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Introduction

The Mississippi River system, which drains almost half
of the conterminous United States, ranks seventh among riv-
ers worldwide for water discharge (580 cubic kilometers per
year (km?*/yr)) and sixth for suspended-sediment discharge
(200x10° metric tons per year (mt/yr)). Together, the Missis-
sippi and Atchafalaya Rivers provide almost all of the fresh-
water influx to the Gulf of Mexico. The suspended-sediment
load is composed predominantly of terrigenous clays and
silts. A 3-year record of suspended-sediment load north of the
Mississippi River Delta indicates that usually much more than
70 percent of the suspended load consists of particles that are
less than 62 micrometers (wm) (4 phi (¢)) in size (Swarzenski,
2001). The silts are deposited along the periphery of the Mis-
sissippi River Delta, whereas the clays are transported offshore
(Flocks and others, 2002; Walker and others, 2002). Fine
particles, such as clay, are a primary transport mechanism for
trace metals that adhere to the particle surface or are included
interstitially within the silicate structure (Horowitz, 1991).

Trace-metal distribution in the Mississippi River Delta
has been the subject of many research efforts (for example,
DiMarco and others, 1986; Landrum, 1995; Trefry and others,
1995; Grant and Middleton, 1998). The extent to which the
clay fraction distributes trace-metal constituents across the
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Gulf of Mexico is not entirely understood. During the Pale-
oceanography of the Atlantic and Geochemistry (PAGE) 127
campaign onboard the RV Marion Dufresne, sediment samples
were collected along the continental slope several hundred
miles southwest of the Mississippi River Delta. On July 8 and
9, 2002, two 11-meter-long box cores were deployed in two
intraslope basins (Orca and Pigmy Basins) situated along the
continental shelf in roughly 2,000 meters of water (fig. 1). Box
core MDO02-2550 was collected from Orca Basin and box core
MD02-2553 from Pigmy Basin. The basins provide a sediment
trap for pelagic and hemipelagic material and have been used
in studies that address fluvial influence from the Mississippi
River (Stearns and others, 1986; Raiswell and Canfield, 1998;
Flower and others, 2004). Brine (in Orca Basin) and low-
oxygen concentrations in the bottom waters provide a high
preservation potential for organic material accumulating in the
sediments. One objective of the survey was to collect and com-
pare grain-size and trace-metal constituents from the basins
with samples collected from the Mississippi and Atchafalaya
River Deltas.

Methods

Coring and Sampling

Sediments were collected in a continuous, undisturbed
11-meter (m)-long core using the “Calypso3” box core devel-
oped for use on the research vessel (RV) Marion Dufresne. A
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Figure 1.

Geophysical Data Center (NGDC).

0.0625-square-meter (m?) by 11-m-long steel box corer was
attached to 2,400 kilograms (kg) of lead weight and lowered to
the sea floor. Upon retrieval, one side of the box was removed
to reveal the core. Plastic liners (8x13x155 centimeters (cm)
were inserted longitudinally into the box core to subsample the
sediment into four identical sections (fig. 2). For the purpose
of this study, the first 2 m of one subcore was immediately

Locations of Orca and Pigmy intraslope basins and the Mississippi and
Atchafalaya River Deltas, Gulf of Mexico. Bathymetric data from the National
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sampled into 2.5-cm sections; each section was
transferred to an individual plastic sampling cup
and frozen.

Trace Metals

The subsamples were soaked in a 50-per-
cent acetone-dH,O mixture to remove organic
material and facilitate wet sieving through a 63-
um screen. The resulting coarse and fine frac-
tions were dried and weighed. The fine fraction
was ground by mortar and pestle, and the coarse
fraction was described and archived.

The fine fraction was further pulverized
and analyzed using an inductively coupled
plasma-optical emission spectrometer (ICP-
OES) at a commercial laboratory (ACTLABS,
Tucson, AZ). Elements measured by this
method include aluminum (Al), calcium (Ca),
cobalt (Co), copper (Cu), iron (Fe), potas-
sium (K), magnesium (Mg), manganese (Mn),
sodium (Na), phosphorous (P), nickel (Ni), lead
(Pb), strontium (Sr), sulfur (S), titanium (Ti),
yttrium (Y), vanadium (V) and zinc (Zn). Prior
to analysis, the sediment samples were dis-
solved in acid to mobilize the trace metals into
solution. “Near total” digestion employs HF,
HCIO,, HNO3, and HCI to get as much of the
sample into solution as possible without fus-
ing the sample (ACTLABS, written commun.,
2002). Triplicates of two samples were analyzed
to determine standard analytical error.

Grain Size

Textural analysis of sediment samples
was performed at the U.S. Geological Survey
(USGS) Center for Coastal Geology using a
Coulter LS 200 particle-size analyzer. The LS
200 utilizes laser diffraction to measure size
distribution of sedimentary particles between
0.4 ym and 2 millimeters (mm). Grain-size
analyses were conducted by simulating the sizes
that would be determined from standard ASTM
11-E sieves. For more information on this tech-
nique, see Kindinger and others (2001).

Scanning Electron Microscope (SEM)

The fine fraction of wet samples was pipetted into a
micro-analysis vacuum filter and support assembly onto
0.2-mm polycarbonate filter pads. The filters were air-dried,
mounted on aluminum stubs, and sputter coated with gold-
palladium. The samples were then placed in a Hitachi 3500N
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(A) Eleven-meter Calypso3 box core being deployed from the RV Marion Dufresne.

(B) Opened box corer showing placement of subsampling tubes.

variable pressure scanning electron microscope
(SEM) equipped with energy-dispersive spec-
troscopy (EDS). Samples were imaged using
both secondary electron and backscatter electron
detectors (atomic number differences). EDS

was performed on several particles within each
sample to determine relative elemental composi-
tions.

Discussion

Geology

The structure and topography of the
slope that includes Pigmy and Orca Basins are
controlled by salt diapirs (Bouma, 1981). Intru-
sion of these giant salt domes into the surficial
sediments produced a topography similar to the
Basin and Range Province of the Midwest of the
United States (fig. 3), with dome rims protrud-
ing several hundred meters from the interdia-
piric sea floor. The salt originates from Jurassic
time and is overlain by shales of Tertiary age (Bouma and
others, 1980). The shales are then overlain by a thick sequence
of pelagic deposits and hemipelagic sediments of Pleistocene
age associated with Mississippi River deposition.

Bouma and Coleman (1986) characterize several intra-
slope basin types relative to their previous geomorphology and
subsequent diapiric construction: blocked-canyon, interdomal,
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Figure 3. Bathymetric map showing positions of salt diapirs, northern Gulf of
Mexico continental slope. Bathymetric data from NGDC, salt structure map from
Bouma and others (1980). See figure 1 for locations of basins.

and collapse basins. Pigmy Basin is an example of a blocked-
canyon intraslope basin, which is defined as a former chan-
nel that has become blocked by upward or laterally moving
diapirs. The channel effectively becomes dammed by the
diapirs, terminating any basin infilling by bottom transport.
Subsequent deposition in the basin is either by slumping along
the periphery of the basin or through pelagic and hemipe-
lagic accumulation. Orca Basin may not have started as a
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blocked canyon but is entirely isolated from outside currents
by upward-moving diapirs. As a result, this example of an
interdomal basin exhibits hypersaline and anoxic bottom
waters, which preserve carbonate and organic material in the
sediments (Tompkins and Shephard, 1979; Flower and oth-
ers, 2004). Previous coring and seismic-profiling activities
indicate that both basins contain a thick surficial sequence of
sediments of Holocene to late Wisconsinan age (Bouma and
Coleman, 1986; Jasper and Gagosian, 1990). Previous studies
determined that the primary clay constituent in the top 3 m of
sediment within Orca Basin is smectite, with lesser amounts of
illite and kaolinite (Tompkins and Shephard, 1979).

