Seafloor character, 2-m-resolution grid--Offshore of Monterey, California

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently anticipated questions:


What does this data set describe?

Title:
Seafloor character, 2-m-resolution grid--Offshore of Monterey, California
Abstract:
This part of DS 781 presents data for the seafloor-character map of the Offshore of Monterey map area, California. Seafloor-character data are provided as two separate grids depending on resolution of the mapping system and processing method. The raster data file is included in "SeafloorCharacter_2m_OffshoreMonterey.zip," which is accessible from https://doi.org/10.5066/F70Z71C8. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krigsman, L.M., Sliter, R.W., and Maier, K.L. (S.Y. Johnson and S.A. Cochran, eds.), 2016, California State Waters Map Series—Offshore of Monterey, California: U.S. Geological Survey Open-File Report 2016–1110, pamphlet 44 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20161110.
This raster-format seafloor-character map shows four substrate classes in the Offshore of Monterey map area, California. The substrate classes mapped in this area have been colored to indicate which of the following California Marine Life Protection Act depth zones and slope classes they belong: Depth Zone 2 (intertidal to 30 m), Depth Zone 3 (30 to 100 m), Depth Zone 4 (100 to 200 m), Depth Zone 5 (deeper than 200 m), Slope Class 1 (0 degrees - 5 degrees; flat), and Slope Class 2 (5 degrees - 30 degrees; sloping). Depth Zone 1 (intertidal), and Slopes Classes 3 and 4 (greater than 30 degrees) are not present in this map area. The map is created using a supervised classification method described by Cochrane (2008), using multibeam echosounder (MBES) bathymetry and backscatter data collected and processed between 1998 and 2014.
Bathymetry data were collected at two different resolutions: at 2-m resolution, down to approximately 90-m water depth (1998-2012 CSUMB and MBARI data); and at 5-m resolution, in the deeper areas (1998-2012 MBARI data). The final resolution of the seafloor-character map is determined by the resolution of both the backscatter and bathymetry datasets; therefore, separate seafloor-character maps were generated to retain the maximum resolution of the source data.
Reference Cited: Cochrane, G.R., 2008, Video-supervised classification of sonar data for mapping seafloor habitat, in Reynolds, J.R., and Greene, H.G., eds., Marine habitat mapping technology for Alaska: Fairbanks, University of Alaska, Alaska Sea Grant College Program, p. 185-194, accessed April 5, 2011, at http://doc.nprb.org/web/research/research%20pubs/615_habitat_mapping_workshop/Individual%20Chapters%20High-Res/Ch13%20Cochrane.pdf.
Supplemental_Information:
Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Although this Federal Geographic Data Committee-compliant metadata file is intended to document the data set in nonproprietary form, as well as in Esri format, this metadata file may include some Esri-specific terminology.
  1. How might this data set be cited?
    Erdey, Mercedes D., and Cochrane, Guy R., 2016, Seafloor character, 2-m-resolution grid--Offshore of Monterey, California: Data Series DS 781, U.S. Geological Survey, Reston, VA.

    Online Links:

    This is part of the following larger work.

    Golden, Nadine E., 2015, California State Waters Map Series Data Catalog: Data Series DS 781, U.S. Geological Survey, Reston, VA.

    Online Links:

