Any spurious soundings or navigation points were removed during processing.
Interferometric bathymetry collected during the second survey of 2010-072-FA were used to create this grid. Data from the second survey (on 20101119) reoccupied lines from the first survey and are contained here to provide a comparison for select areas to analyze bedform and seafloor change over a 1 month period. Data from the first survey are contained in a separate grid.
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report:
The navigation for these data was acquired with a Coda Octopus F180 Differential Global Positioning System + Wide Area Augmentation System (DGPS+WAAS); they are accurate to + or - 1 to 2 meters, horizontally. All DGPS data are referenced to WGS 84, and vertical distance between the pole-mounted interferometric sonar head, 0.5m below the sea surface, and the DGPS antenna located on the same pole on the bow of the R/V Rafael, 2.5 m above the sea surface, are corrected.
Vertical_Positional_Accuracy:
Vertical_Positional_Accuracy_Report:
The theoretical vertical accuracy of the SEA Ltd SwathPlus interferometric sonar is 1 % of water depth, approximately 0.01 to 0.44 m within the study area. An Octopus F180 Attitude and Positioning system was used to correct for vessel roll, pitch, heave, and yaw, which has a theoretical vertical accuracy of a few mm. Tidal offsets were corrected to MLLW using RTK GPS heights. Field tests using submerged targets suggest that the vertical accuracy of the RTK tidal correction is less than 30 cm. Gridding algorithms and cell sizes for these data could introduce errors as great as 3 m along the edges of the data. Gridding-induced errors are likely much smaller (< 0.2 m) for most of the study. Changes in ship draft due to water and fuel usage were not considered. Total vertical accuracy for these data are assumed to be + or - 50 cm.
Source_Information:
Source_Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: unknown
Title: Information unavailable from original metadata
Type_of_Source_Media: disc
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 20101116
Source_Currentness_Reference: ground condition
Source_Citation_Abbreviation: data acq.
Source_Contribution:
Trackline acquisition at sea:
These bathymetric data were collected with a SEA Ltd Swathplus interferometric sonar (234 kHz) mounted on the bow of the R/V Rafael of Woods Hole, MA. The data were acquired with SwathPlus Software (version: 3.7.10). Trackline spacing was 70 meters apart.
Process_Step:
Process_Description:
SwathPlus Software (version: 3.7.10) was used to acquire the raw swath data (*.sxr) and output a processed soundings file (*.sxp). Several bathy filters were applied to the processed file within SwathPlus to remove erroneous soundings and reduce the density of the data. Corrections were also applied for speed of sound changes (using sound velocity profiles), ship motion, GPS antennae offsets, and transducer depth and angle below the surface. Bathy filters included a low amplitude (100%), range (1-m below the surface), box (0.5-m to avoid nadir), alongtrack 1 (depth difference of 10-m, window size 10-m, and learn rate of 0.6), alongtrack 2 (depth difference of 1-m, window size 1-m, and learn rate of 0.9), and a mean filter (0.1-m).
Process_Date: 2012
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Jane Denny
Contact_Organization: U.S. Geological Survey
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: (508) 548-8700x2311
Contact_Facsimile_Telephone: (508) 457-2310
Contact_Electronic_Mail_Address: jdenny@usgs.gov
Process_Step:
Process_Description:
CARIS (version: HIPS and SIPS 7.1; service pack 2) was used to further process, finalize, and create a surface from the bathy files (*.sxp) from SwathPlus. CARIS processing with HIPS (hydrographic information processing system) has a workflow that ensures the user has done all necessary corrections to the soundings before creating a final gridded surface. The workflow starts with creating a vessel file (the R/V Rafael for this cruise). The vessel file contains any information related to GPS, MRU, and water level offsets that weren't included during acquisition using SwathPlus. Additionally, the user can report any errors in offsets (i.e. MRU to transducer measurement error, usually around 1-2 cm), which will later be used to calculate TPU (total propagated uncertainty), which is a requirement for CUBE (Combined Uncertainty and Bathymetry Estimator) editing (Calder, 2003). The next steps in the HIPS workflow include creating a project and converting the *.sxp data to CARIS HDCS (hydrographic cesar) format. Sound velocity corrections are the next step in data processing. Errors in soundings due to additional sound refraction not accounted for by sound velocity profiles were done using the CARIS refraction editor. These artifacts can be recognized in a cross-swath profile of a relatively flat patch of sea floor. When viewing the swath data across a profile, the sea floor will appear to have a "frown" or "smile" when in fact the data should be flat across the profile. Insufficient and/or erroneous sound velocity information results in an under or over-estimate of water depth, which increases with distance from the center of the swath. Next a tide correction was applied in CARIS (described in the next process step) and merged with the soundings, and then the TPU was calculated in order to utilize the CUBE editor, which is an uncertainty based data cleaning tool that creates a 'best estimate' surface for the soundings. The cube surface is then used to further QC the soundings. Some lines required swath editing or subset editing as well as automated filtering, especially in the shallow water areas.The final step in the workflow was to finalize the surface (at 2 m resolution) and export it from CARIS in XYZ format, which can then be imported to other programs.
Process_Date: 2013
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Elizabeth A. Pendleton
Contact_Organization: U.S. Geological Survey
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: (508) 548-8700x2259
Contact_Facsimile_Telephone: (508) 457-2310
Contact_Electronic_Mail_Address: ependleton@usgs.gov
Process_Step:
Process_Description:
In order to apply a tidal correction to the soundings, an offset from Mean Sea Level MSL) to Mean Lower Low Water (MLLW) (-2.48 m) was entered into the HYPACK configuration file for the RTK device (dev 1) setup prior to the survey. This value was calculated by setting a DGPS antenna on a number of survey stations around Martha's Vineyard and using the bench mark sheets in conjunction with the DGPS height calculations to determine the offset from MLLW to MSL. Calculated HYPACK RTK water level heights were then extracted from the raw HYPACK files using an AWK script (parseNovatelHypackTides.awk), which calculates the MLLW tide value for each Julian day of the survey. An offset of 2.57 meters was added to each calculated tide value (TID 2) to compensate for the RTK antenna to water line offset, and then the sign was inverted. Since HYPACK reports water level heights relative to MLLW, heights above the MLLW datum are reported as negative values because they are above the datum per standard surveying XYZ convention. The file resulting from running the AWK script produces a file of MLLW tidal height corrections formatted in the CARIS TID file format: YYYY/MM/DD HH:MM x.xx where x.xx is the correct water level height. The RTK heights were then merged into the processed CARIS depth soundings in the bathy processing workflow using the Tide load and Merge functions.
Process_Date: 2013
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Elizabeth A. Pendleton
Contact_Organization: U.S. Geological Survey
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: (508) 548-8700 x2259
Contact_Facsimile_Telephone: (508) 457-2310
Contact_Electronic_Mail_Address: ependleton@usgs.gov
Process_Step:
Process_Description:
The 2 meter horizontal resolution tide corrected base surface that was finalized and exported from CARIS was gridded from a x,y,z text file. In ArcCatalog (version 9.3.1) an x,y,z file can be converted to a shapefile by right-clicking and choosing 'create feature class'. After a shapefile is created, Spatial Analyst-- 'convert features to raster' was used to create a grid from the shapefile. An output cell-size of 2 meters was used, and NoData values were left uninterpolated for this surface.
Process_Date: 2013
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Elizabeth Pendleton
Contact_Organization: U.S. Geological Survey
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Country: USA
Contact_Voice_Telephone: 508-548-8700 x2259
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: ependleton@usgs.gov
Process_Step:
Process_Description:
Edits to the metadata were made to fix any errors that MP v 2.9.36 flagged. This is necessary to enable the metadata to be successfully harvested for various data catalogs. In some cases, this meant adding text "Information unavailable" or "Information unavailable from original metadata" for those required fields that were left blank. Other minor edits were probably performed (title, publisher, publication place, etc.). Attempted to modify http to https where appropriate. Added the DOI link in the Identification section - both as the first link and as part of the Larger Work citation. Removed LIDAR bounding coordinates - an artifact of Esri and MP processing. The source information was incomplete and had to be modified to meet the standard. The metadata date (but not the metadata creator) was edited to reflect the date of these changes. The metadata available from a harvester may supersede metadata bundled within a download file. Compare the metadata dates to determine which metadata file is most recent.
Process_Date: 20171006
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description: USGS Thesaurus keywords added to the keyword section.
Process_Date: 20180720
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword.
Process_Date: 20200908
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov