The 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_95th_perc.shp, Geographic, WGS 84)

Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]

Metadata:

Identification_Information:
Citation:
Citation_Information:
Originator: P. Soupy Dalyander
Publication_Date: 2014
Title:
The 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight, May 2010 to May 2011 (GMAINE_95th_perc.shp, Geographic, WGS 84)
Edition: 1.0
Geospatial_Data_Presentation_Form: vector digital data
Series_Information:
Series_Name: Online Database
Issue_Identification: DOI:10.5066/P999PY84
Publication_Information:
Publication_Place: Woods Hole Coastal and Marine Science Center, Woods Hole, MA
Publisher:
U.S. Geological Survey, Coastal and Marine Hazards and Resources Program
Online_Linkage: https://doi.org/10.5066/P999PY84
Online_Linkage: Larger_Work_Citation:
Citation_Information:
Originator: P.S. Dalyander
Originator: B. Butman
Originator: C.R. Sherwood
Originator: R.P. Signell
Publication_Date: 2012
Title:
U.S. Geological Survey Sea Floor Stress and Sediment Mobility Database
Edition: 1.0
Series_Information:
Series_Name: Online Database
Issue_Identification: DOI:10.5066/P999PY84
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Other_Citation_Details:
Suggested citation: Dalyander, P. S., Butman, B., Sherwood, C.R., and Signell, R. P., 2012, U.S. Geological Survey sea floor stress and sediment mobility database: U.S. Geological Survey data release, https://doi.org/10.5066/P999PY84.
Online_Linkage: https://doi.org/10.5066/P999PY84
Description:
Abstract:
The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The purpose of this project is to identify patterns in stress in order to inform habitat delineation or decisions for anthropogenic use of the continental shelf. The statistical characterization spans the continental shelf from the coast to approximately 120 m water depth, at approximately 0.03 degree (2.5-3.75 km, depending on latitude) resolution. Time-series of wave and circulation are created using numerical models, and near-bottom output of steady and oscillatory velocities and an estimate of bottom roughness are used to calculate a time-series of bottom shear stress at 1-hour intervals. Statistical descriptions such as the median and 95th percentile, which are the output included with this database, are then calculated to create a two-dimensional picture of the regional patterns in shear stress. In addition, time-series of stress are compared to critical stress values at select points calculated from observed surface sediment texture data to determine estimates of sea floor mobility.
Purpose:
This GIS layer contains an estimate of the 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight. This output is based on statistical characterization of numerical model estimates of wave and circulation patterns over an approximately one year time frame. This data layer is primarily intended to show the overall distribution of the highest stress values on large spatial scales, and should be used qualitatively. Intended users include scientific researchers and the coastal and marine spatial planning community.
Supplemental_Information:
This data layer is a subset of the U.S. Geological Survey Sea Floor Stress and Sediment Mobility database, and contains the 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight. Gridded stress value (such as the 95th percentile) are calculated by interpolating current model results to the wave model grid, which may result in some water grid cells from the wave model being removed and not included with the output polygons if they partially overlap land cells in the wave model. Sediment mobility statistics (found in other layers) are calculated using wave and current model results at the location of the sample, therefore it is possible in some cases for a sediment mobility statistic to be calculated although it lies within a polygon with no output value, because that specific location may be within a water cell in both models while the containing current grid cell overlaps land in the wave model elsewhere in the cell. The current model used is a finite element grid of higher resolution near the coast than the wave model. The current model grid cell with the center closest to the center of each wave model grid cell and within 0.1 degrees latitude and longitude was used to provide current data for that wave model grid cell. If no current grid cell was within the distance criterion, that wave model cell was excluded. Only those cells with depths less than 500 m are included in this database.
This portion of the database was released in April, 2014.
Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20100501
Ending_Date: 20110501
Currentness_Reference: ground condition
Status:
Progress: Planned
Maintenance_and_Update_Frequency: As needed
Spatial_Domain:
Bounding_Coordinates:
West_Bounding_Coordinate: -74.149994
East_Bounding_Coordinate: -64.516663
North_Bounding_Coordinate: 45.483334
South_Bounding_Coordinate: 39.750000
Keywords:
Theme:
Theme_Keyword_Thesaurus: USGS Metadata Identifier
Theme_Keyword: USGS:60ed7aa8-235a-4499-a506-832442acc730
Theme:
Theme_Keyword_Thesaurus: None
Theme_Keyword: bottom shear stress
Theme_Keyword: U.S. Geological Survey
Theme_Keyword: USGS
Theme_Keyword: Woods Hole Coastal and Marine Science Center
Theme_Keyword: WHCMSC
Theme_Keyword: Coastal and Marine Geology Program
Theme_Keyword: CMGP
Theme_Keyword: Coastal and Marine Hazards and Resources Program
Theme_Keyword: CMHRP
Theme_Keyword: wave
Theme_Keyword: current
Theme_Keyword: SWAN
Theme_Keyword: FVCOM
Theme_Keyword: Grant-Madsen
Theme_Keyword: Coastal and marine spatial planning
Theme_Keyword: CMSP
Theme_Keyword: sea floor habitat
Theme_Keyword: sediment mobility
Theme_Keyword: 95th percentile
Theme:
Theme_Keyword_Thesaurus: ISO 19115 Topic Category
Theme_Keyword: oceans
Theme_Keyword: geoscientificInformation
Theme:
Theme_Keyword_Thesaurus: Data Categories for Marine Planning
Theme_Keyword: predictions
Theme_Keyword: substrate
Theme:
Theme_Keyword_Thesaurus: Marine Realms Information Bank (MRIB) Keywords
Theme_Keyword: numerical modeling
Theme_Keyword: seabed
Theme_Keyword: sediment transport
Theme_Keyword: alteration of benthic habitats
Theme:
Theme_Keyword_Thesaurus: USGS Thesaurus
Theme_Keyword: mathematical modeling
Theme_Keyword: sea-floor characteristics
Theme_Keyword: sediment transport
Theme_Keyword: ocean processes
Theme_Keyword: habitat alteration and disturbance
Theme:
Theme_Keyword_Thesaurus: Coastal and Marine Ecological Classification Standard (CMECS)
Theme_Keyword: Marine Nearshore Subtidal
Theme_Keyword: Marine Offshore Subtidal
Theme_Keyword: Continental/Island Shelf
Place:
Place_Keyword_Thesaurus: None
Place_Keyword: United States
Place_Keyword: U.S. East Coast
Place_Keyword: Middle Atlantic Bight
Place_Keyword: Gulf of Maine
Place_Keyword: Georges Bank
Place_Keyword: Massachusetts Bay
Place_Keyword: Stellwagen Bank
Place_Keyword: Hudson Shelf Valley
Place_Keyword: Long Island
Place_Keyword: Long Island Sound
Place_Keyword: Nantucket Shoals
Place_Keyword: North America
Place_Keyword: Atlantic Ocean
Place_Keyword: New York Bight
Place_Keyword: Rhode Island Sound
Place:
Place_Keyword_Thesaurus: Coastal and Marine Ecological Classification Standard (CMECS)
Place_Keyword: Gulf of Maine/Bay of Fundy Ecoregion
Stratum:
Stratum_Keyword_Thesaurus: None
Stratum_Keyword: sea floor
Stratum_Keyword: seafloor
Stratum:
Stratum_Keyword_Thesaurus: Coastal and Marine Ecological Classification Standard (CMECS)
Stratum_Keyword: Substrate
Access_Constraints: None
Use_Constraints:
Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Please recognize the U.S. Geological Survey as the originator of the dataset.
Point_of_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: P. Soupy Dalyander
Contact_Organization: U.S. Geological Survey
Contact_Position: Oceanographer
Contact_Address:
Address_Type: mailing and physical address
Address: 600 Fourth Street S
City: St Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: (727) 502-8000 x8124
Contact_Facsimile_Telephone: (727) 502-8001
Contact_Electronic_Mail_Address: sdalyander@usgs.gov
Browse_Graphic:
Browse_Graphic_File_Name: Browse_Graphic_File_Description:
Image displaying coverage area of bottom shear stress and value exceeded 95% of the time for a 1-year period for the Gulf of Maine south into the Middle Atlantic Bight.
