Reprocessed multichannel seismic-reflection (MCS) data from USGS field activity T-1-96-SC collected in San Diego Bay, California in 1996
This data release presents reprocessed multichannel seismic-reflection (MCS) data that was originally collected in 1996 in partnership with the California Division of Mines and Geology and Caltrans as part of a seismic hazard assessment of the Coronado Bridge in San Diego Bay, California. The original survey collected 130 km of data with a 14-cubic inch sleeve-gun (airgun) source, a 24-channel streamer, and 3.125 m shot spacing. Reprocessed profiles show increased data resolution, with data recorded to 750 ... |
Info |
Cesium-137 concentration data of percussion driven gravity cores collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
This dataset includes Cesium-137 concentration data from sediment cores collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. The cores were collected with a percussion driven gravity corer for use in regional hazard assessments relating to Alaska’s seismic hazard. |
Info |
Chirp seismic-reflection and navigation data collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
Chirp seismic-reflection data and associated navigation files were collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. These data were collected from a 25-foot Boston Whaler (R/V Moose Dancer),18-foot cataraft (R/V Enterprise), and the R/V Alaskan Gyre in the summers of 2020 and 2021 for use in regional hazard assessments relating to Alaska’s seismic hazards. |
Info |
Computed tomography (CT) scans of percussion driven gravity cores collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
This dataset includes computed tomography (CT) scans of sediment cores collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. The cores were collected with a percussion driven gravity corer for use in regional hazard assessments relating to Alaska’s seismic hazard. |
Info |
Coordinates of percussion driven gravity cores collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
This dataset includes coordinate information for sediment cores collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. The cores were collected with a percussion driven gravity corer for use in regional hazard assessments relating to Alaska’s seismic hazard. |
Info |
Grain-size data of percussion driven gravity cores collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
This dataset includes grain-size data from sediment cores collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. The cores were collected with a percussion driven gravity corer for use in regional hazard assessments relating to Alaska’s seismic hazard. |
Info |
Multi-sensor core logger (MSCL) data of percussion driven gravity cores collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
This dataset includes multi-sensor core logger (MSCL) data from sediment cores collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. The cores were collected with a percussion driven gravity corer for use in regional hazard assessments relating to Alaska’s seismic hazard. |
Info |
Photographs of percussion driven gravity cores collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
This dataset includes photographs of sediment cores collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. The cores were collected with a percussion driven gravity corer for use in regional hazard assessments relating to Alaska’s seismic hazard. |
Info |
Event deposit characteristics from percussion driven gravity cores collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
This dataset includes deposit thickness and grain size measurements from sediment cores collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. The cores were collected with a percussion driven gravity corer for use in regional hazard assessments relating to Alaska’s seismic hazard. |
Info |
Summary of event deposit characteristics from percussion driven gravity cores collected in Alaskan lakes and fjords following the 2018 Anchorage earthquake
This dataset includes qualitative interpretations of event deposits from sediment cores collected from lacustrine and fjord basins in southcentral Alaska following the 2018 Anchorage earthquake. The cores were collected with a percussion driven gravity corer for use in regional hazard assessments relating to Alaska’s seismic hazard. |
Info |
Boomer seismic-reflection and navigation data collected in Ozette Lake, Washington, in 2019.
Boomer seismic-reflection data and associated navigation files were collected in Ozette Lake, Washington, in 2019 for use in regional earthquake hazard assessments relating the Cascadia Subduction Zone. |
Info |
Chirp sub-bottom data collected in Ozette Lake, Washington, in 2019
Chirp seismic reflection data and associated navigation files were collected in Ozette Lake, Washington, in 2019 for use in regional earthquake hazard assessments relating the Cascadia Subduction Zone. Dataset includes both raw and processed chirp data. |
Info |
Computed tomography (CT) scans of cored collected in Ozette Lake, Washington, between 2019 and 2021
Sediment cores were collected in Ozette Lake, Washington, from 2019 to 2021. Cores were scanned using Computed Tomography (CT). These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
Coordinates of sediment cores collected in Ozette Lake Washington, from 2019 to 2021.
Sediment cores and sub-bottom profiles were collected in Ozette Lake, Washington, from 2019 to 2021. These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
Grainsize data from vibracores collected in Ozette Lake, Washington, in 2019
Grainsize data were collected from select sediment cores from Ozette Lake, Washington, in 2019. These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
Multi-sensor core logger (MSCL) data of vibracores and bob-cores collected in Lake Ozette, from 2019 to 2021
This dataset includes multi-sensor core logger (MSCL) data from sediment cores collected in Lake Ozette, Washington. The sediment cores were collected during USGS field activities 2019-622-FA and 2021-641-FA for investigating submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
Photoscans of cores collected in Ozette Lake, Washington, between 2019 and 2021
Seismic-reflection data and cores were collected in Ozette Lake, Washington, from 2019 to 2021. These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
Radiocarbon age data from vibracores collected in Ozette Lake, Washington, in 2019
Seismic reflection data and cores were collected in Ozette Lake, Washington, in 2019. Radiocarbon samples were taken from cores in select locations. These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |
X-ray Fluorescence (XRF) scans of vibracores collected in Ozette Lake, Washington, in 2019.
Sediment cores were collected in Ozette Lake, Washington, in 2019, and cores were scanned using X-ray fluorescence (XRF). These data were used to investigate submarine landslide deposits triggered by large Cascadia Subduction Zone earthquakes. |
Info |