  2. What geographic area does the data set cover?
    West_Bounding_Coordinate: -122.064886
    East_Bounding_Coordinate: -121.811775
    North_Bounding_Coordinate: 36.692799
    South_Bounding_Coordinate: 36.532722
  3. What does it look like?
    https://www.sciencebase.gov/catalog/file/get/56cf5fc5e4b015c306ed183c?name=SeafloorCharacter_2m_OffshoreMonterey.jpg&allowOpen=true (JPEG)
    Seafloor character types of the Offshore of Monterey map area, classified from 2-m-resolution data.
  4. Does the data set describe conditions during a particular time period?
    Beginning_Date: 1998
    Ending_Date: 2014
    Currentness_Reference:
    ground condition
  5. What is the general form of this data set?
    Geospatial_Data_Presentation_Form: GeoTiff
  6. How does the data set represent geographic features?
    1. How are geographic features stored in the data set?
      This is a Raster data set. It contains the following raster data types:
      • Dimensions 8201 x 10469 x 1, type Pixel
    2. What coordinate system is used to represent geographic features?
      The map projection used is NAD 1983 UTM Zone 10N.
      Projection parameters:
      Scale_Factor_at_Central_Meridian: 0.9996
      Longitude_of_Central_Meridian: -123.0
      Latitude_of_Projection_Origin: 0.0
      False_Easting: 500000.0
      False_Northing: 0.0
      Planar coordinates are encoded using coordinate pair
      Abscissae (x-coordinates) are specified to the nearest 2.0
      Ordinates (y-coordinates) are specified to the nearest 2.0
      Planar coordinates are specified in Meter
      The horizontal datum used is NAD 1983.
      The ellipsoid used is GRS80.
      The semi-major axis of the ellipsoid used is 6378137.0.
      The flattening of the ellipsoid used is 1/298.257223563.
      Vertical_Coordinate_System_Definition:
      Altitude_System_Definition:
      Altitude_Datum_Name: North American Vertical Datum of 1988
      Altitude_Resolution: 2.0
      Altitude_Distance_Units: meters
      Altitude_Encoding_Method: Attribute values
  7. How does the data set describe geographic features?
    SeafloorCharacter_2m_OffshoreMonterey.tif.vat
    The shapefile attributes include VALUE - code for the seafloor character classes, COUNT - number of pixels, SLOPE - slope classes, DEPTH_ZONE - depth zones, SUBSTRATE - substrate classes, SUBST_DESC - short description of substrate classes, and FULL_DESC - detailed description of substrate classes. The shapefile can be added to any ESRI ArcMap project. (Source: ESRI)
    OID
    Internal feature number. (Source: ESRI) Sequential unique whole numbers that are automatically generated.
    VALUE
    This seafloor-character class was produced using video-supervised maximum-likelihood classification of the bathymetry and backscatter (intensity of return) signals from sonar systems. Derivative roughness (rugosity) and backscatter intensity were used as variants in the classification. The resulting four substrate classes (I-IV) were divided into the Depth Zones (see Attribute: DEPTH_ZONE) by adding to the original grid value in increments of 10. Depth Zone 2, add 0 to grid value; and Depth Zone 3, add 10 to grid value. The resulting grid was further classified into Slope Classes (see Attribute: SLOPE) by adding to the classified raster values (including depth zones) in increments of 50. Slope Class 1, add 0 to grid value; Slope Class 2, add 50 to grid value; Slope Class 3, add 100 to grid value; and Slope Class 4, add 150 to grid value. (Source: ESRI)
    Range of values
    Minimum:1
    Maximum:123
    Units:Integers 1 - 123 representing seafloor character classes.
    COUNT
    The number of pixels (2 m x 2 m size grid cell) represented in each seafloor class (see Attribute: VALUE). (Source: ESRI)
    Range of values
    Minimum:80
    Maximum:12559660
    Units:each
    SLOPE
    The slope zones for the final seafloor-character map grid were identified on the basis of the smoothed bathymetry grid. The smoothing was done by applying focal statistics to the original bathymetry grid. The tool uses a moving window and calculates the mean value of the central pixel within a circular neighborhood of 20 m radius along the whole raster map. The resulting raster map represents a smoothed value highlighting overall trends and eliminates local varieties in the terrain (such as higher slopes along rock outcrops). Slope class values are: 1 (flat; 0 degrees to 5 degrees), 2 (sloping; 5 degrees to 30 degrees), or 3 (steeply sloping; 30 degrees to 60 degrees), 4 (vertical; 60 degrees to 90 degrees), or 5 (overhang; greater than 90 degrees). (Source: USGS)
    Range of values
    Minimum:1
    Maximum:2
    Units:Integer value 1 or 2 representing slope class of 0-30 degrees as described above.
    DEPTH_ZONE
    The depth zones for the final seafloor-character map grid were identified on the basis of the smoothed bathymetry grid. The smoothing was done by applying focal statistics to the original bathymetry grid. The tool uses a moving window and calculates the mean value of the central pixel within a circular neighborhood of 20 m radius along the whole raster map. The resulting raster map represents a smoothed value highlighting overall trends and eliminates local varieties in the terrain (such as varying depths along rock outcrops). Depth Zone values are: Depth Zone 1, intertidal; Depth Zone 2, intertidal to 30 m; and Depth Zone 3, 30 to 100 m, Depth Zone 4, 100 to 200 m; and Depth Zone 5, deeper than 200 m (California Department of Fish and Game, 2008). (Source: USGS)
    Range of values
    Minimum:2
    Maximum:5
    Units:Integer values 2-5 representing slope classes as described above.
    SUBSTRATE
    Coded values of the substrate classes. Class 1, Fine- to medium-grained smooth sediment; Class 2, Mixed smooth sediment and rock; Class 3, Rock and boulder, rugose; Class 4, Medium- to coarse- grained sediment; Class 5, Hard anthropogenic material (Source: USGS)
    Range of values
    Minimum:1
    Maximum:4
    Units:Integer values 1-4 representing substrate classes as described above.
    SUBST_DESC
    Summary description of the four substrate classes coded by the attribute SUBSTRATE. Class 1, Fine- to medium-grained smooth sediment; Class 2, Mixed smooth sediment and rock; Class 3, Rock and boulder, rugose; Class 4, Medium to coarse grained (in scour depressions) (Source: USGS) Names are in text form, maximum length: 50
    FULL_DESC
    Detailed description of the four substrate classes coded by the attribute SUBSTRATE. Class 1, Low backscatter, low rugosity, typically mud to medium-grained sand, often rippled and/or burrowed; Class 2, Moderate to very high backscatter, low rugosity, typically coarse-grained sand, gravel, cobble and bedrock; Class 3, High backscatter, and high rugosity, typically boulder and rugose bedrock; Class 4, Very high backscatter, low rugosity; typically medium- to coarse-grained, with some shell hash in shallow depressions; Class 5, High backscatter, low rugosity; related to development by humans. (Source: USGS) Names are in text form, maximum length: 250

Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
    • Mercedes D. Erdey
    • Guy R. Cochrane
  2. Who also contributed to the data set?
  3. To whom should users address questions about the data?
    U.S. Geological Survey, Pacific Coastal and Marine Science Center
    Attn: PCMSC Science Data Coordinator
    2885 Mission Street
    Santa Cruz, CA
    US

    831-427-4747 (voice)
    pcmsc_data@usgs.gov

Why was the data set created?

These data are intended for science researchers, students, policy makers, and the general public. These data can be used with geographic information systems or other software to identify local seafloor character.

How was the data set created?

  1. From what previous works were the data drawn?
    bathymetry (source 1 of 4)
    Dartnell, Peter, and Kvitek, Rikk G., 2016, Bathymetry--Offshore of Monterey, California: Data Series DS 781, U.S. Geological Survey, Reston, VA.

    Online Links:

    Other_Citation_Details:
    See metadata for "Bathymetry_2m_OffshoreMonterey" and "Bathymetry_5m_OffshoreMonterey" in DS 781 for source data and postprocessing/reprocessing information.
    Type_of_Source_Media: digital files of gridded bathymetry data (ArcInfo GRID)
    Source_Contribution:
    Gridded bathymetry data at 2- and 5-meter resolution used to help with geologic and geomorphologic interpretations.
    backscatter (source 2 of 4)
    Dartnell, Peter, and Kvitek, Rikk G., 2016, Backscatter--Offshore of Monterey, California: Data Series DS 781, U.S. Geological Survey, Reston, VA.

    Online Links:

    Other_Citation_Details:
    See metadata for "Backscatter_5M_OffshoreMonterey" "Backscatter_7125_OffshoreMonterey" "Backscatter_8101_OffshoreMonterey" and "Backscatter_Swath_OffshoreMonterey" in DS 781 for amplitude source data and postprocessing/reprocessing information.
    Type_of_Source_Media:
    digital files of gridded amplitude (backscatter) data (ArcInfo GRID)
    Source_Contribution:
    Gridded amplitude data at 1- and 5-meter resolution used to help with geologic and geomorphologic interpretations.
    sediment (source 3 of 4)
    Reid, Jane A., Reid, Jamey M., Jenkins, Chris J., Zimmerman, Mark, Williams, S. Jeffress, and Field, Michael E., 2006, usSEABED—Pacific Coast (California, Oregon, Washington) offshore surficial-sediment data release: Data Series DS 182, U.S. Geological Survey, Menlo Park, CA.

    Online Links:

    Type_of_Source_Media: Esri project files, csv files
    Source_Contribution:
    seafloor sediment and rock samples used to interpret seafloor geology
    imagery (source 4 of 4)
    Golden, Nadine E., and Cochran, Guy R., 2013, California Seafloor Mapping Program video and photograph portal: data release DOI:10.5066/F7J1015K, U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA.

