30 meter Esri binary grids of coastal response type probabilities with respect to projected sea levels for the Northeastern U.S. from Maine to Virginia for the 2020s, 2030s, 2050s and 2080s (Albers, NAD 83)

Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]

Metadata:

Identification_Information:
Citation:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 2015
Title:
30 meter Esri binary grids of coastal response type probabilities with respect to projected sea levels for the Northeastern U.S. from Maine to Virginia for the 2020s, 2030s, 2050s and 2080s (Albers, NAD 83)
Edition: 1.0
Geospatial_Data_Presentation_Form: raster digital data
Series_Information:
Series_Name: data release
Issue_Identification: DOI:10.5066/F73J3B0B
Publication_Information:
Publication_Place: Woods Hole Coastal and Marine Science Center, Woods Hole, MA
Publisher: U.S. Geological Survey, Coastal and Marine Geology Program
Online_Linkage: https://doi.org/10.5066/F73J3B0B
Online_Linkage: Larger_Work_Citation:
Citation_Information:
Originator: E.E. Lentz
Originator: S.R. Stippa
Originator: E.R. Thieler
Originator: N.G. Plant
Originator: D.B. Gesch
Originator: R.M. Horton
Publication_Date: 2015
Title:
Coastal landscape response to sea-level rise assessment for the northeastern United States
Edition: 1
Series_Information:
Series_Name: data release
Issue_Identification: DOI:10.5066/F73J3B0B
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.5066/F73J3B0B
Online_Linkage:
Description:
Abstract:
The U.S. Geological Survey has been forecasting sea-level rise impacts on the landscape to evaluate where coastal land will be available for future use. The purpose of this project is to develop a spatially explicit, probabilistic model of coastal response for the Northeastern U.S. to a variety of sea-level scenarios that take into account the variable nature of the coast and provides outputs at spatial and temporal scales suitable for decision support. Model results provide predictions of adjusted land elevation ranges (AE) with respect to forecast sea-levels, a likelihood estimate of this outcome (PAE), and a probability of coastal response (CR) characterized as either static or dynamic. The predictions span the coastal zone vertically from -12 meters (m) to 10 m above mean high water (MHW). Results are produced at a horizontal resolution of 30 meters for four decades (the 2020s, 2030s, 2050s and 2080s). Adjusted elevations and their respective probabilities are generated using regional geospatial datasets of current sea-level forecasts, vertical land movement rates, and current elevation data. Coastal response type predictions incorporate adjusted elevation predictions with land cover data and expert knowledge to determine the likelihood that an area will be able to accommodate or adapt to water level increases and maintain its initial land class state or transition to a new non-submerged state (dynamic) or become submerged (static). Intended users of these data include scientific researchers, coastal planners, and natural resource management communities.
Purpose:
These GIS layers provide the probability of observing a static vs. dynamic coastal response (CR) with respect to predicted sea-level rise for the Northeastern U.S. for the 2020s, 2030s, 2050s and 2080s. These data are based on the following inputs: sea-level rise, vertical land movement rates due to glacial isostatic adjustment, elevation data, and land cover data. The output displays a probability based on binary end members for the forecast year as defined by a probabilistic framework (a Bayesian network). Because the static vs dynamic coastal response is a binary relationship, the dynamic (i.e. landform or landscape change) coastal response can be derived by subtracting the static response from 1 (and vice versa). These data layers primarily show the distribution of likely coastal response types over a large spatial scale and should therefore be used qualitatively (see Horizontal Positional Accuracy Report).
Supplemental_Information:
These data layers are a model output produced as part of the U.S. Geological Survey Sea-level Rise and Decision Support Project (http://wh.er.usgs.gov/slr/), and contains the probability of observing a static vs. dynamic coastal response to sea-level increases for the Northeastern United States at specified time intervals.
Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 2015
Currentness_Reference: publication
Status:
Progress: Complete
Maintenance_and_Update_Frequency: None planned
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -77.830618
East_Bounding_Coordinate: -66.813170
North_Bounding_Coordinate: 46.642941
South_Bounding_Coordinate: 35.344738
Keywords:
Theme:
Theme_Keyword_Thesaurus: USGS Metadata Identifier
Theme_Keyword: USGS:b231c139-3ef7-4387-b01b-301e800007f3
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: sea-level rise
Theme_Keyword: landscape change
Theme_Keyword: probabilistic predictions
Theme_Keyword: Bayesian network
Theme_Keyword: U.S. Geological Survey
Theme_Keyword: USGS
Theme_Keyword: Coastal and Marine Geology Program
Theme_Keyword: CMGP
Theme_Keyword: Woods Hole Coastal and Marine Science Center
Theme_Keyword: WHCMSC
Theme_Keyword: Gridded Raster Dataset
Theme_Keyword: Esri binary grid
Theme:
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: biota
Theme_Keyword: environment
Theme_Keyword: oceans
Theme_Keyword: imageryBaseMapsEarthCover
Theme_Keyword: geoscientificInformation
Theme_Keyword: elevation
Theme:
Theme_Keyword_Thesaurus: USGS Thesaurus
Theme_Keyword: sea-level change
Theme_Keyword: geospatial datasets
Theme_Keyword: mathematical modeling
Place:
Place_Keyword_Thesaurus: None
Place_Keyword: Maine
Place_Keyword: New Hampshire
Place_Keyword: Boston
Place_Keyword: Ocean City
Place_Keyword: Atlantic City
Place_Keyword: Long Island
Place_Keyword: Massachusetts
Place_Keyword: Connecticut
Place_Keyword: New York
Place_Keyword: Delaware
Place_Keyword: New Jersey
Place_Keyword: Maryland
Place_Keyword: Chesapeake Bay
Place_Keyword: Norfolk
Place_Keyword: Jersey Shore
Place_Keyword: United States
Place_Keyword: North America
Place_Keyword: Atlantic Ocean
Place_Keyword: New England
Place_Keyword: Virginia
Access_Constraints: None
Use_Constraints:
Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Please recognize the U.S. Geological Survey as the originator of the dataset.
Point_of_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: E. Robert Thieler
Contact_Organization: U.S. Geological Survey
Contact_Position: Research Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Country: USA
Contact_Voice_Telephone: 508-548-8700 x2350
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: rthieler@usgs.gov
Browse_Graphic:
Browse_Graphic_File_Name: ne_cr2080
Browse_Graphic_File_Description: Map example showing Coastal Response Predictions for the 2080s
Browse_Graphic_File_Type: JPEG
Data_Set_Credit:
Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Please recognize the U.S. Geological Survey as the originator of the dataset.
Native_Data_Set_Environment:
Microsoft Windows 7 Version 6.1 (Build 7601) Service Pack 1. Esri ArcGIS 10.2.2.3552
Cross_Reference:
Citation_Information:
Originator: E.E. Lentz
Originator: S.R. Stippa
Originator: E.R. Thieler
Originator: N.G. Plant
Originator: D.B. Gesch
Originator: R.M. Horton
Publication_Date: 2015
Title:
Evaluating coastal landscape response to sea-level rise in the northeastern United States—Approach and Methods
Edition: 2
Series_Information:
Series_Name: Open File Report
Issue_Identification: 2014-1252
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: http://dx.doi.org/10.3133/ofr20141252
Online_Linkage: http://pubs.usgs.gov/of/2014/1252/
Data_Quality_Information:
Attribute_Accuracy:
Attribute_Accuracy_Report:
These grids represent point data that have been previously attributed. They have gone through a series of QA/QC procedures, and is therefore believed to accurately reflect the modeling process and underlying grids used to attribute the point data.
Logical_Consistency_Report:
Point data were converted from grid cells covering the full extent of the study area. This grid represents the conversion of these points back to their corresponding grid cell with no interpolation.
Completeness_Report:
Data from approximately 42,000,000 coastal locations throughout the Northeast from Maine to Virginia were used to make coastal response predictions. Model inputs (raster format) were either upscaled or downscaled to provide inputs at the 30 m horizontal resolution of the land cover data. Each cell in this data layer displays the probability of a static or dynamic response on a scale of 0 to 1, respectively. Because the response probability is a binary output, values greater than 0.5 are dynamic whereas values less than 0.5 are static (values equal to 0.5 highlight greatest uncertainty). Forecast values were calculated for the time periods of 2020 to 2080, and will vary if performed on a different time period if different models are used or if different model inputs (such as the year of elevation data, vertical land movement rate estimates, revised sea-level estimates, updated land cover information), discretization of such inputs, or parameterizations were chosen.
Positional_Accuracy:
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report:
A probabilistic model (Bayesian Network) is used to generate the forecast of coastal response type shown in this data layer. Because the overall horizontal accuracy of the dataset depends on the accuracy of the model, the forcing values used, expert knowledge, the underlying inputs (i.e., sea-level projections, elevation, vertical land movement rates, land cover), and so forth, the spatial accuracy of this dataset cannot be meaningfully quantified. These maps are intended to provide a qualitative and relative regional assessment of sea-level impacts to the landscape at the 30 m horizontal resolution displayed. Users are advised not to use the dataset to determine specific values quantitatively at any particular geographic location.
