMINATE(Expression="Area_geo" less than 900; Eliminating by border) polygon slivers smaller than 900 m2 by merging them to the main polygon. MULTIPART TO SINGLEPART to get conceptual marsh units [CMU.shp]. This only applies to polygons that are bordering other polygons. Polygons that are not bordering other polygons are not affected as those are more likely to be real features as opposed to geoprocessing artefacts.
j) DISSOLVE the conceptual marsh units to get the final outlines for the marsh complex [CMU_mask_final.shp].
Source_Used_Citation_Abbreviation: basin_single
Process_Date: 2018
Source_Produced_Citation_Abbreviation: CMU
Process_Step:
Process_Description:
Determine the vegetated and unvegetated areas by image processing.
a) EXTRACT BY MASK from elevation raster [elev_mosaic.tif] using [UVVR_mask.shp] polygon. Rescale the elevation raster values to the same range with 8-bit NAIP imagery (0 to 255) using min-max scaling. Perform ISO CLUSTER UNSUPERVISED CLASSIFICATION with4-bands (Near Infra Red , Blue, Green, Red from the NAIP imagery and the rescaled elevation raster with 32 classes a minimum class size of 5000 cells. RECLASSIFY the classified raster by visually comparing the NAIP imagery to obtain the unvegetated-vegetated raster [UVVc.tif].
b) Dissolve unvegetated regions smaller than a threshold value to the surrounding vegetated regions and vice versa to clean the UVV raster. For this purpose use the REGION(Number of neighbors=4; Zone grouping method=Within; Add Link field to output) to get the [UVV_region.tif], and TEST("Count" less than 9) to set a threshold value of 9 raster cells [UVV_test.tif]. Use RASTER CALCULATOR to toggle the value of the Link field in the region raster, where the test raster indicates regions with areas smaller than the threshold.
c) RASTER TO POLYGON(Simplify polygons=False) and CLIP with the final marsh complex outline [CMU_mask_final.shp] to obtain [UVVc_filt_clip.shp].
d) REPAIR GEOMETRY and DISSOLVE(Create multipart features=False) to get filtered, clipped and dissolved unvegetated-vegetated polygons [UVVc_filt_clip_diss.shp].
e) INTERSECT the final conceptual marsh units [CMU.shp] with unvegetated-vegetated polygons [UVVc_filt_clip.shp], REPAIR GEOMETRY, and calculate the area of unvegetated and vegetated polygons in each marsh unit. To do this ADD GEOMETRY ATTRIBUTES(Geometry properties=Area_geodesic; Area unit=Square_meters) to get [UVV_poly.shp], and DISSOLVE(Input features=UVV_poly.shp; Dissolve fields=FID_CMU, gridcode; Statistics field=gridcode.MEAN, Area_geo.SUM) and REPAIR GEOMETRY to get [UVV_poly_diss.shp]. Edit the fields to have "TYP", "APGN_M2", and "ATOT_M2" fields for type of polygon indicating vegetated or unvegetated, surface area of the polygon, and total surface area of the marsh unit, respectively.
f) Add field "UVVR" and calculate unvegetated to vegetated ratio based on "TYP", "APGN_M2" and "ATOT_M2" fields. If the vegetated area is zero for a marsh unit set the value of UVVR to -1.
g) Calculate the mean elevation for each marsh unit with ZONAL STATISTICS AS TABLE(Raster layer=[elev_mosaic.tif]; Zone features=[CMU.shp], Zone field=FID_CMU; Statistics type=Mean; Ignore Nodata=True) and JOIN with [CMU.shp] to get [mu_elev.shp].
Source_Used_Citation_Abbreviation: elev_mosaic
Source_Used_Citation_Abbreviation: NAIP
Process_Date: 2018
Source_Produced_Citation_Abbreviation: mu_elev
Source_Produced_Citation_Abbreviation: UVV_poly_diss
Process_Step:
Process_Description:
Finalize the conceptual marsh units.
a) Add field "COLORID" to cycle through integers from 0 to 9 to be used for coloring the marsh units. This field is used for display purposes only to distinguish between each marsh unit.
b) Add field "FLG" to flag anomalous marsh units based on absence of vegetation, elevation and surface area. Set FLG to (-1) no vegetated area; (-10) marsh unit elevation higher than the 99.8 percentile; (-100) marsh unit elevation less than 0.2 percentile; (-1000) marsh unit surface area less than 900 m2; and (0) no flag. Combination of negative values indicate combination of flags. For example, -1001 indicates no vegetated area and area less than 900m2.
c) Rearrange field names and change the projection for better performance of web services with online base maps. PROJECT(Input coordinate system=NAD 1983 UTM Zone 19N; Output coordinate system=WGS 1984 Web Mercator Auxiliary Sphere; Geographic transformation=WGS 1984 (ITRF00) to NAD 1983) the feature dataset to obtain the final conceptual marsh units [CMU_PIEPRp.shp].
Source_Used_Citation_Abbreviation: CMU
Source_Used_Citation_Abbreviation: mu_elev
Source_Used_Citation_Abbreviation: UVV_poly_diss
Process_Date: 2018
Source_Produced_Citation_Abbreviation: CMU_PIEPRp
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword.
Process_Date: 20200806
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov