Laboratory Observations of Variable Size and Shape Particles-Artificial Sand and Oil Agglomerates: November 2016 Velocity Data
Following marine oil spills, weathered oil can mix with sediment in the surf zone and settle to the seafloor to form mats up to hundreds of meters long. Wave action fragments these mats into 1- to 10-centimeter (cm) diameter sand and oil agglomerates (SOAs). SOAs can persist for years, becoming buried in or exhumed from the seafloor and/or transported cross-shore and alongshore (Dalyander and others, 2015). These fragments are angular near the source mat and become increasingly rounded as they are ... |
Info |
Laboratory Observations of Variable Size and Shape Particles-Artificial Sand and Oil Agglomerates: November 2016 Video Data
Following marine oil spills, weathered oil can mix with sediment in the surf zone and settle to the seafloor to form mats up to hundreds of meters long. Wave action fragments these mats into 1- to 10-centimeter (cm) diameter sand and oil agglomerates (SOAs). SOAs can persist for years, becoming buried in or exhumed from the seafloor and/or transported cross-shore and alongshore (Dalyander and others, 2015). These fragments are angular near the source mat and become increasingly rounded as they are ... |
Info |
Laboratory Observations of Variable Size and Shape Particles-Artificial Sand and Oil Agglomerates: June 2017 Velocity Data
Following marine oil spills, weathered oil can mix with sediment in the surf zone and settle to the seafloor to form mats up to hundreds of meters long. Wave action fragments these mats into 1- to 10-centimeter (cm) diameter sand and oil agglomerates (SOAs). SOAs can persist for years, becoming buried in or exhumed from the seafloor and/or transported cross-shore and alongshore (Dalyander and others., 2015). These fragments are angular near the source mat and become increasingly rounded as they are ... |
Info |
Laboratory Observations of Variable Size and Shape Particles-Artificial Sand and Oil Agglomerates: June 2017 Video Data
Following marine oil spills, weathered oil can mix with sediment in the surf zone and settle to the seafloor to form mats up to hundreds of meters long. Wave action fragments these mats into 1- to 10-centimeter (cm) diameter sand and oil agglomerates (SOAs). SOAs can persist for years, becoming buried in or exhumed from the seafloor and/or transported cross-shore and alongshore (Dalyander and others, 2015). These fragments are angular near the source mat and become increasingly rounded as they are ... |
Info |
Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: Sea Floor Interaction Experiment Flow Velocity
Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in mats on the scale of tens of meters (m), and may break apart into pieces between 1 and 10 centimeters (cm) in diameter. These more mobile pieces are susceptible to alongshore and cross-shore transport, and lead to beach re-oiling on the time scale of months to years following a spill. The U.S. Geological Survey (USGS) conducted experiments March 10 ... |
Info |
Laboratory Observations of Artificial Sand and Oil Agglomerates Video and Velocity Data: Sea Floor Interaction Experiment Interpretive Video
Weathered oil in the surf-zone after an oil spill may mix with suspended sediments to form sand and oil agglomerates (SOA). Sand and oil agglomerates may form in mats on the scale of tens of meters (m), and may break apart into pieces between 1 and 10 centimeters (cm) in diameter. These more mobile pieces are susceptible to alongshore and cross-shore transport, and lead to beach re-oiling on the time scale of months to years following a spill. The U.S. Geological Survey (USGS) conducted experiments March 10 ... |
Info |
Sedimentation Rate Dependence on Pore Fluid Chemistry for Sediment Collected From Area B, Krishna-Godavari Basin, During India's National Gas Hydrate Program Expedition NGHP-02
One goal of the Indian National Gas Hydrate Program's NGHP-02 expedition was to examine the geomechanical response of marine sediment to the extraction of methane from gas hydrate found offshore eastern India in the Bay of Bengal. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages in a lattice of water molecules. Methane gas hydrate is a potential energy resource, but whether extracting methane from gas hydrate in the marine subsurface is ... |
Info |
Water level and velocity measurements from the 2012 University of Western Australia Fringing Reef Experiment (UWAFRE)
This data release contains water level and velocity measurements from wave runup experiments performed in a laboratory flume setting. Wave-driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef-fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms. The 2012 University of Western Australia Fringing Reef ... |
Info |
Characteristic Settling Time and Interface Height Dependence on Pore Fluid Chemistry for Sediment Collected From Area B, During India's National Gas Hydrate Program Expedition NGHP-02
One goal of the Indian National Gas Hydrate Program's NGHP-02 expedition was to examine the geomechanical response of marine sediment to the extraction of methane from gas hydrate found offshore eastern India in the Bay of Bengal. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages in a lattice of water molecules. Methane gas hydrate is a potential energy resource, but whether extracting methane from gas hydrate in the marine subsurface is ... |
Info |
2D micromodel studies of pore-throat clogging by pure fine-grained sediments and natural sediments from NGHP-02, offshore India
Fine-grained sediments, or “fines,” are nearly ubiquitous in natural sediments, even in the predominantly coarse-grained sediments that host gas hydrates. Fines within these sandy sediments can be mobilized and subsequently clog flow pathways while methane is being extracted from gas hydrate as an energy resource. Using two-dimensional (2D) micromodels to test the conditions in which clogging occurs provides insights for choosing production operation parameters that optimize methane recovery in the ... |
Info |
Dataset of diatom controls on the sedimentation behavior of fine-grained sediment collected offshore of South Korea during the Second Ulleung Basin Gas Hydrate Expedition, UBGH2
One of the primary goals of South Korea’s second Ulleung Basin Gas Hydrate Expedition (UBGH2) was to examine the geotechnical properties of the marine sediment associated with methane gas hydrate occurrences found offshore of eastern Korea in the Ulleung Basin, East Sea. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages formed by a lattice of water molecules. During UBGH2, concentrated gas hydrate was found in two sedimentary environments ... |
Info |
Dependence of sedimentation behavior on pore-fluid chemistry for sediment collected offshore South Korea during the Second Ulleung Basin Gas Hydrate Expedition, UBGH2
One goal of Korea’s Second Ulleung Basin Gas Hydrate Expedition, UBGH2, is to examine geotechnical properties of the marine sediment associated with methane gas hydrate occurrences found offshore eastern Korea in the Ulleung Basin, East Sea. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages formed by a lattice of water molecules. Offshore Korea, gas hydrate is found in thin, coarse-grained sediment layers that are interbedded with fine ... |
Info |
Dataset of diatom controls on the compressibility and permeability of fine-grained sediment collected offshore of South Korea during the Second Ulleung Basin Gas Hydrate Expedition, UBGH2
One of the primary goals of South Korea’s second Ulleung Basin Gas Hydrate Expedition (UBGH2) was to examine the geotechnical properties of the marine sediment associated with methane gas hydrate occurrences found off the shore of eastern Korea in the Ulleung Basin, East Sea. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages formed by a lattice of water molecules. During UBGH2, concentrated gas hydrate was found in two sedimentary ... |
Info |