Vertical_Positional_Accuracy:
Vertical_Positional_Accuracy_Report:
Data from the National Elevation Dataset (NED) were referenced to MHW and contained a vertical accuracy specification as follows: NED 1/9 Arc-Second DEM +/- 0.42 m. NED 1/3 Arc-Second DEM +/- 1.25 m. A small subset of the NED dataset (0 to 3.5 meters) remained referenced to NAVD88. Coastal Relief Model (CRM) DEM data were not referenced to MHW but remained primarily MLW with a vertical accuracy of +/- 1.0 m. Because the model uses initial elevation ranges (-10 to -1, -1 to 0, 0 to 1, 1 to 5, 5 to 10 m) as opposed to discrete values, a significant portion of the CRM DEM (~80%) remained within the same elevation range when applying MHW conversion. Furthermore, CRM vertical datum conversion to MHW did not cover the full extent of the study area (~9% loss) and an additional percentage (~10%) of the MHW conversion exceeded the vertical accuracy (+/- 1.0 m). Depending on the elevation dataset extracted to each point, it can be expected that the vertical datum of the output at each point remained the same.
Lineage:
Source_Information:
Source_Citation:
Citation_Information:
Originator: Columbia University
Publication_Date: Unpublished material
Title: Sea-level
Type_of_Source_Media: Mathworks MATLAB matrix format
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 201403
Source_Currentness_Reference:
Sea-level projections as provided by collaborators at time of download. See Calendar Date.
Source_Citation_Abbreviation: SC_SL
Source_Contribution:
Global sea-level projections (SL) generated using Representative Concentration Pathways (RCPs) scenarios 4.5 and 8.5 for the 2013 Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) are used as model inputs. Three components comprise sea-level projections: those related to oceans (both local ocean height and global thermal expansion), ice melt, and global land water storage. For each of these three components of sea-level change, set percentiles (10th, 25th, 75th, and 90th) of the distribution were estimated. The sum of all components at each percentile is assumed to give the aggregate sea-level rise projection. This method does not take into account potential correlation among components. Decadal projections for the 2020s, 2030s, 2050s, and 2080s, were generated by averaging over ten year intervals and subtracting average values for 2000-2004. Data were provided by collaborators at Columbia University in Mathworks MATLAB matrix format. See Open File Report 2014-1252 .
Source_Information:
Source_Citation:
Citation_Information:
Originator: U.S. Geological Survey.
Publication_Date: 201207
Title: National Elevation Dataset (NED) 1/9 arc-second DEM
Online_Linkage: http://ned.usgs.gov/
Type_of_Source_Media: Esri binary grid format
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 201405
Source_Currentness_Reference:
Date of download from NED website. See calendar date and online link.
Source_Citation_Abbreviation: SC_NED_19
Source_Contribution:
Elevation data (E) acquired from the National Elevation Dataset (NED) (http://ned.usgs.gov/). Partial coverage from light detection and ranging (lidar) is available at 1/9 arc-sec (approximately 3 m cells) from a culmination of bare earth lidar datasets. NED datasets are provided in the geographic coordinates of decimal degrees and are referenced to the North American Datum of 1983 (NAD83)and North American Vertical Datum of 1988 (NAVD88). Lidar data in the NED were collected by a variety of Federal, State, and local partners between 2001 and 2011. NED 1/9 are updated monthly and in conjunction with bi-monthly updates where possible. We use the available 1/9 arc-sec data from the NED June 1, 2012 release, supplemented with the 1/3 arc-sec data from the August 1, 2012 release, only where gaps in the 1/9 coverage exist (see citation below). Using the highest resolution elevation available allows detection of changes in low-lying coastal topography at increments small enough to correspond with near future (approximately 100 year) sea-level forecasts.
Source_Information:
Source_Citation:
Citation_Information:
Originator: U.S. Geological Survey.
Publication_Date: 201208
Title: National Elevation Dataset (NED) 1/3 arc-second DEM
Online_Linkage: http://ned.usgs.gov/
Type_of_Source_Media: Esri binary grid format
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 201405
Source_Currentness_Reference:
Date of download from NED website. See calendar date and online link.
Source_Citation_Abbreviation: SC_NED_13
Source_Contribution:
Supplement elevation data (E) acquired from the National Elevation Dataset (NED) (http://ned.usgs.gov/). Complete regional coverage of the land (topography) for the northeast is available from the NED at 1/3 arc-second (approximately 9 m cells). The 1/3 arc-second data come from a combination of topographic maps, aerial photos, and lidar. NED datasets are provided in the geographic coordinates of decimal degrees and are referenced to the North American Datum of 1983 (NAD83)and North American Vertical Datum of 1988 (NAVD88). Lidar data in the NED were collected by a variety of Federal, State, and local partners between 2001 and 2011. NED 1/3 data are updated every other month to integrate improved source data. We use the available 1/9 arc-second data from the NED June 1, 2012 release (see citation above), supplemented with the 1/3 arc-sec data from the August 1, 2012 release, only where gaps in the 1/9 coverage exist.
Source_Information:
Source_Citation:
Citation_Information:
Originator: National Oceanic and Atmospheric Administration.
Publication_Date: 19990101
Title: Coastal Relief Model (CRM)
Online_Linkage: http://www.ngdc.noaa.gov/mgg/coastal/crm.html
Online_Linkage: http://www.ngdc.noaa.gov/mgg/coastal/model.html
Type_of_Source_Media: ASCII grid format
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 201405
Source_Currentness_Reference:
Date of download from CRM website. See calendar date and online link.
Source_Citation_Abbreviation: SC_CRM
Source_Contribution:
Bathymetric data from the Coastal Relief Model (CRM) are produced by the National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center. These data are available at a 3 arc-second (~90 meter) resolution and are produced using hydrographic soundings data (1930s to present) from the National Ocean Service (NOS) and a number of academic institutions (http://www.ngdc.noaa.gov/mgg/coastal/model.html). CRM bathymetric data (E) are used where NED elevation data (E) are unavailable in submerged areas such as bays, estuaries, and open ocean coasts.
Source_Information:
Source_Citation:
Citation_Information:
Originator: Giovanni F. Sella
Originator: Seth Stein
Originator: Timothy H. Dixon
Originator: Michael Craymer
Originator: Thomas S. James
Originator: Stephane Mazzotti
Originator: Roy K. Dokka
Publication_Date: 20070126
Title:
Observation of glacial isostatic adjustment in "stable" North America with GPS
Online_Linkage: http://onlinelibrary.wiley.com/doi/10.1029/2006GL027081/full
Type_of_Source_Media: Plain Text Document (.txt)
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 201307
Source_Currentness_Reference:
Date of download from article's supporting information. See calendar date and online link.
Source_Citation_Abbreviation: SC_VLM_GPS
Source_Contribution:
A combination of GPS data and long range tide data were used to estimate vertical land motion (VLM) rates due to glacial isostatic adjustment (GIA) for the conterminous United States and Canada. These point data represent vertical velocities recently processed to account for glacial isostatic adjustment from continuously recording GPS devices throughout North America at 362 locations. Used in combination with citation below.
Source_Information:
Source_Citation:
Citation_Information:
Originator: National Oceanic and Atmospheric Administration (NOAA)
Originator: Chris Zervas
Originator: Stephen Gill
Originator: William Sweet
Publication_Date: 201305
Title:
Estimating Vertical Land Motion from Long-Term Tide Gauge Records
Online_Linkage: Online_Linkage: http://tidesandcurrents.noaa.gov/sltrends/mslUSTrendsTable.htm
Type_of_Source_Media: Plain Text (.txt)
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 201307
Source_Currentness_Reference:
For date of download see calendar date. Data copied from 'Table 1' in article pages 7-10. Corresponding lat/lon values added using NOAA data tables. See online link #2.
Source_Citation_Abbreviation: SC_VLM_TIDE
Source_Contribution:
A combination of GPS data and long range tide data were used to estimate vertical land motion (VLM) rates due to glacial isostatic adjustment (GIA) for the conterminous United States and Canada. Estimates generated using a methodology that extracts oceanographic effects from relative sea-level rates to determine local VLM rates from long range tide station records were incorporated at 69 locations along the Atlantic, Gulf, and Pacific coasts (Zervas and others, 2013). Used in combination with previous citation.
Source_Information:
Source_Citation:
Citation_Information:
Originator: University of Massachusetts.
Publication_Date: Unpublished material
Title: Ecological Systems Map (ESM) Plus
Type_of_Source_Media: Tagged Image File Format (TIFF)
Source_Time_Period_of_Content:
Time_Period_Information:
Single_Date/Time:
Calendar_Date: 201406
Source_Currentness_Reference:
Land cover TIFF as provided by collaborators at time of download. See Calendar Date
Source_Citation_Abbreviation: SC_LC
Source_Contribution:
Land cover (LC) information was obtained from the Ecological Systems Map (ESM) Plus provided by the University of Massachusetts Designing Sustainable Landscapes (DSL) project Landscape Conservation and Design (LCAD) model (http://jamba.provost.ads.umass.edu/web/lcc/DSL_documentation_landscape_design.pdf). Because sea-level rise predictions will be integrated into the LCAD model, using a land cover layer identical to that of collaborators was an essential input for this project. ESM Plus uses The Nature Conservancy (TNC) 2010 Northeast Terrestrial Wildlife Habitat Classification System (ESM) as a base, to which changes or additions were made using datasets and information deemed important to the LCAD model. LCAD documents the following changes to ESM to generate ESM Plus: road and train track misalignment issues were corrected (Open Street Map roads). National Wetlands Inventory (NWI) 2013 estuarine and marine classes were used to replace ESM estuarine classes. Five development and two agricultural classes from the 2006 National Land Cover Dataset (NLCD) were used to replace ESM single developed and agriculture classes. High resolution streams, road-stream crossing, and dams were added from the National Hydrography Dataset (NHD) maps at 1:24,000 resolution by converting point data to 30 m rasters and replacing those cells in the ESM.
Process_Step:
Process_Description:
Interpolate surfaces for sea-level projections specific to: 1) time step and 2) percentile using Esri ArcGIS (v. 10.2.1). Sea-level data were exported from MATLAB (v. R2013b) in XYZ ASCII format as a .CSV file. XY data were provided in geographic coordinates, and data were imported to ArcGIS > add xyz data in a geographic projection (World Geodetic System 1984 or WGS84). Point data were converted to a point feature class within a geodatabase in ArcCatalog by right-mouse clicking the point data file > Create Feature Class > From XY table. Point data were then interpolated to generate a surface of sea-level estimates using natural neighbor interpolation: ArcToolbox > Toolboxes > 3D Analyst Tools.tbx > Natural Neighbor (option: automatic densification). The resulting raster surface provided cells at 0.66 degrees (or approximately 74,000 m) resolution, and was imported into a geodatabase (with sea-level and VLM rasters). Sea-level grid values were used in calculations of coastal response type probabilities. Extraction of sea-level values for use in modeling is described in metadata sections to follow. This process step and all subsequent process steps performed by Sawyer Stippa.
Process_Date: 2014
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Sawyer Stippa
Contact_Organization: USGS
Contact_Position: Geologist
Contact_Address:
Address_Type: physical address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Country: USA
Contact_Voice_Telephone: 508-548-8700 x2230
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: sstippa@usgs.gov
Process_Step:
Process_Description:
Vertically converted elevation datasets from NAVD 88 to mean high water (MHW) were included to take into account tidal variation. The vertical datum was adjusted to MHW along the coastline using a one-step conversion grid generated through the National Oceanic and Atmospheric Administration (NOAA) Vertical Datum Transformation (VDatum, v. 3.1) tool which was added to the NED data in ArcGIS (v. 10.2.1) > Spatial Analyst Tools > Plus. Vertical conversion was not deemed necessary for the CRM data (see vertical accuracy). The conversion grid is provided at a resolution of 0.0017 degrees, which is the full resolution as supplied with VDatum. Vertical datum shifts to MHW were propagated landward via Euclidean allocation, which smoothes vertical ledges at edges of VDatum zones. Elevation grid values were used in calculations of coastal response type probabilities. Extraction of elevation values for use in modeling is described in metadata sections to follow.
Process_Date: 2014
Process_Step:
Process_Description:
Vertical land motion estimates in the form of point data (rates) were used to interpolate a surface to provide continuous VLM rate estimates across the region using ArcGIS v. 10.2.1. Point data (XYZ format) were downloaded from Sella and others, 2007 and Zervas and others, 2013 and imported to Esri ArcGIS (add XYZ data) and a feature class of the points was created. The points (geographic coordinates, projected in WGS84) were used to interpolate a raster surface using the multiquadratic radial basis function: ArcToolbox > Toolboxes > Geostatistical Analyst Tools.tbx > Radial Basis Functions (selected tool options: Multiquadratic Function). The resulting surface was gridded at a per cell resolution of 0.23 degrees (or approximately 24,000 m) and imported to the geodatabase containing sea-level projections and elevation. VLM grid values were used in calculations of coastal response type probabilities. Extraction of VLM values for use in modeling is described in metadata sections to follow.
Process_Date: 2014
Process_Step:
Process_Description:
Land cover data was assigned to generalized categories of similar ecology, geomorphology and/or anticipated physical response to sea-level rise. Every land cover class, as determined from ESM Plus name and/or description, was assigned a code corresponding to one of the following six categories: 1) Subaqueous: bays, lakes, rivers, marine and estuarine subtidal, and deepwater. 2) Marsh: Salt and freshwater marshes, bogs, swamps, fens, wetland forests, intertidal aquatic beds and reefs. 3) Rock: rocky outcrops and shores, marine and estuarine intertidal rock bottom. 4) Beach: dune and swale/sandy beach (including bluffs), marine and estuarine intertidal unconsolidated shore. 5) Forest: forests, woodlands, grasslands, agricultural, shrublands. 6) Developed: all NLCD developed classes (open space, low, medium, and high density), roads, active and abandoned railroad tracks. Assignments were made by joining an Excel table of the classified land cover categories with the attribute table of the raster land cover data using Esri ArcGIS (v. 10.2.1): ArcToolbox > Toolboxes > Data Management Tools.tbx > Add Join.
Process_Date: 2014
Process_Step:
Process_Description:
Generate a database of points at land cover locations from which model inputs might be culled. An ESM Plus database (EPD) of points was created using the extent of the converted 1/3 arc-second DEM at -15 to 10 m. The 1/3 data were selected because they provided continuous regional coverage. The 1/3 DEM data was reclassified by converting all data within the stated ranges (-15 to 10) to 1 and all other to null: ArcToolbox > Toolboxes > Spatial Analyst Tools.tbx > Reclassify (options: min to -15 no data. 10 to max no data). The resulting raster was converted to a polygon to be used in clipping the ESM Plus raster: ArcToolbox > Toolboxes > Conversion Tools.tbx > Raster To Polygon (option: no simplify). The ESM Plus raster clip was converted to points using Esri ArcGIS software (v. 10.2.1) to form the EPD: ArcToolbox > Toolboxes > Conversion Tools.tbx > Raster to Point. Note the resulting EPD retained the land cover values after conversion.
Process_Date: 2014
Process_Step:
Process_Description:
Use elevation and land cover information to delineate study area extent. Elevation and land cover information was used to define the coastal extent as follows: a) at or below 10 m and at or above -10 m elevation for the BEACH land cover category and b) at or below 5 m and at or above -10 m for all other general land cover categories. The delineation of this area required the creation of several polygons generated from these raster inputs that were then merged together to define the full study area extent. Footprints of the NED and CRM datasets were created using polygon clips of the EPD. The NED footprint was created by reclassifying the 1/3 arc-second DEM within 0 to 5 m: ArcToolbox > Toolboxes > Spatial Analyst Tools.tbx > Reclassify (options: min to 0 no data. 5 to max no data). The resulting raster was converted to a polygon: ArcToolbox > Toolboxes > Conversion Tools.tbx > Raster To Polygon (option: no simplify). A polygon of the ESM Plus BEACH land cover category was created by reclassifying the ESM Plus to only show the beach classification: ArcToolbox > Toolboxes > Spatial Analyst Tools.tbx > Reclassify (options: 1 to 2 no data. 4 to 6 no data). The resulting raster was converted to a polygon: ArcToolbox > Toolboxes > Conversion Tools.tbx > Raster To Polygon (option: no simplify). The beach polygon was clipped further using a reclassified 1/3 arc-second DEM polygon at 5 to 10 m. The beach polygon was merged with the reclassified 1/3 arc-second DEM polygon at 0 to 5m: ArcToolbox > Toolboxes > Data Management Tools.tbx > Merge. A third polygon was merged with the NED footprint that included a reclassified segment of the NAVD88 1/3 arc-second DEM (prior to MHW conversion) at 0 to 3.5 m: ArcToolbox > Toolboxes > Data Management Tools.tbx > Merge. This segment was used to provide continuous coverage starting slightly below MHW. The CRM footprint was created by reclassifying the CRM dataset within -10 to 1 m: ArcToolbox > Toolboxes > Spatial Analyst Tools.tbx > Reclassify (options: min to -10 no data. 1 to max no data). The resulting raster was converted to polygon: ArcToolbox > Toolboxes > Conversion Tools.tbx > Raster To Polygon (option: no simplify).CRM and NED footprints were used separately to allow for faster processing times, though future performance increases may allow for the combination of each footprint.
Process_Date: 2014
Process_Step:
Process_Description:
Cull points from the EPD within the study area extent and extract grid values at coincident locations from VLM, elevation, sea-level projection, and land cover rasters. A NED point database was created by clipping the EPD with the NED footprint. The resulting dataset was consequently divided into 10 subregions to make processing more manageable: ArcToolbox > Toolboxes > Data Management Tools > Create Fishnet (options: 10 rows 1 column): ArcToolbox > Toolboxes > Analysis Tools.tbx > Clip. The CRM point database was created by clipping the EPD with the CRM footprint: ArcToolbox > Toolboxes > Data Management Tools.tbx > Clip. CRM database points that overlapped NED database points were removed: ArcToolbox > Toolboxes > Data Management Tools.tbx > Select Layer By Location (options: intersect new selection): ArcToolbox > Toolboxes > Data Management Tools.tbx > Delete Rows. The resulting CRM point database was divided into 59 regions based on increments of 500,000 points using a Python, v. 2.7 script. For each NED and CRM subregion, raster data from each sea-level projection year and percentile range, vertical land movement, elevation and land cover layers were extracted at each point location: ArcToolbox > Toolboxes > Spatial Analyst Tools.tbx > Extract Multi Values To Points. A script (Python, v. 2.7) was developed to populate an elevation column with 1/3 arc-second data that were overwritten with 1/9 arc-second values if present for all NED subregions. An error column was also populated to distinguish 1/3 arc-second and 1/9 arc-second values for each NED subregion. The NED subregions were further truncated to the 0 to 10 m range for BEACH land cover category and 0 to 5 m range for all other land cover categories, this time based on the extent defined by the 1/9 arc second data where present. CRM points outside of the -10 to 1 m range were removed. Geographic coordinate information (latitude and longitude, WGS84) for each point was also added to the NED and CRM subregions before being exported to csv tables.
Process_Date: 2014
Process_Step:
Process_Description:
The Bayesian network (BN) model was used to generate region-wide geospatial values for CR outputs using elevation data, sea-level projections for selected time intervals, vertical land movement rates, and land cover information. A BN offers the capability to generate robust, spatially-explicit predictions and a corresponding confidence interval with every predicted outcome. Parameters that influence coastal change may all be included in the network design to make a prediction (an updated conditional probability) given a set of observations. The BN results in two outputs: 1) the likelihood of each adjusted elevation range (PAE) being reached given a range of sea-level rise scenarios and 2) the probability of dynamic vs. static coastal response type (CR). Full details of the BN, including conceptual diagrams and probabilistic equations used to describe the model may be found elsewhere (Lentz and others, 2015). Point data from each subregion were exported as tables and imported (sans headers, object ID and shape geometry fields) into MathWorks MATLAB software (v. R2013B) for processing in MATLAB and Netica. Input datasets consisted of 21 primary columns: SL1020, SL1030, SL1050, SL1080, SL2520, SL2530, SL2550, SL2580, SL7520, SL7530, SL7550, SL7580, SL9020, SL9030, SL9050, SL9080 (sea-level predictions where the first two digits indicate percentile range, the second two the prediction year in 20XX); VLM (vertical land motion); DEM (1/3 or 1/9 arc-second DEM values or CRM DEM values); LC (land class category 1-6); latitude; and longitude.

Equations which previously appeared in this process step (describing Bayes theorem) have been modified to provide more explanatory content specific to our Bayesian network function. The updated equations appear in the Open-File Report cross-reference Lentz and others, 2015, version 2. The modifications to the equations do not change the results, but just provide a bit more detail and specifics on the probabilistic approach being used. Because of special characters and other considerations, please reference the Open-File Report for these equations.
Process_Date: 2014
Process_Step:
Process_Description:
CR prediction matrices from completed model runs were combined with lat/long of input matrices and additional Matlab code was used to convert outputs to shapefile format. The resulting shapefiles were brought back into ArcGIS as rasters using a python script (v. 2.7). Point to raster conversion did not require interpolation because the horizontal spacing between input points retained the 30 m horizontal resolution of the original land cover grid. All corresponding rasters were then merged ArcToolbox > Toolboxes > Data Management Tools.tbx > Mosaic to New Raster to generate a single raster of region-wide coverage.
Process_Date: 2014
Process_Step:
Process_Description:
The metadata was modfied to edit the 8th process step which contained equations describing the Bayes theorem specific to the Bayesian network function used in this work. The updated equations appear in the cross-reference Lentz and others, 2015, version 2.
Process_Date: 20151203
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description:
USGS Thesaurus keywords added to the keyword section. Additionally, a DOI number was assigned and the metadata updated to reflect this. Additionally, the page containing the data was moved to a new location, with the data file downloads pointing to the new location.
Process_Date: 20180720
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword (20200908). Fixed a USGS Thesaurus term (20240712).
Process_Date: 20240712
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Spatial_Data_Organization_Information:
Direct_Spatial_Reference_Method: Raster
Raster_Object_Information:
Raster_Object_Type: Grid Cell
Row_Count: 37886
Column_Count: 22017
Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:
Planar:
Map_Projection:
Map_Projection_Name: Albers Conical Equal Area
Map_Projection_Parameters:
False_Easting: 0.0
False_Northing: 0.0
Latitude_of_Projection_Origin: 23.0
Longitude_of_Central_Meridian: -96.0
Standard_Parallel: 29.5
Standard_Parallel: 45.5
Planar_Coordinate_Information:
Planar_Coordinate_Encoding_Method: row and column
Coordinate_Representation:
Abscissa_Resolution: 30.0
Ordinate_Resolution: 30.0
Planar_Distance_Units: Meters
Geodetic_Model:
Horizontal_Datum_Name: North American Datum 1983
Ellipsoid_Name: GRS 1980
Semi-major_Axis: 6378137.0
Denominator_of_Flattening_Ratio: 298.257222101
Entity_and_Attribute_Information:
Overview_Description:
Entity_and_Attribute_Overview:
Layer files (.lyr) have been created for each of the coastal response (CR) time intervals: ne_cr2020, ne_cr2030, ne_cr2050 and ne_cr2080. The data are intended to be viewed using the stretched values and labels as shown in the layer files. Values and label names reflect CR types as stated in the USGS Open-File Report 2014-1252. A color ramp has been chosen that best highlights the dynamic and inundation response types: red indicates higher probabilies of a dynamic response and blue indicates higher probabilities of an inundated response.
Entity_and_Attribute_Detail_Citation: Please refer to the USGS Open-File Report 2014-1252.
Distribution_Information:
Distributor:
Contact_Information:
Contact_Person_Primary:
Contact_Person: E. Robert Thieler
Contact_Organization: U.S. Geological Survey
Contact_Position: Research Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Country: USA
Contact_Voice_Telephone: 508-548-8700 x2350
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: rthieler@usgs.gov
Resource_Description:
NE_region_CR.zip. contains four subfolders with the time interval grids and layer files. The subfolder ne_cr2020 contains the ne_cr2020 Esri binary grid folder, info folder and layer file, ne_cr2030 contains the ne_cr2030 Esri binary grid folder, info folder and layer file, ne_cr2050 contains the ne_cr2050 Esri binary grid folder, info folder and layer file, and ne_cr2080 contains the ne_cr2080 Esri binary grid folder, info folder and layer file. Additionally the FGDC comliant metadata describing the grids is contained in the zip file, along with a browse graphic image.
Distribution_Liability:
Neither the U.S. Government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of these data or related materials. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: AIG
Format_Version_Number: ArcGIS 10.2.1
Format_Information_Content:
This zip file (.zip) contains the Esri 32-bit floating point binary GRID format raster and accessory info files for each time interval, associated metadata for adjusted land elevation probabilities across the northeast United States, layer files and browse graphic image.
File_Decompression_Technique:
Use WinZip or pkUnzip or 7-Zip. Each uncompressed grid within the zip file is over 3.1 GB. Extracting all four grids requires over 12.5 GB of disk space.
Transfer_Size: 240
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information: Access_Instructions: Data are downloadable via the World Wide Web
Fees: None
Technical_Prerequisites:
These data are available in Environmental Systems Research Institute (Esri) raster format. The user must have software capable of reading an Esri binary grid format. Each individual grid is over 3.1 GB and can be extracted individually from the zip file.
Metadata_Reference_Information:
Metadata_Date: 20240712
Metadata_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: Sawyer Stippa
Contact_Organization: U.S. Geological Survey
Contact_Position: Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Country: USA
Contact_Voice_Telephone: 508-458-8700 x2230
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: whsc_data_contact@usgs.gov
Contact_Instructions:
The metadata contact email address is a generic address in the event the metadata contact is no longer with the USGS or the email is otherwise invalid.
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001-1998
Metadata_Time_Convention: local time
Metadata_Access_Constraints: None
Metadata_Use_Constraints: None

This page is <https://cmgds.marine.usgs.gov/catalog/whcmsc/other_datarelease/DR_F73J3B0B/ne_CRmeta.html>
Generated by mp version 2.9.51 on Tue Jul 16 09:57:54 2024