This shapefile represents all the CRP data collected at this location from the sediment water interface and deeper.
In some cases the water depth was too great for the system - the sediment wasn't penetrated. Therefore no values exist in those locations.
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report:
The navigation system used was a Lowrance 480M with an LGC-2000 Global Positioning System (GPS) antenna. The antenna was located at the anchor point for the resistivity streamer, which is also directly above the fathometer transducer mount point. The GPS system is published to be accurate to within 10 meters.
Vertical_Positional_Accuracy:
Vertical_Positional_Accuracy_Report:
All bathymetry values were collected by the 200 kHz Lowrance fathometer. The fathometer was mounted starboard side aft, directly below the GPS antenna and the resistivity streamer tow point. The transducer was approximately 0.30 meters below the sea surface, and this draft was not corrected for. The Lowrance manufacturer indicates the speed of sound used by the system to convert to depths is 4800 feet/second (1463 meters/second). All values are assumed to be accurate to within 1 meter.
Process_Step:
Process_Description:
The continuous resistivity profile (CRP) system used on this cruise was an AGI SuperSting marine system described at the website: www.agiusa.com/marinesystem.shtml. Two different streamers were used for data collection - not simultaneously. One streamer was a 50-m streamer with an 11 electrode array with electrodes spaced 5 meters apart. The other streamer was a 15-m streamer with an 11 electrode array with electrodes spaced 1.5 meters apart. In both cases, the source electrodes are graphite, while the receiver electrodes are stainless steel. A dipole-dipole configuration was used for the data collection in which two fixed current electrodes are assigned with the measurement of voltage potential between electrode pairs in the remaining electrodes. The maximum depth below the water surface the streamer can reach is approximately ¼ the streamer length. So for the 50-m streamer, maximum depth is about 12.5 meters, while the 15 meter streamer can reach about 3.75 meters. Each line of data acquisition records several files. The two files necessary for processing are the *.stg and the *.gps file. The STG file contains the resistivity data, while the GPS file contains the navigation information. The navigation system used in concert with the CRP system is a Lowrance LMS-480M with an LGC-2000 GPS antenna and a 200 kHz fathometer transducer. The transducer also contains a temperature sensor. Lowrance indicates the speed of sound used by the system is 4800 feet/second. Both the temperature and depth information are recorded in the logged GPS file. The CRP system images the subsurface electrical properties of an estuarine, riverine or lacustrine environment. Resistivity differences can be attributed to subsurface geology (conductive vs less conductive layers) and hydrogeologic conditions with fresh water exhibiting high resistivity and saline conditions showing low resistivity.
Process_Date: 2008
Process_Step:
Process_Description:
A MATLAB script (justbelowsed.m) was run on the processed CRP files to generate files with just the resistivity values that fall below the sediment water interface, and an extrapolated value at the sediment water interface. Two files from the processed resistivity data are needed for this script: the XYZ output from the EarthImager processing which has distance along line (meters), depth of resistivity reading (meters), and resistivity value (ohm-m); and the DEP file that contains distance along line (meters) and water depth values (meters). Because some lines are short and don't require a "roll-along" processing technique, the XYZ information is contained in a file with the DAT extension. The MATLAB script combines the two data files (processed resistivity and depth files) such that the output is only the resistivity values that fall at or below the sediment water interface. This script was written by the USGS (VeeAnn A. Cross) in Woods Hole, MA. In order to have a resistivity value at the sediment water interface, the software usually has to interpolate resistivity values. The version of MATLAB used for these data was MATLAB 7.5.0.342 (R2007b). An example of the script usage in MATLAB is: justbelowsed('L10F1_lin_AllInvRes.xyz','L10F1_lin_wres.dep') The output is: L10F1_lin_AllInvRes_jbsed.xyz This resulting XYZ file has 5 columns of information: distance along line (meters); depth below water surface (meters); depth below sediment/water interface (meters); resistivity value (ohm-m); log(10) resistivity value. This process step and all subsequent process steps were performed by the same person - VeeAnn A. Cross.
Source_Used_Citation_Abbreviation: *.xyz or *.dat
Source_Used_Citation_Abbreviation: *.dep
Process_Date: 200809
Source_Produced_Citation_Abbreviation: *_jbsed.xyz
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: VeeAnn A. Cross
Contact_Organization: U.S. Geological Survey
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: Woods Hole Coastal and Marine Science Center
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: (508) 548-8700 x2251
Contact_Facsimile_Telephone: (508) 457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description:
Using ArcView 3.3 and the avenue script resist_jbsed_nan.ave (script written by VeeAnn Cross at the USGS in Woods Hole, MA) these XYZ files are converted to shapefiles. This script requires that the navigation for the resistivity line be a polyline shapefile and present in the view. The script prompts the user for the polyline shapefile in the view that they want to use, then prompts the user to browse for the xyz resistivity file. The script then creates a new point shapefile, with a point along the polyline at each value of X specified in the xyz file. The y and z values, as well as longitude and latitude are added to the point shapefile. This requires that the view be projected, as the distance in the xyz file is in meters. This script will work on a single line polyline shapefile (ie the nav for a survey line is alone in a shapefile) or on a selected line within a polyline shapefile. The result is a point shapefile with 11 columns of information. The Id attribute is automatically generated upon creation of a shapefile, the line attribute is the line name as indicated within the polyline shapefile that the program prompts the user for, dist is the distance along line attribute carried over from the MATLAB file, the attributes of location information (latitude, longitude, utmx, utmy) are calculated by the tool, the attributes depth, dep_b_sed, resvalue, and reslogval are carried over from the MATLAB file. The Entity and Attribute section further describes these attributes and their units. This particular script had to handle NaN values generated by MATLAB where the CRP data only contained information in the water column because the water was too deep for the resistivity streamer to penetrate the sediment water interface.
Process_Date: 200809
Process_Step:
Process_Description:
Then using the geoprocessing extension that comes with ArcView 3.3, the individual point shapefiles for each line of collection were merged into a single point shapefile for each day of collection.
Source_Used_Citation_Abbreviation: individual point shapefiles for each line of data collection.
Process_Date: 200809
Source_Produced_Citation_Abbreviation: day4all_resbelowsed.shp
Source_Produced_Citation_Abbreviation: day5all_resbelowsed.shp
Source_Produced_Citation_Abbreviation: day6all_resbelowsed.shp
Process_Step:
Process_Description:
Using ArcMap 9.2 - ArcToolbox - Data Management Tools - Projections and Transformations - Define Projection define the projection of the point shapefiles as Geographic, WGS84.
Source_Used_Citation_Abbreviation: day4all_resbelowsed.shp
Source_Used_Citation_Abbreviation: day5all_resbelowsed.shp
Source_Used_Citation_Abbreviation: day6all_resbelowsed.shp
Process_Date: 200809
Source_Produced_Citation_Abbreviation: day4all_resbelowsed.shp
Source_Produced_Citation_Abbreviation: day5all_resbelowsed.shp
Source_Produced_Citation_Abbreviation: day6all_resbelowsed.shp
Process_Step:
Process_Description:
Combine the individual days of the resbelowsed files into a single shapefile. Within ArcMap 9.2, using ArcToolbox - Data Management Tools - General - Merge input files: day4all_resbelowsed, day5all_resbelowsed, day6all_resbelowsed; output: manhassetall_resbelowsed.shp. Left field mapping at the defaults.
Source_Used_Citation_Abbreviation: day4all_resbelowsed.shp
Source_Used_Citation_Abbreviation: day5all_resbelowsed.shp
Source_Used_Citation_Abbreviation: day6all_resbelowsed.shp
Process_Date: 201010
Source_Produced_Citation_Abbreviation: manhassetall_resbelowsed.shp
Process_Step:
Process_Description:
Edits to the metadata were made to fix any errors that MP v 2.9.36 flagged. This is necessary to enable the metadata to be successfully harvested for various data catalogs. In some cases, this meant adding text "Information unavailable" or "Information unavailable from original metadata" for those required fields that were left blank. Other minor edits were probably performed (title, publisher, publication place, etc.). Attempted to modify http to https where appropriate. Reordered the links in the identification section to have a landing page link as the first link. Updated the link to the field activity. Moved the minimal source information provided to make it the first process step. The distribution format name was modified in an attempt to be more consistent with other metadata files of the same data format. The metadata date (but not the metadata creator) was edited to reflect the date of these changes. The metadata available from a harvester may supersede metadata bundled within a download file. Compare the metadata dates to determine which metadata file is most recent.
Process_Date: 20171016
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description: An error was fixed in one of the originator names.
Process_Date: 20180130
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description: USGS Thesaurus keywords added to the keyword section.
Process_Date: 20180720
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description: Crossref DOI link was added as the first link in the metadata.
Process_Date: 20191118
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword.
Process_Date: 20200908
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov