Raw Continuous Resistivity Profiles Collected in the Neuse River, May 4, 2005

Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]

Metadata:

Identification_Information:
Citation:
Citation_Information:
Originator: John F. Bratton
Originator: VeeAnn A. Cross
Publication_Date: 2005
Title:
Raw Continuous Resistivity Profiles Collected in the Neuse River, May 4, 2005
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2005-1306
Publication_Information:
Publication_Place: Woods Hole Coastal and Marine Science Center, Woods Hole, MA
Publisher: U.S. Geological Survey, Coastal and Marine Geology Program
Online_Linkage: https://doi.org/10.3133/ofr20051306
Online_Linkage: Larger_Work_Citation:
Citation_Information:
Originator: VeeAnn A. Cross
Originator: John F. Bratton
Originator: Emile Bergeron
Originator: Jeff K. Meunier
Originator: John Crusius
Originator: Dirk Koopmans
Publication_Date: 2005
Title:
Continuous Resistivity Profiling Data from the Upper Neuse River Estuary, North Carolina, 2004-2005
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2005-1306
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: http://pubs.usgs.gov/of/2005/1306/
Description:
Abstract:
The Neuse River Estuary in North Carolina is a broad, V-shaped water body located on the southwestern end of Pamlico Sound. This estuary suffers from severe eutrophication for which several water quality models have recently been developed to aid in the management of nutrient loading to the estuary. In an effort to help constrain model estimates of the fraction of nutrients delivered by direct ground-water discharge, continuous resistivity profile (CRP) measurements were made during the spring of 2004 and 2005. CRP is used to measure electrical resistivity of sediments, a property that is sensitive to difference in salinity of submarine ground water. The 2004 and 2005 surveys used floating resistivity streamers of 100 m and 50 m respectively. The depth penetration of the streamers is approximately 20% of the streamer length which translates to approximately 20-25 m with the 100 m streamer and 12-14 m with the 50 m streamer. These data were processed using AGI's EarthImager 2D software. CRP data enables the mapping of the extent and depth of the fresher ground water within the estuary.
Purpose:
To provide the raw resistivity data as collected by the AGI SuperSting system.
Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20050504
Currentness_Reference: ground condition
Status:
Progress: Complete
Maintenance_and_Update_Frequency: None planned
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -77.020917
East_Bounding_Coordinate: -76.812000
North_Bounding_Coordinate: 35.102200
South_Bounding_Coordinate: 34.936783
Keywords:
Theme:
Theme_Keyword_Thesaurus: USGS Metadata Identifier
Theme_Keyword: USGS:4168d119-78e1-44df-bc26-37f0bb73ea3e
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: CMGP
Theme_Keyword: coastal
Theme_Keyword: Coastal and Marine Geology Program
Theme_Keyword: Continuous Resistivity Profiling
Theme_Keyword: CRP
Theme_Keyword: ground-water
Theme_Keyword: marine resistivity
Theme_Keyword: submarine ground-water
Theme_Keyword: U.S. Geological Survey
Theme_Keyword: USGS
Theme_Keyword: Woods Hole Science Center
Theme_Keyword: Open-File Report
Theme_Keyword: OF 2005-1306
Theme:
Theme_Keyword_Thesaurus: USGS Thesaurus
Theme_Keyword: continuous resistivity profiling
Theme_Keyword: navigational data
Place:
Place_Keyword_Thesaurus: None
Place_Keyword: Neuse River
Place_Keyword: North America
Place_Keyword: North Carolina
Place_Keyword: Pamlico Sound
Place_Keyword: United States
Access_Constraints: none.
Use_Constraints:
The U.S. Geological Survey must be referenced as the originator of the dataset in any future products or research derived from these data.
Point_of_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: John F. Bratton
Contact_Organization: U.S. Geological Survey
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: (508) 548-8700 x2254
Contact_Facsimile_Telephone: (508) 457-2310
Native_Data_Set_Environment:
Microsoft Windows XP Version 5.1 (Build 2600) Service Pack 2; ESRI ArcCatalog 9.0.0.535
Data_Quality_Information:
Logical_Consistency_Report: Information unavailable from original metadata.
Completeness_Report: Information unavailable from original metadata.
Lineage:
Source_Information:
Source_Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: Unpublished material
Title: Raw CRP Data
Type_of_Source_Media: hard disk
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20050504
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: raw crp data
Source_Contribution:
These data were acquired with an AGI SuperSting Marine system that is described at the website: www.agiusa.com/marinesystem.shtml. The particular system used for this acquisition was an 11 electrode array with electrodes spaced 5 meters apart. The potential electrodes are made of graphite, with the remaining electrodes stainless steel. A dipole-dipole configuration was used for the data collection in which two fixed current electrodes are assigned with the measurement of voltage potentials between electrode pairs in the remaining electrodes. Each line of data acquisition records several files. The two files necessary for processing are the *.stg and *.gps file. The STG file contains the resistivity data, while the GPS file contains the navigation information.
Process_Step:
Process_Description:
The data were transferred from the logging computer via AGISSAdmin software. The data files available for this day are L2F1.*, L3F1.*, L4F1.*, and L5F1.*.
Process_Date: Unknown
Process_Step:
Process_Description:
Lines 2, 3, and 5 had navigation issues that were handled in the following way: 1) The GPS files were processed using an AWK script to parse out the navigational information from the $GPRMC string and concatenated into a single file. This comma delimited text file was then imported as a table into ArcView 3.3, loaded as an event theme, and then converted to a shapefile. 2) The allgps shapefile was copied to a new shapefile (tempall) and a field called record was added. This field was filled with the record number so that each point had a unique identifier. 3) The extension pathfind.avx (Path, with Distance and Bearings, v. 3.2) was loaded into the ArcView project. Clicking on the pathfind button brings up a dialog. Select the shapefile (tempall) and the ID field and SERIES field. In this case, both are the "record" field in the shapefile. For the RESULTS table, I checked the option RESULTS table and Join results with Theme Attribute table. Select NO LINES for connection lines. ***Because I think in terms of meters, not decimal degrees for distance measure, I had set the View Properties to UTM, Zone 18, NAD83 projection. The joined shapefile table was then exported to a text file. 4) This exported text file was then reloaded as a table, added as an event theme, and converted to a shapefile. Three new fields are now in the shapefiles as a result of the pathfind extension: To_ID, Cent_Bear, Cent_Dist. (The record field is the fromID). The navigation problem, which manifests itself as the same fix for a long period of time is now readily obtainable. The Cent_Bear value becomes -999 and the Cent_Dist is 0.000. This happened to gps_fixing.shp 5) Three new fields are added to the shapefile: new_dist, new_bear, sum_dist. The new_dist field is for the value that I want to be between each navigation point, assuming the ship is traveling at a constant speed. This value is calculated by using the Cent_dist value that appears right after the 0 values, divided by the number of -999 azimuth values plus 1. That Cent_dist value records the large distance jump once the navigation started acquiring valid values. For example, if there are 9 values of -999, then I divide the large distance value by 10. This resulting value needs to be placed in the 2nd -999 row, through to one row after the lat -999 value (in the new_dist column). 6) The sum_dist field simply sums the distance covered by each new distance section. Select the records from a section for an individual line that needs this calculation. Use the calculate button (table must be in edit mode) and enter the equation: sum_dist = new_dist *([To_ID]-xxxx] where xxxx is the record field value of the first row in the selection. 7) To properly populate the new_bear field, I used the extension dist_az_tools. For each gap, I measured the azimuth between the last good point and the point where the gps started working again. This value was then placed into the appropriate section. 