Remsen, David P.

About the author


CSV file of names, times, and locations of images collected by an unmanned aerial system (UAS) flying over Black Beach, Falmouth, Massachusetts on 18 March 2016

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info
Digital elevation model (DEM) of Black Beach, Falmouth, Massachusetts on 18 March 2016 (32-bit GeoTIFF)

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info
Elevation point cloud from low-altitude aerial imagery from UAS flights over Black Beach, Falmouth, Massachusetts on 18 March 2017 (LAZ file)

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info
Elevations surveyed at Black Beach, Falmouth, Massachusetts on 18 March 2016 (text file)

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info
High-resolution orthomosaic image (natural color) of Black Beach, Falmouth, Massachusetts on 18 March 2016 (32-bit GeoTIFF)

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info
Low-altitude aerial imagery obtained with unmanned aerial systems (UAS) flights over Black Beach, Falmouth, Massachusetts on 18 March 2016 (JPEG images)

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info
Positions of temporary targets used as ground control points associated with UAS flights over Black Beach, Falmouth, Massachusetts on 18 March 2016 (text file)

Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black ...

Info