Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for central North Carolina (NCcentral)

Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]

Metadata:

Identification_Information:
Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 2017
Title:
Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for central North Carolina (NCcentral)
Edition: 1
Geospatial_Data_Presentation_Form: tabular digital data
Series_Information:
Series_Name: data release
Issue_Identification: DOI:10.5066/F74X55X7
Publication_Information:
Publication_Place: Woods Hole Coastal and Marine Science Center, Woods Hole, MA
Publisher: U.S. Geological Survey, Coastal and Marine Geology Program
Online_Linkage: https://doi.org/10.5066/F74X55X7
Online_Linkage: Online_Linkage: Larger_Work_Citation:
Citation_Information:
Originator: M.G. Kratzmann
Originator: E.A. Himmelstoss
Originator: E.R. Thieler
Publication_Date: 2017
Title:
National Assessment of Shoreline Change— A GIS compilation of Updated Vector Shorelines and Associated Shoreline Change Data for the Southeast Atlantic Coast
Edition: 1
Series_Information:
Series_Name: data release
Issue_Identification: DOI:10.5066/F74X55X7
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/F74X55X7
Online_Linkage:
Description:
Abstract:
Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.
Purpose:
This table includes: measurement and positional errors associated with the 1997 and 2009/2010 lidar shorelines for North Carolina, a proxy-datum bias value that corrects for the unidirectional offset between the mean high water (MHW) elevation of the lidar and the high water line (HWL) shorelines, as well as a measurement uncertainty in the total water level. The dataset contains a common attribute with the M-values stored for the lidar data within the NCcentral_shorelines.shp. These data are used in conjunction with the shoreline file to calculate rates of shoreline change for the U.S. Geological Survey's (USGS) National Assessment of Shoreline Change Project. Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3. DSAS uses a measurement baseline method to calculate rate-of-change statistics. Transects are cast from the reference baseline to intersect each shoreline, establishing measurement points used to calculate shoreline change rates.
Supplemental_Information:
Cross-referenced citations are applicable to the dataset as a whole. Additional citations are located within individual process steps that pertain specifically to the method described in that step.
Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 19970920
Ending_Date: 20100531
Currentness_Reference: ground condition
Status:
Progress: Complete
Maintenance_and_Update_Frequency: None planned
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -78.543097
East_Bounding_Coordinate: -75.460321
North_Bounding_Coordinate: 36.548964
South_Bounding_Coordinate: 33.841265
Keywords:
Theme:
Theme_Keyword_Thesaurus: USGS Metadata Identifier
Theme_Keyword: USGS:58b89143e4b01ccd5500c317
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: lidar uncertainty
Theme_Keyword: proxy-datum bias
Theme_Keyword: high water line offsets
Theme_Keyword: high water line uncertainty
Theme_Keyword: Shoreline Change
Theme_Keyword: Digital Shoreline Analysis System
Theme_Keyword: DSAS
Theme_Keyword: U.S. Geological Survey
Theme_Keyword: USGS
Theme_Keyword: Coastal and Marine Geology Program
Theme_Keyword: CMGP
Theme_Keyword: Woods Hole Coastal and Marine Science Center
Theme_Keyword: National Assessment of Shoreline Change Project
Theme_Keyword: National Oceanic and Atmospheric Administration
Theme_Keyword: NOAA
Theme_Keyword: Coastal Services Center
Theme_Keyword: CSC
Theme_Keyword: MHW
Theme_Keyword: Mean High Water
Theme_Keyword: HWL
Theme_Keyword: High Water Line
Theme_Keyword: Database IV format
Theme:
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: oceans
Theme_Keyword: environment
Theme_Keyword: geoscientificInformation
Theme:
Theme_Keyword_Thesaurus: Marine Realms Information Bank (MRIB) Keywords
Theme_Keyword: effects of coastal change
Theme_Keyword: coastal processes
Theme_Keyword: shoreline accretion
Theme_Keyword: shoreline erosion
Theme:
Theme_Keyword_Thesaurus: USGS Thesaurus
Theme_Keyword: coastal processes
Theme_Keyword: erosion
Theme_Keyword: shoreline accretion
Place:
Place_Keyword_Thesaurus: None
Place_Keyword: North Carolina
Place_Keyword: NC
Place_Keyword: Cape Hatteras
Place_Keyword: Green Island
Place_Keyword: Ocracoke Island
Place_Keyword: Ocracoke Inlet
Place_Keyword: Portsmouth Island
Place_Keyword: Horsepen Point
Place_Keyword: Cape Lookout
Place_Keyword: Atlantic Coast
Place_Keyword: United States
Place_Keyword: North America
Access_Constraints: None.
Use_Constraints:
Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Please recognize the U.S. Geological Survey as the originator of the dataset.
Point_of_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: E.A. Himmelstoss
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Country: USA
Contact_Voice_Telephone: 508-548-8700
Contact_Facsimile_Telephone: 508-547-2310
Contact_Electronic_Mail_Address: ehimmelstoss@usgs.gov
Native_Data_Set_Environment:
Microsoft Windows 7 Version 6.1 (Build 7601) Service Pack 1; Esri ArcGIS 10.2.2.3552
Cross_Reference:
Citation_Information:
Originator: Robert A. Morton
Originator: Tara L. Miller
Publication_Date: 2005
Title:
National Assessment of Shoreline Change: Part 2 Historical Shoreline Changes and Associated Coastal Land Loss along the U.S. Southeast Atlantic Coast
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2005-1401
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://pubs.usgs.gov/of/2005/1401/
Cross_Reference:
Citation_Information:
Originator: E.R. Thieler
Originator: E.A. Himmelstoss
Originator: J.L. Zichichi
Originator: A. Ergul
Publication_Date: 2009
Title:
Digital Shoreline Analysis System (DSAS) version 4.0 - An ArcGIS extension for calculating shoreline change
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2008-1278
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Other_Citation_Details: Current version of software at time of use was 4.3
Online_Linkage: https://woodshole.er.usgs.gov/project-pages/DSAS/version4/
Online_Linkage: https://woodshole.er.usgs.gov/project-pages/DSAS/
Cross_Reference:
Citation_Information:
Originator:
Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), Office for Coastal Management
Originator: United States Geological Survey (USGS)
Originator: National Aeronautics and Space Administration (NASA)
Publication_Date: 20140121
Title:
1997 Fall East Coast NOAA/USGS/NASA Airborne LiDAR Assessment of Coastal Erosion (ALACE) Project for the US Coastline
Publication_Information:
Publication_Place: Charleston, SC
Publisher: NOAA's Ocean Service, Office for Coastal Management
Other_Citation_Details:
Lidar data were obtained prior to the publication date listed in this citation.
Online_Linkage: https://coast.noaa.gov/digitalcoast/data/coastallidar/
Online_Linkage: https://www.coast.noaa.gov
Cross_Reference:
Citation_Information:
Originator:
Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), Office for Coastal Management (OCM)
Originator:
Joint Airborne Lidar Bathymetry Technical Center of eXpertise (JALBTCX)
Publication_Date: 20141114
Title:
2009 US Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) Lidar: Currituck, Dare, and Hyde Counties, North Carolina
Publication_Information:
Publication_Place: Charleston, SC
Publisher: NOAA's Ocean Service, Office for Coastal Management (OCM)
Other_Citation_Details:
Lidar data were obtained prior to the publication date listed in this citation.
Online_Linkage: https://coast.noaa.gov/digitalcoast/data/coastallidar
Online_Linkage: https://www.coast.noaa.gov
Cross_Reference:
Citation_Information:
Originator:
Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), Office for Coastal Management (OCM)
Publication_Date: 20141114
Title:
2009 USGS/NPS Experimental Advanced Airborne Research Lidar (EAARL): Cape Hatteras National Seashore - Post-Nor'easter Ida
Publication_Information:
Publication_Place: Charleston, SC
Publisher: NOAA's Ocean Service, Office for Coastal Management (OCM)
Other_Citation_Details:
Lidar data were obtained prior to the publication date listed in this citation.
Online_Linkage: https://coast.noaa.gov/digitalcoast/data/coastallidar
Online_Linkage: https://www.coast.noaa.gov
Cross_Reference:
Citation_Information:
Originator:
Department of Commerce (DOC), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service (NOS), Office for Coastal Management (OCM)
Originator:
JALBTCX (Joint Airborne Lidar Bathymetry Technical Center of eXpertise)
Publication_Date: 20141114
Title:
2010 US Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of eXpertise (JALBTCX) Southeast Lidar: Florida, Georgia, South Carolina, North Carolina
Publication_Information:
Publication_Place: Charleston, SC
Publisher: NOAA's Ocean Service, Office for Coastal Management (OCM)
Other_Citation_Details:
Lidar data were obtained prior to the publication date listed in this citation.
Online_Linkage: https://coast.noaa.gov/digitalcoast/data/coastallidar
Online_Linkage: https://www.coast.noaa.gov
Cross_Reference:
Citation_Information:
Originator: E.A. Himmelstoss
Originator: M.G. Kratzmann
Originator: E.R. Thieler
Publication_Date: 2017
Title:
National Assessment of Shoreline Change: Summary Statistics for Updated Vector Shorelines and Associated Shoreline Change Data for the Gulf of Mexico and Southeast Atlantic Coasts
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2017-1015
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.3133/ofr20171015
Data_Quality_Information:
Attribute_Accuracy:
Attribute_Accuracy_Report:
The attributes in this table record positional and measurement uncertainties and datum offsets calculated during the process of extracting an operational mean high water shoreline from the lidar data as described in the process steps. The field names are based on the requirements for use within the Digital Shoreline Analysis System (DSAS) software (USGS Open-File Report 2008-1278).
Logical_Consistency_Report:
Each row contains data associated with an individual vertex point along the lidar shorelines in NCcentral_shorelines.shp.
Completeness_Report:
The table only contains data where a Mean High Water shoreline point could be extrapolated from the lidar.
Positional_Accuracy:
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report:
The lidar shorelines from 1997 and 2009/2010 have an average positional uncertainty of plus or minus 2.8 meters.
Lineage:
Process_Step:
Process_Description:
An operational Mean High Water (MHW) shoreline was extracted from the lidar surveys within MATLAB v7.6 using a method similar to the one developed by Stockdon et al. (2002). Shorelines were extracted from cross-shore profiles which consist of bands of lidar data 2 m wide in the alongshore direction and spaced every 20 m along the coast. For each profile, the seaward sloping foreshore points were identified and a linear regression was fit through them. The regression was evaluated at the operational MHW elevation to yield the cross-shore position of the MHW shoreline. If the MHW elevation was obscured by water points, or if a data gap was present at MHW, the linear regression was simply extrapolated to the operational MHW elevation. A lidar positional uncertainty associated with this point was also computed. The horizontal offset between the datum-based lidar MHW shoreline and the proxy-based historical shorelines nearly always acts in one direction and the "bias" value was computed at each profile (Ruggiero and List, 2009). In addition an uncertainty associated with the bias was also computed, which can also be thought of as the uncertainty of the HWL shorelines due to water level fluctuations. Repeating this procedure at successive profiles generated a series of X,Y points that contain a lidar positional uncertainty, a bias, and a bias uncertainty value. Ruggiero, P. and List, J.H., 2009. Improving Accuracy and Statistical Reliability of Shoreline Position and Change Rate Estimates. Journal of Coastal Research: v.25, n.5, pp.1069-1081. Stockdon, H.F., Sallenger, A.H., List, J.H., and Holman, R.A., 2002. Estimation of Shoreline Position and Change using Airborne Topographic Lidar Data: Journal of Coastal Research, v.18, n.3, pp.502-513. The 1997 lidar data were processed in 2008 (20081113) and re-processed in 2016 to include a previously missing portion of data. The 2009-2010 lidar data were processed in 2014 (20140301).
Process_Date: 20081113
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Amy Farris
Contact_Organization: U.S. Geological Survey
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Country: USA
Contact_Voice_Telephone: 508-548-8700
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: afarris@usgs.gov
Process_Step:
Process_Description:
The series of operational MHW points extracted from the cross-shore lidar profiles were converted to a .dbf file storing the lidar positional uncertainty, the bias correction value, and the uncertainty of the bias correction for each point of the original lidar data. During the rate calculation process DSAS uses linear referencing to retrieve the uncertainty and bias values stored in the associated table. For a detailed explanation of the method used to store bias and uncertainty data in a table, please refer to Appendix 2, section 12.3 in the DSAS user guide: Himmelstoss, E.A. 2009. "DSAS 4.0 Installation Instructions and User Guide" in: Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Ergul, Ayhan. 2009. Digital Shoreline Analysis System (DSAS) version 4.0 - An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008-1278. https://woodshole.er.usgs.gov/project-pages/DSAS/version4/images/pdf/DSASv4_3.pdf The 1997 lidar data were processed in 2010 (20100323) and re-processed in 2016 to include a previously missing portion of data. The 2009-2010 lidar data were processed in 2014 (20140317).
Process_Date: 20100323
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: E.A. Himmelstoss
Contact_Organization: U.S. Geological Survey
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Country: USA
Contact_Voice_Telephone: 508-548-8700 x2262
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: ehimmelstoss@usgs.gov
Process_Step:
Process_Description:
The uncertainty table, which contains bias values for the entire state, was renamed for each subregion and the appropriate ID values were followed during the calculations for each subregion within the state. In North Carolina, bias values were averaged for the lidar shorelines included in the dataset. The measurement numbers (M-values) are the same from survey to survey, as they are based on the lidar profile extraction lines which are constant and do not change through time. Where the profile intersects the shorelines, it is the same ID number, therefore, the lidar shorelines are linear referenced to the same M-value. When the DSAS software calls to the uncertainty table, the same averaged bias value is used for the lidar shorelines at a given location. This process step and all subsequent process steps were performed by the same person: M.G. Kratzmann.
Process_Date: 2014
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: M.G. Kratzmann
Contact_Organization: U.S. Geological Survey
Contact_Address:
Address_Type: mailing address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Country: USA
Contact_Voice_Telephone: 508-548-8700
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: mkratzmann@usgs.gov
Process_Step:
Process_Description:
The shoreline uncertainty table (.dbf) was imported into a personal geodatabase in ArcCatalog v10.2 by right-clicking on the geodatabase > Import > Table (single). The uncertainty table was used with the Digital Shoreline Analysis System (DSAS) v4.3 software to perform rate calculations.
Process_Date: 20160509
Process_Step:
Process_Description:
The shoreline uncertainty table was exported from the personal geodatabase back to a stand-alone dBase file using ArcCatalog v10.2 by right-clicking on the database file > Export > To dBase file (single) for publication purposes.
Process_Date: 20160512
Process_Step:
Process_Description:
Keywords section of metadata optimized for discovery in USGS Coastal and Marine Geology Data Catalog.
Process_Date: 20170825
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Alan O. Allwardt
Contact_Position: Contractor -- Information Specialist
Contact_Address:
Address_Type: mailing and physical address
Address: 2885 Mission Street
City: Santa Cruz
State_or_Province: CA
Postal_Code: 95060
Contact_Voice_Telephone: 831-460-7551
Contact_Facsimile_Telephone: 831-427-4748
Contact_Electronic_Mail_Address: aallwardt@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword.
Process_Date: 20200810
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Entity_and_Attribute_Information:
Detailed_Description:
Entity_Type:
Entity_Type_Label: NCcentral_shorelines_uncertainty
Entity_Type_Definition: uncertainty table
Entity_Type_Definition_Source: U.S. Geological Survey
Attribute:
Attribute_Label: OID
Attribute_Definition: Internal feature number.
Attribute_Definition_Source: Esri
Attribute_Domain_Values:
Unrepresentable_Domain:
Sequential unique whole numbers that are automatically generated.
Attribute:
Attribute_Label: ID
Attribute_Definition:
This field is case-sensitive and name specific. The field contains a cross-shore lidar profile ID stored as the M-value (measure value) at each vertex in the calibrated shoreline route. This serves as the link between the lidar shoreline and the uncertainty table and must be a unique number at each point.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 22
Range_Domain_Maximum: 26107
Attribute:
Attribute_Label: UNCY
Attribute_Definition:
This field heading is case-sensitive and name specific. The field contains the plus/minus horizontal uncertainty (meters) in the lidar shoreline position at each cross-shore beach profile. For details on the components that make up this uncertainty, refer to the Methods section of USGS Open-File report 2012-1007 cross-referenced in the metadata.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.59
Range_Domain_Maximum: 35.42
Attribute_Units_of_Measure: meters
Attribute:
Attribute_Label: BIAS
Attribute_Definition:
This field heading is case-sensitive and name specific. The field contains a proxy-datum bias value describing the unidirectional horizontal offset (in meters) between the MHW elevation of the lidar data and HWL shoreline positions.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 17.3
Attribute_Units_of_Measure: meters
Attribute:
Attribute_Label: UNCYB
Attribute_Definition:
This field heading is case-sensitive and name specific. The field contains the uncertainty in the calculated proxy-datum bias value (BIAS) in meters.
Attribute_Definition_Source: U.S. Geological Survey
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0
Range_Domain_Maximum: 9.13
Attribute_Units_of_Measure: meters
Overview_Description:
Entity_and_Attribute_Overview:
The entity and attribute information provided here describes the tabular data associated with the dataset. Please review the individual attribute descriptions for detailed information.
Entity_and_Attribute_Detail_Citation: U.S. Geological Survey
Distribution_Information:
Distributor:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Address:
Address_Type: mailing and physical address
Address: Denver Federal Center
Address: Building 810
Address: MS 302
City: Denver
State_or_Province: CO
Postal_Code: 80225
Country: USA
Contact_Voice_Telephone: 1-888-275-8747
Contact_Electronic_Mail_Address: sciencebase@usgs.gov
Distribution_Liability:
Neither the U.S. Government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of these data or related materials. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: dBase
Format_Version_Number: IV
Format_Specification: .dbf file format storing structured attribute data
Format_Information_Content:
This dBase file contains lidar positional and measurement uncertainties, proxy-datum bias offset values, and total water level uncertainties used when calculating rates in the Digital Shoreline Analysis System (DSAS) software with associated metadata.
File_Decompression_Technique: no compression applied
Transfer_Size: 1.51
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information: Access_Instructions:
The first link downloads the contents of the data page as a zip file, the second link is to the landing page of the data, the third and fourth links are to the main landing page of the data release.
Fees: None
Technical_Prerequisites:
These data are available in dBase file format. The user must have software capable of reading or importing the dBase formatted data file.
Metadata_Reference_Information:
Metadata_Date: 20240319
Metadata_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: M.G. Kratzmann
Contact_Organization: U.S. Geological Survey
Contact_Address:
Address_Type: mailing address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Country: USA
Contact_Voice_Telephone: 508-548-8700
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: whsc_data_contact@usgs.gov
Contact_Instructions:
The metadata contact email address is a generic address in the event the person is no longer with USGS. (updated on 20240319)
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001-1998
Metadata_Time_Convention: local time

This page is <https://cmgds.marine.usgs.gov/catalog/whcmsc/SB_data_release/DR_F74X55X7/NCcentral_shorelines_uncertainty.dbf.html>
Generated by mp version 2.9.51 on Wed Jun 26 15:25:00 2024