A matrix of model simulations (72 total simulations) of the ADCIRC/SWAN (version 53.04;
https://adcirc.org/home/documentation/users-manual-v53/; Dietrich et al. [2011]) modeling system were conducted with different wind directions (12) and intensities (6). A constant wind for each direction centered on the mid-value (0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330 deg N) and with speeds centered at the mid-value of each bin (1, 3, 5, 7, 10, 25 m/s) were imposed for the entire model domain.
The unstructured grid is the one from the Hurricane Surge On-demand Forecast System (HSOFS,
https://www.weather.gov/sti/coastalact_surgewg; Moghimi et al. [2020]). HSOFS is an unstructured finite element grid that extends westward to the 65 W longitude and resolves the entire east coast of the United States and the Gulf of Mexico. The grid contains 1.8 million grid points resulting in horizontal resolutions as low as 130m with most coastal grid elements being 300-400m in size. The grid extends overland to approximately the 10 m elevation (NAVD88).
The model was run in coupled mode, initialized from rest, and run until steady-state was achieved. The maximum water levels, significant wave heights, and peak periods were extracted from the end of each simulation.
Many papers describe the development and usage of the ADCIRC computational model, but basic details can be found in Luettich et al. (1992) and Dietrich et al. (2011).
References:
Dietrich, J.C., Zijlema, M., Westerink, J.J., Holthuijsen, L.H., Dawson, C., Luettich Jr, R.A., Jensen, R.E., Smith, J.M., Stelling, G.S. and Stone, G.W., 2011, Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coastal Engineering, Vol 58(1), pp.45-65.
Luettich, R.A.; Westerink, J.J.; Scheffner, N.W. 1992, ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries; Report 1: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL; Technical Report CERC-TR-DRP-92-6; U.S. Army Corps of Engineers, U.S. Department of the Army: Washington, DC, USA.
Moghimi, S., Van der Westhuysen, A., Abdolali, A., Myers, E., Vinogradov, S., Ma, Z., Liu, F., Mehra, A. and Kurkowski, N., 2020. Development of an ESMF based flexible coupling application of ADCIRC and WAVEWATCH III for high fidelity coastal inundation studies. Journal of Marine Science and Engineering, Vol. 8(5), p.308.