Citation:
Citation_Information:
Originator: Christine J. Kranenburg
Originator: C. Wayne Wright
Originator: Emily S. Klipp
Publication_Date: 20160510
Title:
Calibrated EAARL-B Submerged Topography--Fort Lauderdale, Florida, 2014 (GEOID12A)
Edition: first
Geospatial_Data_Presentation_Form: vector digital data
Series_Information:
Series_Name: U.S. Geological Survey Data Release
Issue_Identification: doi:10.5066/F79S1P4S
Publication_Information:
Publication_Place: St. Petersburg, FL
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/F79S1P4S
Description:
Abstract:
Binary point-cloud data of a portion of the submerged environs of Fort Lauderdale, Florida, were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser pulse and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
Purpose:
The purpose of this project was to collect data suitable for deriving the depth calibration function and coefficients of EAARL-B data. To ensure that St. Petersburg Coastal and Marine Science Center (SPCMSC) data management protocols were followed, this survey was assigned a USGS field activity number (FAN), 2014-304-FA. Additional survey and data details are available at
http://cmgds.marine.usgs.gov/fan_info.php?fan=2014-304-FA
Supplemental_Information:
Raw lidar data are not in a format that is Nonely usable by resource managers and scientists for scientific analysis. Converting dense lidar elevation data into a readily usable format without loss of essential information requires specialized processing. The USGS's Coastal and Marine Geology Program (CMGP) has developed custom software to convert raw lidar data into a GIS-compatible map product to be provided to GIS specialists, managers, and scientists. The primary tool used in the conversion process is Airborne Lidar Processing System (ALPS), a multi-tiered processing system developed originally by a USGS-NASA collaborative project. Specialized processing algorithms are used to convert raw waveform lidar data acquired by the EAARL-B to georeferenced spot (x,y,z) returns for "first surface" and "bare earth" topography. The terms first surface and bare earth refer to the digital elevation data of the terrain, but while first-surface data include vegetation, buildings, and other manmade structures, bare-earth data do not. The zero crossing of the second derivative (that is, detection of stationary points) is used to detect the first return, resulting in "first surface" topography, while the trailing edge algorithm (that is, the algorithm searches for the location prior to the last return where direction changes along the trailing edge) is used to detect the range to the last return, or "bare earth" (the first and last returns being the first and last significant measurable portion of the return pulse). First and last returns, in the context of submerged topography data, produce an elevation map of the surface of the water and the seafloor, respectively. Statistical filtering, known as the Random Consensus Filter (RCF), is used to remove false bottom returns and other outliers from the EAARL-B topography data. The filter uses a grid of square cells (buffer) of user-defined size overlaid onto the original point cloud. The user also defines the vertical tolerance (vertical width) based on the topographic complexity and point-sampling density of the data. The maximum allowable elevation range within a cell is established by this vertical tolerance. An iterative process searches for the maximum concentration of points within the vertical tolerance and removes those points outside of the tolerance (Nayegandhi and others, 2009). Please note that these data are not suitable for navigational use, nor for determining absolute elevation measurements. Submerged topography was assigned to Class 29.
Time_Period_of_Content:
Time_Period_Information:
Multiple_Dates/Times:
Single_Date/Time:
Calendar_Date: 20140421
Single_Date/Time:
Calendar_Date: 20140422
Currentness_Reference: ground condition
Status:
Progress: Complete
Maintenance_and_Update_Frequency: None planned
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -80.1213
East_Bounding_Coordinate: -80.0848
North_Bounding_Coordinate: 25.9821
South_Bounding_Coordinate: 25.9097
Keywords:
Theme:
Theme_Keyword_Thesaurus: USGS Metadata Identifier
Theme_Keyword: USGS:2f7b8ea7-32eb-4d68-95ed-da165ffa101f
Theme:
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: elevation
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: Airborne Lidar Processing System
Theme_Keyword: ALPS
Theme_Keyword: Cessna 310
Theme_Keyword: Digital Elevation Model
Theme_Keyword: DEM
Theme_Keyword: EAARL-B
Theme_Keyword: Experimental Advanced Airborne Research Lidar
Theme_Keyword: laser hydrography
Theme_Keyword: South Florida Testing Facility
Theme:
Theme_Keyword_Thesaurus: Global Change Master Science Directory
Theme_Keyword: LAND SURFACE > TOPOGRAPHY > TERRAIN ELEVATION
Theme_Keyword: OCEAN > BATHYMETRY/SEAFLOOR TOPOGRAPHY > SEAFLOOR TOPOGRAPHY
Theme_Keyword: OCEAN > COASTAL PROCESSES > COASTAL ELEVATION
Theme_Keyword: OCEAN > COASTAL PROCESSES > SHORELINE DISPLACEMENT
Theme_Keyword:
DOI/USGS/CMG > COASTAL AND MARINE GEOLOGY, U.S. GEOLOGICAL SURVEY, U.S. DEPARTMENT OF INTERIOR
Theme:
Theme_Keyword_Thesaurus: GCMD Instrument
Theme_Keyword: LIDAR > LIGHT DETECTION AND RANGING
Theme:
Theme_Keyword_Thesaurus: Data Categories for Marine Planning
Theme_Keyword: distributions
Theme_Keyword: bathymetry and elevation
Theme:
Theme_Keyword_Thesaurus: Marine Realms Information Bank (MRIB) Keywords
Theme_Keyword: altimetry
Theme_Keyword: topographic mapping
Theme:
Theme_Keyword_Thesaurus: USGS Thesaurus
Theme_Keyword: lidar
Theme_Keyword: remote sensing
Theme_Keyword: topography
Theme_Keyword: digital elevation models
Place:
Place_Keyword_Thesaurus: Geographic Names Information System
Place_Keyword: Fort Lauderdale
Place_Keyword: Florida
Place_Keyword: Atlantic Ocean
Stratum:
Stratum_Keyword_Thesaurus: None
Stratum_Keyword: Submerged
Temporal:
Temporal_Keyword_Thesaurus: None
Temporal_Keyword: 2014
Access_Constraints: None
Use_Constraints:
The U.S. Geological Survey requests to be acknowledged as originator of these data in future products or derivative research.
Point_of_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Christine Kranenburg
Contact_Organization:
Cherokee Nation Technologies, U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL
Contact_Position: Computer Scientist
Contact_Address:
Address_Type: mailing and physical address
Address: 600 4th Street South
City: St. Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: 727 502-8129
Contact_Facsimile_Telephone: 727 502-8182
Contact_Electronic_Mail_Address: ckranenburg@usgs.gov
Hours_of_Service: M-F, 8:00-4:00 ET
Data_Set_Credit:
Acknowledgment of the USGS, St. Petersburg Coastal and Marine Science Center, as a data source would be appreciated in products developed from these data, and such acknowledgment as is standard for citation and legal practices for data source is expected by users of this data. Sharing of new data layers developed directly from these data would also be appreciated by the USGS staff. Users should be aware that comparisons with other datasets for the same area from other time periods may be inaccurate due to inconsistencies resulting from changes in photointerpretation, mapping conventions, and digital processes over time. These data are not legal documents and are not to be used as such.
Security_Information:
Security_Classification_System: Unclassified
Security_Classification: Unclassified
Security_Handling_Description: None
Native_Data_Set_Environment:
Microsoft Windows 7 Version 6.1 (Build 7601) Service Pack 1; Esri ArcGIS 10.3.1.4959
Cross_Reference:
Citation_Information:
Originator: Nayegandhi, A., Brock, J.C., and Wright, C.W.
Publication_Date: 2009
Title:
Small footprint, waveform-resolving lidar estimation of submerged and subcanopy topography in coastal environments
Series_Information:
Series_Name: International Journal of Remote Sensing
Issue_Identification: v. 30 no. 4, p. 861-878
Online_Linkage: https://doi.org/10.1080/01431160802395227
Cross_Reference:
Citation_Information:
Originator:
Wright, C.W., Kranenburg, C.J., Troche, R.J., Mitchell, R.W., and, Nagle, D.B.,
Publication_Date: 2016
Title:
Depth calibration of the experimental advanced airborne research lidar, EAARL-B
Series_Information:
Series_Name: U.S. Geological Survey Open-File Report
Issue_Identification: 2016–1048
Online_Linkage: https://doi.org/10.3133/ofr20161048
Cross_Reference:
Citation_Information:
Originator: Wright, C.W., Kranenburg, C., Battista, T.A., and Parrish, C.
Publication_Date: 2016
Title:
Depth calibration and validation of the Experimental Advanced Airborne Research Lidar, EAARL-B
Series_Information:
Series_Name: Journal of Coastal Research
Issue_Identification: Special Issue, No. 76, pp. 4–17
Online_Linkage: https://doi.org/10.2112/SI76-002