RES2DINV format continuous resistivity profile data collected in Northport Harbor on Long Island, New York on May 12, 2008

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently anticipated questions:


What does this data set describe?

Title:
RES2DINV format continuous resistivity profile data collected in Northport Harbor on Long Island, New York on May 12, 2008
Abstract:
An investigation of coastal groundwater systems was performed along the north shore of Long Island, New York during May 2008 to constrain nutrient delivery to Northport Harbor and Manhasset Bay by delineating locations of likely groundwater discharge. The embayments are bounded by steep moraines and are underlain by thick fine-grained sediments deposited in proglacial lakes during the last ice age. Beach sand and gravel overlie the glacial deposits along the coast. The continuous resistivity profiling (CRP) surveys that were conducted indicate the existence of low-salinity groundwater in shore-parallel bands, typically 25 to 50 meters wide, along the shorelines of both bays. Piezometer sampling and seepage meter deployments in intertidal and subtidal areas of the two bays confirmed the presence and discharge of brackish and low-salinity groundwater. The large tidal ranges (up to 3 meters), and the steep onshore topography and hydraulic gradients are important variables controlling coastal groundwater discharge in these areas. For more information on the survey involved in this project, see https://cmgds.marine.usgs.gov/fan_info.php?fan=2008-007-FA.
  1. How might this data set be cited?
    Bratton, John F., and Cross, VeeAnn A., 2012, RES2DINV format continuous resistivity profile data collected in Northport Harbor on Long Island, New York on May 12, 2008: Open-File Report 2011-1041, U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center, Woods Hole, MA.

    Online Links:

    This is part of the following larger work.

    Cross, V.A., Bratton, J.F., Crusius, J., Kroeger, K.D., and Worley, C.R., 2012, Continuous Resistivity Profiling Data from Northport Harbor and Manhasset Bay, Long Island, New York: Open-File Report 2011-1041, U.S. Geological Survey, Reston, VA.

    Online Links:

    Other_Citation_Details: CD-ROM
  2. What geographic area does the data set cover?
    West_Bounding_Coordinate: -73.363167
    East_Bounding_Coordinate: -73.356783
    North_Bounding_Coordinate: 40.906500
    South_Bounding_Coordinate: 40.712667
  3. What does it look like?
  4. Does the data set describe conditions during a particular time period?
    Calendar_Date: 12-May-2008
    Currentness_Reference:
    ground condition
  5. What is the general form of this data set?
  6. How does the data set represent geographic features?
    1. How are geographic features stored in the data set?
    2. What coordinate system is used to represent geographic features?
      Vertical_Coordinate_System_Definition:
      Depth_System_Definition:
      Depth_Datum_Name: Local surface
      Depth_Resolution: 0.1
      Depth_Distance_Units: meters
      Depth_Encoding_Method: Implicit coordinate
  7. How does the data set describe geographic features?

Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
    • John F. Bratton
    • VeeAnn A. Cross
  2. Who also contributed to the data set?
  3. To whom should users address questions about the data?
    VeeAnn A. Cross
    U.S. Geological Survey
    Marine Geologist
    Woods Hole Coastal and Marine Science Center
    Woods Hole, MA

    (508) 548-8700 x2251 (voice)
    (508) 457-2310 (FAX)
    vatnipp@usgs.gov

Why was the data set created?

To provide the linearized raw continuous resistivity profile (CRP) data collected on May 12, 2008 in Northport Harbor on Long Island, New York by the AGI SuperSting system in the RES2DINV format. The RES2DINV format is a common format used by researchers who work with resistivity data. Resistivity differences can be attributed to subsurface geology (conductive vs less conductive layers) and hydrogeologic conditions with fresh water exhibiting high resistivity and saline conditions showing low resistivity.

How was the data set created?

  1. From what previous works were the data drawn?
  2. How were the data generated, processed, and modified?
    Date: 2008 (process 1 of 7)
    The continuous resistivity profile (CRP) system used on this cruise was an AGI SuperSting marine system described at the website: www.agiusa.com/marinesystem.shtml. Two different streamers were used for data collection - not simultaneously. One streamer was a 50-m streamer with an 11 electrode array with electrodes spaced 5 meters apart. The other streamer was a 15-m streamer with an 11 electrode array with electrodes spaced 1.5 meters apart. In both cases, the source electrodes are graphite, while the receiver electrodes are stainless steel. A dipole-dipole configuration was used for the data collection in which two fixed current electrodes are assigned with the measurement of voltage potential between electrode pairs in the remaining electrodes. The maximum depth below the water surface the streamer can reach is approximately ¼ the streamer length. So for the 50-m streamer, maximum depth is about 12.5 meters, while the 15 meter streamer can reach about 3.75 meters. Each line of data acquisition records several files. The two files necessary for processing are the *.stg and the *.gps file. The STG file contains the resistivity data, while the GPS file contains the navigation information. The navigation system used in concert with the CRP system is a Lowrance LMS-480M with an LGC-2000 GPS antenna and a 200 kHz fathometer transducer. The transducer also contains a temperature sensor. Lowrance indicates the speed of sound used by the system is 4800 feet/second. Both the temperature and depth information are recorded in the logged GPS file. The CRP system images the subsurface electrical properties of an estuarine, riverine or lacustrine environment. Resistivity differences can be attributed to subsurface geology (conductive vs less conductive layers) and hydrogeologic conditions with fresh water exhibiting high resistivity and saline conditions showing low resistivity.
    Date: Nov-2010 (process 2 of 7)
    The linearized STG and DEP files generated by AGI's Marine Log Manager software (AGI SSAdmin MLM v 1.3.4.217) were converted to a format suitable for the RES2DINV processing software. The conversion was accomplished by a Visual Basic 6 program written at the USGS office in Woods Hole (AGI2res2d.exe - no version number, by VeeAnn Cross). A more complete description of all the processing involved prior to this point can be found in the metadata for the raw resistivity data and the processed resistivity data available at https://pubs.usgs.gov/of/2011/1041/html/catalog.html. Person who carried out this activity:
    VeeAnn A. Cross
    U.S. Geological Survey
    Marine Geologist
    Woods Hole Coastal and Marine Science Center
    Woods Hole, MA

    (508) 548-8700 x2251 (voice)
    (508) 457-2310 (FAX)
    vatnipp@usgs.gov
    Data sources used in this process:
    • *lin.stg
    • *wres.dep
    Data sources produced in this process:
    • *res2d.dat
    Date: 16-Oct-2017 (process 3 of 7)
    Edits to the metadata were made to fix any errors that MP v 2.9.36 flagged. This is necessary to enable the metadata to be successfully harvested for various data catalogs. In some cases, this meant adding text "Information unavailable" or "Information unavailable from original metadata" for those required fields that were left blank. Other minor edits were probably performed (title, publisher, publication place, etc.). Attempted to modify http to https where appropriate. Reordered the links in the identification section to have a landing page link as the first link. Updated the link to the field activity. Moved the minimal source information provided to make it the first process step. The distribution format name was modified in an attempt to be more consistent with other metadata files of the same data format. The metadata date (but not the metadata creator) was edited to reflect the date of these changes. The metadata available from a harvester may supersede metadata bundled within a download file. Compare the metadata dates to determine which metadata file is most recent. Person who carried out this activity:
    U.S. Geological Survey
    Attn: VeeAnn A. Cross
    Marine Geologist
    384 Woods Hole Road
    Woods Hole, MA

    508-548-8700 x2251 (voice)
    508-457-2310 (FAX)
    vatnipp@usgs.gov
    Date: 30-Jan-2018 (process 4 of 7)
    An error was fixed in one of the originator names. Person who carried out this activity:
    U.S. Geological Survey
    Attn: VeeAnn A. Cross
    Marine Geologist
    384 Woods Hole Road
    Woods Hole, MA

    508-548-8700 x2251 (voice)
    508-457-2310 (FAX)
    vatnipp@usgs.gov
    Date: 20-Jul-2018 (process 5 of 7)
    USGS Thesaurus keywords added to the keyword section. Person who carried out this activity:
    U.S. Geological Survey
    Attn: VeeAnn A. Cross
    Marine Geologist
    384 Woods Hole Road
    Woods Hole, MA

    508-548-8700 x2251 (voice)
    508-457-2310 (FAX)
    vatnipp@usgs.gov
    Date: 18-Nov-2019 (process 6 of 7)
    Crossref DOI link was added as the first link in the metadata. Person who carried out this activity:
    U.S. Geological Survey
    Attn: VeeAnn A. Cross
    Marine Geologist
    384 Woods Hole Road
    Woods Hole, MA

    508-548-8700 x2251 (voice)
    508-457-2310 (FAX)
    vatnipp@usgs.gov
    Date: 08-Sep-2020 (process 7 of 7)
    Added keywords section with USGS persistent identifier as theme keyword. Person who carried out this activity:
    U.S. Geological Survey
    Attn: VeeAnn A. Cross
    Marine Geologist
    384 Woods Hole Road
    Woods Hole, MA

    508-548-8700 x2251 (voice)
    508-457-2310 (FAX)
    vatnipp@usgs.gov
  3. What similar or related data should the user be aware of?
    Loke, M.H., 2000, Electrical imaging surveys for environmental and engineering studies - a practical guide to 2D and 3D surveys: University Sains Malaysia, Penang, Malaysia.

    Online Links:


How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?
  2. How accurate are the geographic locations?
    The navigation system used was a Lowrance 480M with an LGC-2000 Global Positioning System (GPS) antenna. The antenna was located at the anchor point for the resistivity streamer, which is also directly above the fathometer transducer mount point. The GPS system is published to be accurate to within 10 meters.
  3. How accurate are the heights or depths?
    All bathymetry values were collected by the 200 kHz Lowrance fathometer. The fathometer was mounted starboard side aft, directly below the GPS antenna and the resistivity streamer tow point. The transducer was approximately 0.30 meters below the sea surface, and this draft was not corrected for. The Lowrance manufacturer indicates the speed of sound used by the system to convert to depths is 4800 feet/second (1463 meters/second). All values are assumed to be accurate to within 1 meter.
  4. Where are the gaps in the data? What is missing?
    All linearized resistivity data from this day were converted to the RES2DINV format.
  5. How consistent are the relationships among the observations, including topology?
    All the data files were checked and handled in the same manner.

How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?
Access_Constraints: None.
Use_Constraints:
The public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Please recognize the U.S. Geological Survey as the originator of the dataset.
  1. Who distributes the data set? (Distributor 1 of 1)
    VeeAnn A. Cross
    U.S. Geological Survey
    Marine Geologist
    Woods Hole Coastal and Marine Science Center
    Woods Hole, MA

    (508) 548-8700 x2251 (voice)
    (508) 457-2310 (FAX)
    vatnipp@usgs.gov
  2. What's the catalog number I need to order this data set? Downloadable Data
  3. What legal disclaimers am I supposed to read?
    Neither the U.S. government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of these data or related materials. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
  4. How can I download or order the data?
  5. What hardware or software do I need in order to use the data set?
    The data are provided in a WinZip compressed file. The user must have software capable of uncompressing the archive. In addition, these data are available in a format compatible with the RES2DINV resistivity inversion software. The user must have software capable of reading this format in order to process the data.

Who wrote the metadata?

Dates:
Last modified: 08-Sep-2020
Metadata author:
VeeAnn A. Cross
U.S. Geological Survey
Marine Geologist
Woods Hole Coastal and Marine Science Center
Woods Hole, MA

(508) 548-8700 x2251 (voice)
(508) 457-2310 (FAX)
vatnipp@usgs.gov
Metadata standard:
FGDC Content Standards for Digital Geospatial Metadata (FGDC-STD-001-1998)

This page is <https://cmgds.marine.usgs.gov/catalog/whcmsc/open_file_report/ofr2011-1041/2008-007-FAmay12_res2dinvmeta.faq.html>
Generated by mp version 2.9.50 on Tue Sep 21 18:20:36 2021