EAARL-B Coastal Topography—Fire Island, New York, pre-Hurricane Sandy, 2012: Seamless (Bare Earth and Submerged)

Online link https://cmgds.marine.usgs.gov/catalog/spcmsc/DS888_PRSF_tile_extents.faq.html
Description This shapefile was produced from 53 2-kilometer by 2-kilometer tile extents of remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5–1.6 meters. The nominal vertical elevation accuracy expressed as the root mean square error (RMSE) is 5.24 centimeters for the bare earth topography. Additional data were insufficient to calculate an RMSE for the submerged topography. A peak sampling rate of 15–30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. [More]
Originators U.S. Geological Survey
Field activities 12LTS03

Related topics