Natural resource management

Using a combination of techniques to control or direct the use of resources and limit population size to reach a predetermined goal, such as sustainability.
This category is also used for conservation, environmental management, environmental planning, resource conservation, and resource restoration.

54 results listed by similarity [list alphabetically]
AllScenarios_Spatial_Waves: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
GrandBayModel_InputBathymetry: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
GrandBay_ValidationPeriod_Wave_WaterLevel: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Bin1thru18_SSC: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Initial_and_Final_Bed_Elevations: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Sediment_Fluxes: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
AllScenarios_Spatial_Flow: Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary: Delft3D Model Output

The effects of interior headland restoration on estuarine sediment transport processes are assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on suspended sediment concentrations, bed level morphology and sediment fluxes under present-day conditions and a sea level rise of 0.5 meters (m). Delft3D model output of suspended sediment ...

Info
USGS CoastCam at Waiakāne, Moloka'i, Hawai'i: 2018 Timestack Imagery and Coordinate Data

A digital video camera was installed at Waiakāne, Moloka'i, Hawai'i (HI) and faced west along the beach. Every hour during daylight hours, daily from June 26, 2018, to September 20, 2018, the camera collected raw video and produced snapshots and time-averaged image products. One such product is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup timestacks store the red, green, and ...

Info
USGS CoastCam at Isla Verde, Puerto Rico: 2018-2019 Intrinsic and Extrinsic Calibration Data

A digital video camera was installed at Isla Verde, Puerto Rico (PR) and faced northeast along the beach. Every hour during daylight hours, daily from February 1, 2019, to July 15, 2019, the camera collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The camera is part of a U.S. Geological Survey (USGS) research ...

Info
USGS CoastCam at Tres Palmas, Rincón, Puerto Rico: Intrinsic and Extrinsic Calibration Data

A digital video camera was installed at Tres Palmas, Rincón, Puerto Rico (PR) and faced west to view the beach and water offshore. Every hour during daylight hours, daily from August 27, 2019 to March 10, 2020, the camera collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The camera is part of a U.S. Geological ...

Info
USGS CoastCam at Waiakāne, Moloka'i, Hawai'i: 2018 Intrinsic and Extrinsic Calibration Data

A digital video camera was installed at Waiakāne, Moloka'i, Hawai'i (HI) and faced west along the beach. Every hour during daylight hours, daily from June 26, 2018, to September 20, 2018, the camera collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The camera is part of a U.S. Geological Survey (USGS) research ...

Info
USGS CoastCam at Sand Key, Florida: Intrinsic and Extrinsic Calibration Data (Camera 1)

Two digital video cameras were installed at Sand Key, Florida (FL), facing south (camera 1) and north (camera 2) along the beach. Every hour during daylight hours, the cameras collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements.. The cameras are part of a U.S. Geological Survey (USGS) research project to study the ...

Info
USGS CoastCam at Sand Key, Florida: Intrinsic and Extrinsic Calibration Data (Camera 2)

Two digital video cameras were installed at Sand Key, Florida (FL), facing south (camera 1) and north (camera 2) along the beach. Every hour during daylight hours, the cameras collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The images included in this data release were collected by camera 2 (c2) from May 29, ...

Info
USGS CoastCam at Madeira Beach, Florida: Timestack Imagery and Coordinate Data

A digital video camera was installed at Madeira Beach, Florida (FL) and faced west along the beach. Every hour during daylight hours, daily from 2017 to 2022, the camera collected raw video and produced snapshots and time-averaged image products. One such product is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup timestacks store the red, green, and blue or monochrome pixel ...

Info
USGS CoastCam at Sand Key, Florida: Timestack Imagery and Coordinate Data (Camera 2)

Two digital video cameras were installed at Sand Key, Florida (FL), facing south (camera 1) and north (camera 2) along the beach. Every hour during daylight hours, daily from 2018 to 2022, the cameras collected raw video and produced snapshots and time-averaged image products. For camera 2, one such product that is created is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup ...

Info
USGS CoastCam at DUNEX: Intrinsic and Extrinsic Calibration Data (Camera 1)

Two digital video cameras were temporarily installed at the U.S. Fish and Wildlife Service (USFWS) Pea Island National Wildlife Refuge (PINWR) in North Carolina (NC), as part of the DUring Nearshore Event eXperiment (DUNEX). DUNEX was a collaborative community-led experiment that took place in the fall of 2021 along the Outer Banks of NC, with the goal of improving the understanding, observational techniques, and predictive capabilities for extreme storm processes and impacts within the coastal environment. ...

Info
USGS CoastCam at DUNEX: Intrinsic and Extrinsic Calibration Data (Camera 2)

Two digital video cameras were temporarily installed at the U.S. Fish and Wildlife Service (USFWS) Pea Island National Wildlife Refuge (PINWR) in North Carolina (NC), as part of the DUring Nearshore Event eXperiment (DUNEX). DUNEX was a collaborative community-led experiment that took place in the fall of 2021 along the Outer Banks of NC, with the goal of improving the understanding, observational techniques, and predictive capabilities for extreme storm processes and impacts within the coastal environment. ...

Info
CENCAL1853_1910 - Vectorized Shoreline of Central California Derived from 1853-1910 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL1929_1942 - Vectorized Shoreline of Central Califonia Derived from 1929-1942 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL1945_1976 - Vectorized Shoreline of Central California Derived from 1945-1976 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL_1998_2002 - Vectorized Shoreline of Central California Derived from 1998-2002 Lidar Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
CENCAL_BASELINE - Offshore Baseline for Central California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_BIASVALUES - Central California Shoreline Bias Values

The USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. These shorelines were used to calculate long-term and short-term change rates in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS ...

Info
CENCAL_INTERSECTS_LT - Long-Term Transect-Shoreline Intersection Points for Central California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_INTERSECTS_ST - Short-Term Transect-Shoreline Intersection Points for Central California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_TRANSECTS_LT - Long-Term Shoreline Change Rates for Central California Generated at a 50 m Transect Spacing, 1853-2002

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
CENCAL_TRANSECTS_ST - Short-Term Shoreline Change Rates for Central California Generated at a 50m Transect Spacing, 1971-1998

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL1854_1880 - Vectorized Shoreline of Northern California from 1854-1880 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
NORCAL1928_1936 - Vectorized Shoreline of Northern California Derived from 1928-1936 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a compilation of data from one or ...

Info
NORCAL1952_1971 - Vectorized Shoreline of Northern California Derived from 1952-1971 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
NORCAL2002 - Vectorized Shoreline of Northern California Derived from 2002 Lidar Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
NORCAL_BASELINES - Offshore Baseline for Northern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL_BIASVALUES - Northern California Shoreline Bias Values

The USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. These shorelines were used to calculate long-term and short-term change rates in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS ...

Info
NORCAL_INTERSECTS_LT - Long-Term Transect-Shoreline Intersection Points for Northern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL_INTERSECTS_ST - Short-Term Transect-Shoreline Intersection Points for Northern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL_TRANSECTS_LT - Long-Term Shoreline Change Rates for Northern California Generated at a 50 m Transect Spacing, 1854-2002

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
NORCAL_TRANSECTS_ST - Short-Term Shoreline Change Rates for Northern California Generated at a 50m Transect Spacing, 1952-2002

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
SOCAL1852_1889 - Vectorized Shoreline of Southern California Derived from 1852-1889 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
SOCAL1920_1934 - Vectorized Shoreline of Southern California Derived from 1920-1934 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
SOCAL_1971_1976 - Vectorized Shoreline of Southern California Derived from 1971-1976 Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
SOCAL_1998 - Vectorized Shoreline of Southern California Derived from 1998 Lidar Source Data

There are critical needs for a nationwide compilation of reliable shoreline data. To meet these needs, the U.S. Geological Survey (USGS) has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. Each shoreline may represent a ...

Info
SOCAL_BASELINE - Offshore Baseline for Southern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
SOCAL_BIASVALUES - Southern California Shoreline Bias Values

The USGS has produced a comprehensive database of digital vector shorelines by compiling shoreline positions from pre-existing historical shoreline databases and by generating historical and modern shoreline data. Shorelines are compiled by state and generally correspond to one of four time periods: 1800s, 1920s-1930s, 1970s, and 1998-2002. These shorelines were used to calculate long-term and short-term change rates in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS ...