8) I decided to do the rest of the processing on the individual lines that need the repairs. I selected all the points from each line of interest and saved them as a new shapefile resulting in: templ2f1.shp, templ3f1.shp, templ5f1.shp. **Because my distance and azimuth readings are based on the shapefile being projected, I exported the files as projected shapefiles. 9) The distance_azimuth tool now lets me create a new shapefile based on distances and azimuths. Run the tool for each new shapefile, select the second option (Input theme, using unique distances and azimuths). Next window, select the shapefile (gps_fixing) with the DISTANCE FIELD being sum_dist, and the AZIMUTH FIELD being new_bear. Select all the fields for the new shapefile. What's happening is that only points that need moving have values other than zeros in the sum_dist and new_bear fields, So those are the only points that need to be moved are moved. The new shapefiles were called: templ2f1_fix.shp, templ3f1_fix.shp, templ5f1_fix.shp, templ6f1_fix.shp 10) Because these shapefiles are projected, I needed to convert them back to geographic. I used ArcToolbox (9.0) to define their projection as UTM, Zone 18, NAD83, and then reprojected them to Geographic, NAD83. Resulting files were: templ2f1_fixgeog.shp, templ3f1_fixgeog.shp, templ5f1_fixgeog.shp. 11) These geographic shapefiles were loaded back into ArcView 3.3 and I used a modified form of the addxycoo.ave script to add back in the xy (latitude, longitude) fields. The modification to the script had it write 6 decimal places instead of 5. 12) I then "turned off" all the fields except the ones I needed: col_time, col_date, depth_m, temp, x-coord, y-coord and exported the table to a comma delimited text file. These files were: l2f1_gpsfix.txt, l3f1_gpsfix.txt, l5f1_gpsfix.txt. 13) I then took these text files and ran them through the awk script "awknewgps" to output repaired GPS files for use with Marine Log Manager. Of note, even though the navigational fixes are duplicates in the original GPS files, the fathometer and temperature values are assumed to be valid.
Process_Date: Unknown
Process_Step:
Process_Description:
Edits to the metadata were made to fix any errors that MP v 2.9.34 flagged. This is necessary to enable the metadata to be successfully harvested for various data catalogs. In some cases, this meant adding text "Information unavailable" or "Information unavailable from original metadata" for those required fields that were left blank. Other minor edits were probably performed (title, publisher, publication place, etc.). The source information was incomplete and had to be modified to meet the standard. The process steps without process dates had the date set to unknown. The distributor information needed to be added, along with the distribution format and network resource. The metadata date (but not the metadata creator) was edited to reflect the date of these changes. The metadata available from a harvester may supersede metadata bundled within a download file. Compare the metadata dates to determine which metadata file is most recent.
Process_Date: 20161031
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description: USGS Thesaurus keywords added to the keyword section.
Process_Date: 20180720
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description: Crossref DOI link was added as the first link in the metadata.
Process_Date: 20191118
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword.
Process_Date: 20200908
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Distribution_Information:
Distributor:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Resource_Description: Downloadable Data
Distribution_Liability:
These data were prepared by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, make any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. Any views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Although all data published in this report have been used by the USGS, no warranty, expressed or implied, is made by the USGS as to the accuracy of the data and related materials and/or the functioning of the software. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of this data, software, or related materials.
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: TEXT
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information:
Fees: none
Metadata_Reference_Information:
Metadata_Date: 20240318
Metadata_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: VeeAnn A. Cross
Contact_Organization: U.S. Geological Survey
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: (508) 548-8700 x2251
Contact_Facsimile_Telephone: (508) 457-2310
Contact_Electronic_Mail_Address: whsc_data_contact@usgs.gov
Contact_Instructions:
The metadata contact email address is a generic address in the event the person is no longer with USGS. (updated on 20240318)
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001-1998
Metadata_Time_Convention: local time

This page is <https://cmgds.marine.usgs.gov/catalog/whcmsc/open_file_report/ofr2005-1306/may4_raw.html>
Generated by mp version 2.9.51 on Mon Mar 25 16:05:24 2024