Orca Basin Sediments (hox core MD02-2550)

Box core MD02-2550 was acquired from the central
portion of Orca Basin, in 2,249 m of water (fig. 4). A pho-
tomosaic of the core (fig. 5) shows over 6 m of light gray,
faintly laminated clays, overlain by 2.5 m of black, laminated
clay. The black color of the highly fluid surficial sediments
represents FeS present in the hypersaline, anoxic muds that
exist within the basin. The transition from gray to black muds
presumably represents the beginning of anoxic conditions
within the basin about 8,000 year before present (BP) (Trefry
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Figure 4. Bathymetric map of Orca Basin, from Bouma
(1981), showing location of box core MD02-2550 (red dot).
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Figure5. Photomosaic of box cores
MD02-2550 (Orca Basin) and MD02-2553
(Pigmy Basin). Brightness differences and
contrasting angles in laminations are due to
camera angle and lighting.



and others, 1984). Hill and others (2004) estimate an average
sediment accumulation rate of >50 cm per 1,000 year in the
vicinity of the box core through radiocarbon dating from an
adjacent piston core (MD02-2551). Their similar radiocarbon
work on box core MD02-2550 indicates the middle Holocene
may be missing (ca. 3 — 6.5 thousand years (ka)) between
175 and 190 cm (B. Flower, University of South Florida, oral
commun., 2002). Throughout the core, signs of bioturbation
are absent, and lamina thickness is variable. Evidence of gas
vesicules occurs periodically.

A closeup of the several sieved fractions of the Orca
Basin core shows an abundance of coccoliths, radiolarian tests,
and spicules in a matrix of clay particles (fig. 6). Clay particles
are identified by their silicate composition, determined using
EDS, as are some trace amounts of quartz grains. Sand is not
a major constituent in these samples; the coarse fraction was
observed to contain mainly foraminifera and pteropods.

Grain-size analyses were performed every 10 cm over
the top 3 m of the box core. Results show a predominance
of clayey-silt throughout this section (fig. 7), with an overall
coarsening upward in the core.

Table 1.
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Trace-metal concentrations were measured in the top
2 m of the core. The results do not show marked variability in
this section, with the top 0.5 m having the most consistency
(fig. 8). Below 140 cm, there appears to be a slight increase
in the concentration of some metals (Co, Mn, Ti, V, Y, Zn)
and an increase in variability. This change is accompanied by
a decrease in Na, which could indicate change in sediment
texture if Na is a proxy for porosity. Selected trace-metal
concentrations normalized to Al show some increase in the
trace-metal component within the top 40 cm for Pb and Ni,
relative to the rest of the core, but not a lot of variability
(fig. 9). Deviations in the normalized trace-metal component
at the base of the section (150-200 cm), in conjunction with
the observation that approximately 20 cm may be missing,
suggest that transport mechanisms may be active that are not
evident in the upper 1 m of core. Selected trace-metal con-
centrations compared to samples acquired in the Mississippi
River and Atchafalaya River Deltas indicate some variability
(table 1). Average concentrations of Cu and Ni were similar to
concentrations in the delta samples, whereas concentrations of
Co, Pb, V, and Zn were lower.

Average concentrations of selected trace metals from the basins

compared to various locations around the northern Gulf of Mexico.

[*, peat and sand samples not included (intervals where > 50 percent of sample is > 36 microm-
eters (um)) (Flocks and others, 2002); **, from Landrum (1995); ***, from Trefry and others

(1995); —, not available]

Estuary/Basin

Co Cu Ni Pb Vv Zn

Orca Basin (n=25)

Pigmy Basin (n=21)

Atchafalya Delta (n=42)*

Miss. Sub-deltas (n=27)* (n=27)*
Pass A Loutre (n=26)*

Miss. R. suspended sed***
St. Bernard delta regtion**
Apalachicola Bay**
Barataria Basin**
Beaumont Area**

Corpus Christi**
Galveston Area™**
Mississippi Sound**
Mobile Bay**

Pensacola Bay**

Perdido Bay**

Pontchartrain Estuary**

6 21 23 14 78 48

11 37 35 16 137 89
10 19 25 20 95 76
10 20 25 25 83 71

10 20 24 19 75 77

— 41 36 132 —
29 19 22 26 47 120
18 37 — — 79 57

25 22 26 18 23 98

— 20 17 — — 108
15 15 17 — 93

27 22 34 — 62

13 20 — — 80 74
15 31 — — 88 120

8 31 — — 75 86

27 46 — — 49 161
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Figure 6. Scanning Electron Microscopy (SEM) image of particles less than 6 phi (¢); silt size) from box core MD02-2550, showing
pelagic and hemipelagic material. Selected clay particles were analyzed for elemental composition using energy-dispersive
spectroscopy (EDS; right), showing silicate composition and associated major cations. More SEM images with EDS analysis are
included in the appendix to this chapter.
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(environmental) conditions.

Pigmy Basin Sediments (box core MD02-2553)

Pigmy Basin has a maximum depth of about 2,240 m,
with a sill depth of less than 1,700 m (fig. 10). Box core
MD02-2553 was acquired in the central portion of the basin.
Photographs of the sediments show gray, generally massive
to faintly laminated muds throughout the length of the core
(fig. 5). Black shading related to accumulation of organic
material occurs throughout the core, and distinct concentra-
tions of foraminifera occur at 65, 125, 127, 313, 315, and
442 cm downcore. There is no evidence of bioturbation or
other physical disturbance to the sediments.

Comparison of SEM images between Orca and Pigmy
Basins shows Pigmy sediments contain a similar amount of
coccoliths, but no pteropods (figs. 6, 11); the basin has a lower
preservation potential for aragonite. Poore and others (2004)
estimate an average sediment accumulation rate of 50 cm per
1,000 years using AMS radiocarbon dating of planktonic fora-
minifera in the top 2 m of the core. However, through com-
parison with tree-ring dating, Poore and others (2005) suggest
that small variations in sediment accumulation may exist.
Variability in sedimentation may be due in part to a migrat-
ing source of fluvial clays. Throughout the 4,000 years of
accumulation represented by this section of core, the primary
discharge of the Mississippi River has varied in proximity to
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the basin by over 100 kilometers (km). Over that time, delta
switching changed the course of the Mississippi River from
the St. Bernard complex west to the Lafourche Delta, and then
east to its current configuration (Frazier, 1967; Levin, 1991).
Examination of the clay particles within the sample using EDS
shows silicates with the presence of Al, K, Ca, Mn, and Fe
(fig. 11).

Trace-metal concentrations within Pigmy Basin are
consistently higher than those found in Orca Basin (with the
understandable exception for Na and S) and other areas of the
Mississippi River Delta (table 1). There is close correlation
in trend between Ca, Sr, Al, and Y downcore (fig. 12). A less
obvious, opposite trend can be seen in Ni, Pb, Ti, and Zn. This
variance becomes more obvious when the latter constituents
are normalized to Al (fig. 9). The increase in these constituents
shown in figure 9 may be related to an enhanced terrestrial
component.

Grain-size analysis indicates the sediments within Pigmy
Basin are composed almost entirely of clay-size particles
(fig. 7), with a smaller average diameter than sediments
collected from Orca Basin. Mean grain size shows minimal
variability around the silt/clay boundary (fig. 7), with possibly
a slight coarsening-upward trend.
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Figure 10. Bathymetric map of Pigmy Basin. Contours were generated from a geophysical survey conducted
during the Paleoceanography of the Atlantic and Geochemistry (PAGE) 127 campaign. Location of box core
MD02-2553 shown (red dot). Location of Pigmy Basin is shown in figure 1.
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Figure 11.  Scanning Electron Microscopy (SEM) image of particles less than 6 phi (0); silt size) from box core MD02-2553, showing
pelagic and hemipelagic material. Selected clay particles were analyzed for elemental composition using energy-dispersive
spectroscopy (EDS; right), showing silicate composition and associated major cations. More SEM images with EDS analysis are
included in the appendix to this chapter.
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Figure 12. Downcore trace-metal concentrations measured from box core MD02-2553. Percent error (y) and sampling interval (x) are
shown by error bars. Graph windows are 3-c of average concentration to show variability. Trace-metal concentrations are tabulated in
the appendix to this chapter.



Conclusion

Textural analyses of sediments collected from Orca and
Pigmy Basins indicate the sediments to be well-sorted very
fine silts and clays. There is little variability downcore in
the top 2 m, with perhaps a slight coarsening upward in both
basins. Sediments collected from Pigmy Basin have a smaller
average grain size, about the 8-phi class, than Orca Basin
sediments. Sediments from Pigmy Basin can be described as
silty-clay, and those from Orca Basin can be characterized
as clayey-silt. SEM imagery from the sediments show both
basins contain abundant foraminifera. Orca Basin sediments
contain abundant pteropods, whereas the Pigmy Basin sedi-
ments do not. EDS analysis through SEM show the clay
particulate to contain the major cations (Ca, Mn, Fe, and Al),
although clay species cannot be determined at this time. Some
minor quartz and carbonate material were also found.

Trace-metal analysis demonstrates little variability in
the top 2 m of sediment. Subtle trends in both basins indicate
correlation in some constituents (for example, Al, Ca, Sr, and
Y), possibly coincident with a mass balance in others (for
example, Ni, Pb, Ti, and Zn). These variances may reflect an
inconsistent fluvial component. The low-oxygen and hyper-
saline conditions in Orca Basin correspond to higher S and
Na concentrations in the Orca sediments, and metal concen-
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trations in Pigmy Basin are consistently higher than in Orca
Basin. Lower sediment concentrations of certain soluble met-
als, such as Fe and Mn in Orca Basin as compared to Pigmy
Basin, may reflect remobilization and precipitation processes
that occur above the sea floor, in the brine, and in seawater
columns (Trefry and others, 1984).

Table 1 lists trace-metal concentrations measured within
various coastal and estuarine sediments from the northern Gulf
of Mexico. The sediments were collected by surface grab and
shallow sediment cores, and reflect the modern distribution
of trace metals within the coastal environment. Compared to
these analyses, the sediments from Orca Basin indicate similar
or lower concentrations, whereas those from Pigmy Basin
indicate significantly higher values (table 1). Comparison of
the abundance of clay within the samples to selected trace
metals (Cu, Pb) across these environments indicates a pos-
sible correlation. The higher clay fraction in the shelf-slope
basin cores supports a higher concentration of Cu than in
various facies of deltaic sediments (fig. 13). Although Cu and
other metals may have an affinity for clay particulate, the Pb
profile in the figure shows that correlation between trace-metal
concentration and percentage of fine-grained material is not
consistent. This suggests that Pb may have alternate or more
complex transport mechanisms.
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Figure 13.  Clay-size constituent in relation to selected trace-metal (Cu, Pb) concentrations in samples collected

from various environments in the northern Gulf of Mexico, from Flocks and others (2002). Samples from the deltas are
divided into depositional facies associated with transgressive-phase delta development.



13-14

Acknowledgments

The authors thank Bill Waite and Pat Hart for assistance
during the cruise and for contributing digital images and maps,
Noreen Buster for the SEM analyses, and Nick Ferina and
Chandra Dreher for sample preparation and grain-size analy-
ses. Comments and review from Dick Poore, Brian Bossak,
and Barbara Lidz are greatly appreciated.

References

Bouma, A., 1981, Submarine canyon-fan systems in a dia-
pirically controlled area, Gulf of Mexico—sedimentary
Environments of the North Atlantic during the Quaternary:
Proceedings of the National Council for Scientific Research
(NCSR) International Colloquium no. 325, 18 p.

Bouma, A., and Coleman, J., 1986, Intraslope basin deposits
and relation to continental shelf, northern Gulf of Mexico:
American Association of Petroleum Geologists Bulletin,
v. 70, no. 9, p. 1178.

Bouma, A., Martin, R., and Bryant, W., 1980, Shallow struc-
ture of upper continental slope, central Gulf of Mexico:
Proceedings, Offshore Technology Conference, v. 4, no. 12,
p- 583-592.

DiMarco, M., Ferrel, R., Jr., and Tye, R., 1986, Clay mineral-
ogy of Cubits Gap crevasse splay, Mississippi Delta: Gulf
Coast Association of Geological Societies Transactions,

v. 36, p. 441-447.

Flocks, J., Kindinger, J., Ferina, N., and Dreher, C., 2002,
Sediment-hosted contaminants and distribution patterns in
the Mississippi and Atchafalaya River Deltas: Gulf Coast
Association of Geological Societies Transactions, v. 52,
p- 277-289.

Flower, B., Hastings, D., Hill, H., and Quinn, T., 2004, Phas-
ing of deglacial warming and Laurentide Ice Sheet meltwa-
ter in the Gulf of Mexico: Geology, v. 32, no. 7, p. 597-600.

Frazier, D., 1967, Recent deltaic deposits of the Mississippi
River—their development and chronology: Gulf Coast
Association of Geological Societies Transactions, v. 17,
p. 287-315.

Grant, A., and Middleton, R., 1998, Contaminants in sedi-
ments—using robust regression for grain-size normaliza-
tion: Estuaries, v. 21, p. 197-203.

Hill, H., Flower, B., Hollander, D., and Quinn, T., 2004,
Evidence for oceanic/continental climate linkages during
freshwater inputs to the Gulf of Mexico: EOS Transactions,
American Geophysical Union, v. 47, no. 85, Fall Meeting
Supplemental Abstract PP44A-07.

Initial Report of the IMAGES VIII/PAGE 127 Gas Hydrate and Paleoclimate Cruise in the Gulf of Mexico, 2-18 July 2002

Horowitz, A., 1991, A primer on sediment-trace element
chemistry: Boca Raton, Florida, Lewis Publishers, 136 p.

Jasper, J., and Gagosian, R., 1990, The sources and deposi-
tion of organic matter in the Late Quaternary Pigmy Basin,
Gulf of Mexico: Geochimica et Cosmochimica Acta, v. 54,
p- 1117-1132.

Kindinger, J., Flocks, J., Kulp, M., Penland, S., and Britsch,
L., 2001, Sand resources, regional geology and coastal pro-
cesses for the restoration of the Barataria barrier shoreline:
U.S. Geological Survey Open-File Report 01-384, 69 p.

Landrum, K., 1995, Trace-metal variability of estuarine sedi-
ments, St. Benard geomorphic region, Louisiana: Gulf
Coast Association of Geological Societies Transactions,

v. 65, p. 365-370.

Levin, D., 1991, Transgressions and regressions in the Bara-
taria Bight region of coastal Louisiana: Gulf Coast Associa-
tion of Geological Societies Transactions, v. 41, p. 408—431.

Poore, R., Pavich, M., and Grissino-Mayer, H., 2005, Record
of the North American southwest monsoon from Gulf of
Mexico sediment cores: Geology, v. 33, no. 3, p. 209-212.

Poore, R., Quinn, T., and Verardo, S., 2004, Century-scale
movement of the Atlantic intertropical convergence zone
linked to solar variability: Geophysical Research Letters,
v. 31, L12214, 4 p.

Raiswell, R., and Canfield, D., 1998, Sources of iron for pyrite
formation in marine sediments: American Journal of Sci-
ence, v. 298, no. 3, p. 219-245.

Stearns, S., Tieh, T., and Presley, B., 1986, Mineralogy and
incipient diagenesis in sediments of Pigmy Basin, northern
Gulf of Mexico: American Association of Petroleum Geolo-
gists Bulletin, v. 70, no. 5, p. 652.

Swarzenski, P., 2001, Evaluating basin/shelf effects in the
delivery of sediment-hosted contaminants in the Atchafa-
laya and Mississippi River Deltas: U.S. Geological Survey
Open-File Report 01-215, accessed October 17, 2006, at
http://gulfsci.usgs.gov/missriv/reports/ofrshelf/index. html

Tompkins, R., and Shephard, L., 1979, Orca Basin—deposi-
tional process, geotechnical properties and clay mineral-
ogy of Holocene sediments within an anoxic hypersaline
basin, northwest Gulf of Mexico: Marine Geology, v. 33,
p. 221-238.