Info
SOCAL_INTERSECTS_LT - Long-Term Transect-Shoreline Intersection Points for Southern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
SOCAL_INTERSECTS_ST - Short-Term Transect-Shoreline Intersection Points for Southern California Generated to Calculate Shoreline Change Rates

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
SOCAL_TRANSECTS_LT - Long-Term Shoreline Change Rates for Southern California Generated at a 50m Transect Spacing, 1852-1998

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
Attendee Survey Results from the April and May 2020 Gulf Islands National Seashore Workshop

In early 2020, scientists gathered to advance sediment budget modeling efforts by conducting a “Needs Assessment Workshop” for the Gulf Island National Seashore (GINS) to understand the coastal processes affecting island resiliency. The “Gulf Islands Sediment Budget Needs Assessment Workshop” was held, virtually, April 23–24 and May 27–28, 2020. The workshop series was organized by researchers from North Carolina State University in collaboration with National Park Service (NPS) and U.S. ...

Info
SOCAL_TRANSECTS_ST - Short-Term Shoreline Change Rates for Southern California Generated at a 50m Transect Spacing, 1971-1998

Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2005-1304, Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Miller, T.M. The extension is designed to efficiently lead a user through the major steps of shoreline change analysis. This extension to ArcGIS contains three main components that define a baseline, generate ...

Info
AllCases_Final_Bed_Elevations: Model Sensitivity to Sediment Parameters and Bed Composition in Delft3D: Model Output

The sensitivity to sediment parameterization and initial bed configuration on sediment transport processes and morphological evolution are assessed through process-based numerical modeling. Six sensitivity cases using a previously validated model for Dauphin Island, Alabama) are modeled using Delft3D (developed by Deltares) to understand impacts on bed level morphology, barrier island evolution, and sediment fluxes. Delft3D model output of suspended and bedload sediment fluxes, and final bed levels data are ...

Info
AllCases_Sediment_Fluxes: Model Sensitivity to Sediment Parameters and Bed Composition in Delft3D: Model Output

The sensitivity to sediment parameterization and initial bed configuration on sediment transport processes and morphological evolution are assessed through process-based numerical modeling. Six sensitivity cases using a previously validated model for Dauphin Island, Alabama were modeled using Delft3D (developed by Deltares) to understand impacts on bed level morphology, barrier island evolution, and sediment fluxes. Delft3D model output of suspended and bedload sediment fluxes, and final bed levels data are ...

Info
Intrinsic and Extrinsic Calibration Data From USGS CoastCam deployed at Madeira Beach, Florida

A digital video camera was installed at Madeira Beach, Florida (FL) and faced west along the beach. Every hour during daylight hours, daily from 2017 to 2022, the camera collected raw video and produced snapshots and time-averaged image products. This data release includes the necessary intrinsic orientation (IO) and extrinsic orientation (EO) calibration data to utilize imagery to make quantitative measurements. The camera is part of a U.S. Geological Survey (USGS) research project to study the beach and ...

Info
Imagery from USGS CoastCam deployed at Madeira Beach, Florida

A digital video camera was installed at Madeira Beach, Florida (FL) and faced west along the beach. Every hour during daylight hours, daily from 2017 to 2022, the camera collected raw video and produced snapshots and time-averaged image products. The images included in this data release were collected from January 21, 2017, to December 31, 2017. The camera is part of a U.S. Geological Survey (USGS) research project to study the beach and nearshore environment. USGS researchers analyzed the imagery collected ...

Info
USGS CoastCam at Tres Palmas, Rincón, Puerto Rico: Timestack Imagery and Coordinate Data

A digital video camera was installed at Tres Palmas, Rincón, Puerto Rico (PR) and faced west along the beach. Every hour during daylight hours, daily from August 27, 2019, to March 10, 2020, the camera collected raw video and produced snapshots and time-averaged image products. One such product is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup timestacks store the red, green, ...

Info
USGS CoastCam at Isla Verde, Puerto Rico: 2018-2019 Timestack Imagery and Coordinate Data

A digital video camera was installed at Isla Verde Beach in San Juan, Puerto Rico (PR) and faced northeast along the beach. Every hour during daylight hours, daily from February 1, 2019, to July 15, 2019, the camera collected raw video and produced snapshots and time-averaged image products. One such product is a "runup timestack". Runup timestacks are images created by sampling a cross-shore array of pixels from an image through time as waves propagate towards and run up a beach. Runup timestacks store the ...

Info