    Online Links:

    Type_of_Source_Media: seafloor video and photographs
    Source_Contribution:
    seafloor video and photographs used to interpret seafloor geology
  2. How were the data generated, processed, and modified?
    Date: 2016 (process 1 of 6)
    The seafloor-character map was produced using video-supervised maximum likelihood classification of the bathymetry and intensity of return from sonar systems. The classification was supervised using signatures defined by hand-drawn polygons located through sediment samples and video-observation ground truthing applying methodology described in Cochrane (2008), available at http://doc.nprb.org/web/research/research%20pubs/615_habitat_mapping_workshop/Individual%20Chapters%20High-Res/Ch13%20Cochrane.pdf.
    The two variants used in this classification were backscatter intensity and derivative rugosity. Rugosity measures terrain ruggedness as the variation in three-dimensional orientation of grid cells within a neighborhood. Vector analysis is used to calculate the dispersion of vectors normal (orthogonal) to grid cells within the specified neighborhood. This method effectively captures variability in slope and aspect into a single measure. Ruggedness values in the output raster map can range from 0 (no terrain variation) to 1 (complete terrain variation). The calculation was performed using the Terrain Ruggedness (VRM) tool. Bathymetry data were collected at two different resolutions: at 2-m resolution, down to approximately 90-m water depth (1998-2012 CSUMB and MBARI data); and at 5-m resolution, in the deeper areas (1998-2012 MBARI data). The final resolution of the seafloor-character map is determined by the resolution of both the backscatter and bathymetry datasets; therefore, separate seafloor-character maps were generated to retain the maximum resolution of the source data.
    Classes I, II and III values were delineated using multivariate analysis. Class IV values were determined on the basis of visual characteristics using both bathymetry and backscatter (slight depression in the seafloor, very high backscatter return). The resulting map (gridded at 2 m) was cleaned by hand to remove data-collection artifacts (for example trackline nadir). Editing was performed in Photoshop, with which individual pixels were selected and values adjusted to remove noise. Selection occurred without antialiasing, and the resulting grid was identical but for the edited pixels. The four seafloor classes were then colored to indicate which of the five California MLPA depth zones they are located in: Depth Zone 2 (intertidal to 30 m), Depth Zone 3 (30 to 100 m), Depth Zone 4 (100 to 200 m), or Depth Zone 5 (deeper than 200 m). These were further subdivided into one of the following slope classes: Slope Class 1 (0 degrees - 5 degrees; flat), or Slope Class 2 (5 degrees - 30 degrees; sloping). Depth Zone 1 (intertidal), Slope Class 3 (30 degrees to 60 degrees; steeply sloping), Slope Class 4 (60 degrees - 90 degrees; vertical), or Slope Class 5 (greater than 90 degrees; overhang) are not present in the region covered by the 2-m-resolution grid for the Offshore of Monterey map area.
    Date: 05-Oct-2017 (process 2 of 6)
    Keywords section of metadata optimized for discovery in USGS Coastal and Marine Geology Data Catalog. Person who carried out this activity:
    U.S. Geological Survey
    Attn: Alan O. Allwardt
    Contractor -- Information Specialist
    2885 Mission Street
    Santa Cruz, CA

    831-460-7551 (voice)
    831-427-4748 (FAX)
    aallwardt@usgs.gov
    Date: 26-Apr-2018 (process 3 of 6)
    Added keywords from Coastal and Marine Ecological Classification Standard (CMECS) to metadata. Person who carried out this activity:
    U.S. Geological Survey
    Attn: Alan O. Allwardt
    Contractor -- Information Specialist
    2885 Mission Street
    Santa Cruz, CA

    831-460-7551 (voice)
    831-427-4748 (FAX)
    aallwardt@usgs.gov
    Date: 19-Oct-2020 (process 4 of 6)
    Edited metadata to add keywords section with USGS persistent identifier as theme keyword. No data were changed. Person who carried out this activity:
    U.S. Geological Survey
    Attn: VeeAnn A. Cross
    Marine Geologist
    384 Woods Hole Road
    Woods Hole, MA

    508-548-8700 x2251 (voice)
    508-457-2310 (FAX)
    vatnipp@usgs.gov
    Date: 14-Oct-2021 (process 5 of 6)
    Performed minor edits to the metadata to correct typos. No data were changed Person who carried out this activity:
    U.S. Geological Survey
    Attn: Susan A. Cochran
    Geologist
    2885 Mission Street
    Santa Cruz, CA

    831-460-7545 (voice)
    scochran@usgs.gov
    Date: 20-May-2022 (process 6 of 6)
    Edits were made to bring the metadata up to current PCMSC standards including standardizing authors' names, adding a doi# link, correcting typos, refining keywords, and using current access and distribution liability statements. Point of Contact and Metadata Contact information sections were changed to static PCMSC contact information. No data were changed. The metadata available from a harvester may supersede metadata bundled within a download file. Users are advised to compare the metadata date of this file to any similar file to ensure they are using the most recent version. Person who carried out this activity:
    U.S. Geological Survey
    Attn: Susan A. Cochran
    Geologist
    2885 Mission Street
    Santa Cruz, CA

    831-460-7545 (voice)
    scochran@usgs.gov
  3. What similar or related data should the user be aware of?
    Johnson, S.Y., Dartnell, P., Hartwell, S.R., Cochrane, G.R., Golden, N.E., Watt, J.T., Davenport, C.W., Kvitek, R.G., Erdey, M.D., Krisgman, L.M., Sliter, R.W., and Maier, K.L., 2016, California State Waters Map Series--Offshore of Monterey, California: Open-File Report 2016-1110, U.S. Geological Survey, Reston, VA.