Trefry, J., Naito, K., Trocine, R., and Metz, S., 1995, Distribu-
tion and bioaccumulation of heavy metals from produced
water discharges to the Gulf of Mexico: Water Science
Technology, v. 32, no. 2, p. 31-36.



Pollution Transport 13-15

Trefry, J., Presley, B., Keeney-Kennicutt, W., and Trocine, R., Walker, N., Roberts, H., Stone, G., Bentley, S., Huh, O.,

1984, Distribution and chemistry of manganese, iron, and Sheremet, A., Rouse, L., Inoue, M., Welsh, S., Hsu, S., and
suspended particulates in Orca Basin: Geo-Marine Letters, Myint, S., 2002, Satellite-based assessment of sediment
v. 4, p. 125-130. transport, distribution and resuspension associated with the

Atchafalaya River discharge plume: Gulf Coast Association
of Geological Societies Transactions, v. 52, p. 967-973.



13-16 Initial Report of the IMAGES VIII/PAGE 127 Gas Hydrate and Paleoclimate Cruise in the Gulf of Mexico, 2-18 July 2002

Attachment 1. SEM images of a <6-phi sample from box core MD02-2550 (Orca Basin). Letters
mark particles that have been analyzed using EDS, results shown in subsequent attachments.
Italicized letters list element (Si = silicon, Ca = calcium, etc.) found in particle.
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Attachment 2. EDS spectrum showing relative elemental composition of particles marked in
Attachment 1. X-axis shows energy level, y-axis represents counts. The samples were coated with
Au/Pd.
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Attachment 3. EDS spectrum showing relative elemental composition of particles marked in
Attachment 1. X-axis shows energy level, y-axis represents counts. The samples were coated with
Au/Pd.
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Attachment 4. Top: SEM images of a <6-phi sample from box core MD02-2550 (Orca Basin). Letters mark
particles that have been analyzed using EDS, results shown in subsequent attachments. Bottom: EDS spectrum
showing relative elemental composition of particles “H” shown in above image. X-axis shows energy level, y-axis
represents counts. The samples were coated with Au/Pd.
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Attachment5. EDS spectrum showing relative elemental composition of particles marked in
Attachment 4. X-axis shows energy level, y-axis represents counts. The samples were coated with
Au/Pd.
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Attachment 6. EDS spectrum showing relative elemental composition of particles marked in
Attachment 4. X-axis shows energy level, y-axis represents counts. The samples were coated with
Au/Pd.
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Attachment 7. EDS spectrum showing relative elemental composition of particles marked in
Attachment 4. X-axis shows energy level, y-axis represents counts. The samples were coated with
Au/Pd.
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Attachment 8. Top: SEM images of a <6-phi sample from box core MD02-2553 (Pigmy Basin). Letters mark
particles that have been analyzed using EDS, results shown in subsequent attachments. Bottom: EDS spectrum
showing relative elemental composition of particle “A” marked in the above image. X-axis shows energy level,
y-axis represents counts. The samples were coated with Au/Pd.
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Attachment9. EDS spectrum showing relative elemental composition of particles marked in
Attachment 8. X-axis shows energy level, y-axis represents counts. The samples were coated with
Au/Pd.
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Attachment 10. Top: SEM images of a <6-phi sample from hox core MD02-2553 (Pigmy Basin). Letters mark
particles that have been analyzed using EDS, results shown in subsequent attachments. Bottom: EDS spectrum
showing relative elemental composition of particle “G” marked in the above image. X-axis shows energy level,
y-axis represents counts. The sample was coated with Au/Pd.
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Attachment 11. Top: EDS spectrum showing relative elemental composition of particle “H” marked in
Attachment 10. X-axis shows energy level, y-axis represents counts. The sample was coated with Au/Pd. Bottom:
SEM images of a <6-phi sample from box core MD02-2553 (Pigmy Basin). Letters mark particles that have been
analyzed using EDS, results shown in subsequent attachments. Italicized letters list element (Si = silicon, Al =
aluminum, etc.) found within particle.
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Attachment 12. EDS spectrum showing relative elemental composition of particles marked in
Attachment 11. X-axis shows energy level, y-axis represents counts. The samples were coated with
Au/Pd.
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