    Online Links:


How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?
    Pixel resolution 2 m.
  2. How accurate are the geographic locations?
    Positional information reflects the position of the camera and was collected using a still photo camera, WAAS-enabled GSP unit, recording at between 1 to 2 nm. DGPS (WAAS) accuracy for position is less than 3 meters. (From Garmin GPSMAP 76C/76CS Specifications, M01-10108-00, Rev0304, (<http://www8.garmin.com/specs/GPSMAP76C_76CSspec.pdf>).
  3. How accurate are the heights or depths?
  4. Where are the gaps in the data? What is missing?
    Total coverage for the survey area is 100 percent. Survey area is defined by coverage of both the multibeam bathymetry and backscatter datasets.
  5. How consistent are the relationships among the observations, including topology?
    Classification was done on the basis of training samples delineated by interpreter. The classification was performed using mathematical algorithms then hand-edited by the interpreter to remove noise.

How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?
Access_Constraints None
Use_Constraints USGS-authored or produced data and information are in the public domain. Acknowledge the U.S. Geological Survey and California State University, Monterey Bay, Seafloor Mapping Lab in products derived from these data. Share data products developed using these data with the U.S. Geological Survey. This information is not intended for navigational purposes. Read and fully comprehend the metadata prior to data use. Uses of these data should not violate the spatial resolution of the data. Where these data are used in combination with other data of different resolution, the resolution of the combined output will be limited by the lowest resolution of all the data. This database has been approved for release and publication by the Director of the USGS. Although this database has been subjected to rigorous review and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. Furthermore, it is released on condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its authorized or unauthorized use. Although this Federal Geographic Data Committee-compliant metadata file is intended to document these data in nonproprietary form, as well as in ArcInfo format, this metadata file may include some ArcInfo-specific terminology.
  1. Who distributes the data set? (Distributor 1 of 1)
    U.S. Geological Survey
    345 Middlefield Rd
    Menlo Park, CA
    USA

    (650) 329-4309 (voice)
  2. What's the catalog number I need to order this data set?
  3. What legal disclaimers am I supposed to read?
    These databases, identified as seafloor character maps of the Offshore of Monterey map area, California, have been approved for release and publication by the U.S. Geological Survey (USGS). Although these databases have been subjected to rigorous review and are substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. Furthermore, it is released on condition that neither the USGS nor the United States Government may be held liable for any damages resulting from its authorized or unauthorized use. Although these data have been processed successfully on a computer system at the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data on any other system or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. The USGS or the U.S. Government shall not be held liable for improper or incorrect use of the data described and/or contained herein. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. These data are not intended for navigational use.
  4. How can I download or order the data?
  5. What hardware or software do I need in order to use the data set?
    The downloadable data file has been compressed with the "zip" command and can be unzipped with Winzip (or other tool) on Windows systems. To utilize these data, the user must have software capable of uncompressing the WinZip file and importing and viewing an Esri ArcMap TIFF. Users should download the ArcGIS Project File, OffshoreMontereyGIS.mxd.zip, a compressed (with the "zip" command) version of the ArcMap document (.mxd) that has all the data layers loaded in the table of contents for "Offshore of Monterey map area" and has all the data symbolized as on the data release map sheets. Download and save this ArcGIS project file, including all data layers, to the directory the user has created for this GIS.

Who wrote the metadata?

Dates:
Last modified: 20-May-2022
Metadata author:
U.S. Geological Survey, Pacific Coastal and Marine Science Center
Attn: PCMSC Science Data Coordinator
2885 Mission Street
Santa Cruz, CA
US

831-427-4747 (voice)
pcmsc_data@usgs.gov
Metadata standard:
Content Standard for Digital Geospatial Metadata (FGDC-STD-001-1998)

This page is <https://cmgds.marine.usgs.gov/catalog/pcmsc/SeriesReports/DS_DDS/DS_781/XMLs_on_ScienceBase/F70Z71C8_OffshoreMonterey/SeafloorCharacter_2m_OffshoreMonterey_metadata.faq.html>
Generated by mp version 2.9.51 on Mon May 23 09:27:26 2022