Browse_Graphic_File_Type: JPEG
Native_Data_Set_Environment:
Microsoft Windows Vista Version 6.1 (Build 7601) Service Pack 1; ESRI ArcCatalog 9.3.1.4095
Cross_Reference:
Citation_Information:
Originator: U.S. Geological Survey
Publication_Date: 2012
Title:
Documentation of the U.S. Geological Survey Sea Floor Stress and Sediment Mobility Database
Edition: 1.0
Series_Information:
Series_Name: Open-File Report
Issue_Identification: 2012-1137
Publication_Information:
Publication_Place: Reston, VA
Publisher: U.S. Geological Survey
Online_Linkage: https://doi.org/10.3133/ofr20121137
Online_Linkage: https://pubs.usgs.gov/of/2012/1137/
Data_Quality_Information:
Attribute_Accuracy:
Attribute_Accuracy_Report:
Each attribute in this data layer covers a specific time period of interest. The attributes include winter (December - February), spring (March - May), summer (June - August), fall (September - November), and the entire year. Each of these attributes was calculated from model output spanning May, 2010 to May, 2011. Statistical values will vary somewhat if calculated from model parameters covering a different time period, or if a different numerical model is used to estimate the time-series of waves and circulation used in calculating the time-series of bottom shear stress.
Logical_Consistency_Report:
No duplicate features are present. All polygons are closed, and all lines intersect where intended. No undershoots or overshoots are present.
Completeness_Report:
All model output values were used in the calculation of this statistic. The statistic was calculated for the date range of May, 2010 to May, 2011, and would potentially vary somewhat if performed on a different time period. The underlying time-series of bottom shear stress was calculated from wave and current estimates generated with numerical models, and would vary if different models are used or if different model inputs (such as bathymetry or forcing winds) or parameterizations were chosen.
Positional_Accuracy:
Horizontal_Positional_Accuracy:
Horizontal_Positional_Accuracy_Report:
Numerical models are used in the generation of time-series of bottom shear stress used in creating this data layer. Because the overall horizontal accuracy of the data set depends on the accuracy of the model, the underlying bathymetry, and forcing values used, and so forth, the spatial accuracy of this data layer cannot be meaningfully quantified. These maps are intended to provide a qualitative and relative regional assessment of bottom shear stress at the approximately 5 km resolution displayed; users are advised not to use the data set to estimate shear stress quantitatively at any specific geographic location.
Lineage:
Source_Information:
Source_Citation:
Citation_Information:
Originator: NOAA National Centers for Environmental Prediction (NCEP)
Publication_Date: 20110601
Title: NOAA/NCEP Global Forecast System (GFS) Atmospheric Model
Publication_Information:
Publication_Place: Camp Springs, MD
Publisher: NOAA National Centers for Environmental Prediction
Online_Linkage: http://nomads.ncdc.noaa.gov/data.php
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20100401
Ending_Date: 20110601
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NOAA GFS
Source_Contribution:
The NOAA Global Forecast System (GFS) 0.5 degree model was used to provide wind speed data at 10 m above the sea surface to drive the numerical wave model used to generate bottom orbital wave velocities for calculations of a time-series of bottom shear stress.
Source_Information:
Source_Citation:
Citation_Information:
Originator: NOAA National Centers for Environmental Prediction (NCEP)
Publication_Date: 20110601
Title: NOAA/NCEP North American Mesoscale (NAM) Atmospheric Model
Publication_Information:
Publication_Place: Camp Springs, MD
Publisher: NOAA National Centers for Environmental Prediction
Online_Linkage: http://nomads.ncdc.noaa.gov/data.php
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20100401
Ending_Date: 20110601
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NOAA NAM
Source_Contribution:
The NOAA North American Mesoscale (NAM) model was used to provide wind speed data at 10 m above the sea surface to drive the numerical wave model used to generate bottom orbital wave velocities for calculations of a time-series of bottom shear stress.
Source_Information:
Source_Citation:
Citation_Information:
Originator: University of Massachusetts, Dartmouth
Publication_Date: 2014
Title: Finite Volume Coastal Ocean Model, Gulf of Maine (FVCOM-GOM)
Publication_Information:
Publication_Place: Dartmouth, MA
Publisher: University of Massachusetts, Dartmouth
Online_Linkage: http://fvcom.smast.umassd.edu/research_projects/GB/grid_g3.html
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20100501
Ending_Date: 20110501
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: FVCOM
Source_Contribution:
The University of Massachusetts at Dartmouth (UMASSD) FVCOM model archived forecast was used to provide estimates of near-bed current velocity used for calculating the time-series of bottom shear stress. The FVCOM-GOM hydrodynamic model (http://fvcom.smast.umassd.edu/research_projects/GB/index.html) is a sub-model of the Northeast Coastal Ocean Forecast System (NECOFS), operated by UMASSD. This quasi-operational nowcast/forecast system is an element of the Northeastern Regional Association of Coastal Observing Systems (NERACOOS, http://neracoos.org/), part of the U.S. Integrated Ocean Observing System (http://www.ioos.noaa.gov/). The underlying circulation model is the Finite Volume Coastal Ocean Model (FVCOM), a finite-element, unstructured grid, primitive equation ocean model that solves for the free surface elevation and three dimensional flow patterns, temperature, and salinity. The FVCOM-GOM configuration has varying horizontal resolution (0.3-15 km) and 40 layers in vertical terrain-following coordinates. Ocean open boundary values are from a global forecast that uses the HYbrid Coordinate Ocean Model (HyCOM) with assimilation of satellite and in situ data with the Navy Coupled Ocean Data Assimilation (NCODA) system. Tidal harmonic boundary variability is determined from a regional tidal model. The data files for the time period used in this analysis were acquired from an archived data set available online at http://www.smast.umassd.edu:8080/thredds/catalog.html.
Source_Information:
Source_Citation:
Citation_Information:
Originator: NOAA National Centers for Environmental Prediction (NCEP
Publication_Date: 20110601
Title: NOAA/NWS/NCEP Global Wavewatch III Operational Wave Forecast
Publication_Information:
Publication_Place: Camp Springs, MD
Publisher: NOAA National Centers for Environmental Prediction
Online_Linkage: http://polar.ncep.noaa.gov/waves/index2.shtml
Type_of_Source_Media: online
Source_Time_Period_of_Content:
Time_Period_Information:
Range_of_Dates/Times:
Beginning_Date: 20100401
Ending_Date: 20110601
Source_Currentness_Reference: publication date
Source_Citation_Abbreviation: NOAA WW3
Source_Contribution:
The grids and parameterizations for the global and regional wave model were provided by the NOAA/NWS/NCEP Wavewatch III operational ocean wave forecast.
Process_Step:
Process_Description:
The WavewatchIII (WW3) numerical wave model (v3.14) was run on both a global 30' and regional North Atlantic 10' grid. The global grid is identical to the one used by the NOAA WW3 forecast system, whereas the regional grid is based on the NOAA WW3 grid but was modified slightly to remove parts of the "do not compute" mask at the outer boundaries where output was needed to pass to the nested, higher resolution grid. WW3 is a 3rd generation phase-averaged numerical wave model which conserves wave energy subject to generation, dissipation, and transformation processes and resolves spectral energy density over a range of user-specified frequencies and directions. The model was identically configured to the multi-grid system set-up used by the NOAA WW3 operational forecast (more information at http://polar.ncep.noaa.gov/waves/index2.shtml), and was rerun purely to generate full spectra boundary conditions at the boundaries of the higher resolution nested domain. Wind forcing was provided at 3-hour resolution from the NOAA North American Mesoscale (NAM) model (12 km resolution) over its domain, with the rest of the domain (outside the NAM grid) provided by the NOAA Global Forecasting System (GFS) model at 0.5 degree resolution.
Source_Used_Citation_Abbreviation: NOAA GFS
Source_Used_Citation_Abbreviation: NOAA NAM
Source_Used_Citation_Abbreviation: NOAA WW3
Process_Date: 2012
Source_Produced_Citation_Abbreviation: WW3
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: P. Soupy Dalyander
Contact_Organization: U.S. Geological Survey
Contact_Position: Oceanographer
Contact_Address:
Address_Type: mailing and physical address
Address: 600 Fourth Street S
City: St Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: (727) 502-8000 x8124
Contact_Facsimile_Telephone: (727) 502-8001
Contact_Electronic_Mail_Address: sdalyander@usgs.gov
Process_Step:
Process_Description:
The Simulating WAves Nearshore (SWAN) numerical wave model (version 40.81, modified for proper calculation of RMS bottom orbital velocity and for output of bottom wave direction) was used to create a time-series of bottom orbital velocity, bottom representative period, and bottom wave direction over the one year time period of May, 2010 - May, 2011 in each grid cell in the model domain. The wave model SWAN is a 3rd generation phase-averaged numerical wave model which conserves wave energy subject to generation, dissipation, and transformation processes and resolves spectral energy density over a range of user-specified frequencies and directions. Although stress calculations were only performed over the spatial extent of the hydrodynamic model, SWAN was run over a larger spatial scale. The model domain consists of seven overlapping regular numerical model grids that follow the eastern and Gulf of Mexico coasts of the United States at approximately 3.5 km resolution. The model was run for April 2010 using the default SWAN initial condition formulation for a non-stationary run, e.g., a JONSWAP spectrum from prescribed initial wind conditions, to develop initial conditions for the one year study period (May 2010 to May 2011). Full spectra boundary conditions at each model ocean boundary point are interpolated from the output of the regional 10' Wavewatch III model, updated every hour. Wind forcing was provided at 3-hour resolution from the NOAA North American Mesoscale (NAM) model (12 km resolution) over its domain, with forcing at the most offshore portions of the grid (outside the NAM grid) provided by the NOAA Global Forecasting System (GFS) model at 0.5 degree resolution. The SWAN directional resolution was 6 degrees (60 bins), determined via sensitivity analysis as the coarsest (and hence least computationally expensive) resolution that does not result in the "Garden-Sprinkler Effect" (GSE), wherein swell traveling over large distances inaccurately disintegrates into non-continuous wave fields as a result of frequency and directional discretization. The minimum frequency bin should be set to a value less than 0.7 times the lowest expected peak frequency and the maximum frequency bin should be set at least 2.5-3 times the highest expected peak frequency expected. In order to determine appropriate values, the peak periods from 43 NDBC buoys throughout the wave model domain were analyzed (when available) over the one year period of the study, yielding 297,533 hourly observations. The 99th and 1st percentiles of peak period were 15 s and 3 s, corresponding to frequencies of 0.07 Hz and 0.33 Hz, noting that these values may be biased by buoy limits of detection at high and low frequencies. The frequency range was therefore specified as 0.04-1 Hz. SWAN was allowed to internally determine the frequency resolution as one tenth of each frequency bin for best performance of the discrete interaction approximation (DIA) method of nonlinear 4-wave interactions, resulting in 34 frequency bins. Bottom friction calculations used the Madsen formulation with a uniform roughness length scale of 0.05 m. This value was selected for the best comparison of model output and buoy observations within the domain, and does not correspond to physical roughness values or the bottom roughness used in stress calculations. Wind generation and whitecapping parameterizations follow the modified Komen approach prescribed by Rogers et al. (2003), which reduces inaccurate attenuation of swell energy by whitecapping. Wave model outputs of bottom orbital velocity, bottom representative period, and bottom wave direction were output hourly and interpolated onto the SABGOM model grid. The same person that conducted this processing step conducted each subsequent processing step. References: Rogers, W.E., Hwang, P.A., Wang, D.W., 2003. Investigation of Wave Growth and Decay in the SWAN Model: Three Regional-Scale Applications. J. Phys. Oceanogr. 33, 366-389.
Source_Used_Citation_Abbreviation: NOAA GFS
Source_Used_Citation_Abbreviation: NOAA NAM
Source_Used_Citation_Abbreviation: WW3
Process_Date: 2012
Source_Produced_Citation_Abbreviation: SWAN WEST ATL
Process_Contact:
Contact_Information:
Contact_Person_Primary:
Contact_Person: P. Soupy Dalyander
Contact_Organization: U.S. Geological Survey
Contact_Position: Oceanographer
Contact_Address:
Address_Type: mailing and physical address
Address: 600 Fourth Street S
City: St Petersburg
State_or_Province: FL
Postal_Code: 33704
Country: USA
Contact_Voice_Telephone: (727) 502-8000 x8124
Contact_Facsimile_Telephone: (727) 502-8001
Contact_Electronic_Mail_Address: sdalyander@usgs.gov
Process_Step:
Process_Description:
Use the wave model and current model results to calculate the time series of bottom shear stress within each wave model grid cell using Mathworks MATLAB software (v2011A). Bottom shear stress estimates are made following Grant-Madsen (GM) (Madsen, 1994), from the estimated bottom orbital velocities and bottom wave periods generated with SWAN, and near-bed current estimates from the FVCOM hydrodynamic model. The GM approach relies on an eddy viscosity turbulence closure model and formulates the wave stress, current stress, and combined wave-current bottom stress as functions of a representative bottom wave orbital velocity, representative bottom wave period, current flow at some reference height, the angle between wave and current propagation, and bottom roughness. Full details of the GM formulation may be found elsewhere (Glenn, 1983; Glenn and Grant, 1987; Grant and Madsen, 1979, 1982, 1986; Madsen, 1994; Madsen et al., 1988). Wave direction, bottom orbital velocities, and bottom periods are calculated internally by the wave model. Near-bed current magnitude and direction are taken from the hydrodynamic model, with the reference height taken as the distance from the cell vertical midpoint to the seabed. GM requires that the current velocity be taken above the wave boundary layer (WBL) but within the log-profile current velocity layer. If the thickness of the WBL calculated using GM exceeds one or more of the deepest grid cells, the current estimate and associated reference height are used from the deepest grid cell at each location where the reference height exceeds the width of the WBL. An estimate must be used for the maximum reference height where the log-profile velocity layer assumption is valid. As discussed in Grant and Madsen (1986), the thickness of the log-profile layer based on laboratory experiments is approximately 10% of the current boundary layer thickness (Clauser, 1956). Because tidal currents, storm currents, and mean flow have a boundary layer thickness on the order of magnitude 10's of meters (Goud, 1987), a maximum value for reference height is set as 5 m. The GM bottom boundary layer model also requires a value for bottom roughness; a uniform value of 0.005 m is used throughout the domain. References: Clauser, F.H., 1956. The turbulent boundary layer. Adv. Appl. Mech. 4, 1-51. Madsen, O.S., 1994. Spectral wave-current bottom boundary layer flows, Proceedings 24th Conf. Coastal Eng., pp. 384-398. Glenn, S.M., 1983. A Continental Shelf Bottom Boundary Layer Model: The Effects of Waves, Currents, and a Moveable Bed. Dissertation, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge, MA, 237 pp. Glenn, S.M., Grant, W.D., 1987. A suspended sediment stratification correction for combined wave and current flows. J. Geophys. Res. 92, 8244-8264. Goud, M.R., 1987. Prediction of Continental Shelf Sediment Transport Using a Theoretical Model of the Wave-Current Boundary Layer. Dissertation, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge, MA, 211 pp. Grant, W.D., Madsen, O.S., 1986. The continental-shelf bottom boundary-layer. Annu. Rev. Fluid Mech. 18, 265-305. Grant, W.D., Madsen, O.S., 1982. Movable bed roughness in unsteady oscillatory flow. J. Geophys. Res. 87, 469-481. Grant, W.D., Madsen, O.S., 1979. Combined wave and current interaction with a rough bottom J. Geophys. Res. 84, 1797-1808. Madsen, O.S., 1994. Spectral wave-current bottom boundary layer flows, Proceedings 24th Conf. Coastal Eng., pp. 384-398. Madsen, O.S., Poon, Y., Graber, H.C., 1988. Spectral wave attenuation by bottom friction: theory, Proceedings 21st Int. Conf. Coast. Eng., pp. 492-504.
Source_Used_Citation_Abbreviation: SWAN WEST ATL
Source_Used_Citation_Abbreviation: FVCOM
Process_Date: 2013
Source_Produced_Citation_Abbreviation: STRESS TSERIES
Process_Step:
Process_Description:
Calculate the 95th percentile of bottom shear stress by year and season in Mathworks MATLAB software (v2011A). This value is calculated as the value exceeded by 5% of the data in the time series within each grid cell (e.g., 95% of output points are less than this value). These statistical values are saved in MATLAB .mat format.
Source_Used_Citation_Abbreviation: STRESS TSERIES
Process_Date: 2013
Source_Produced_Citation_Abbreviation: 95TH STATISTIC
Process_Step:
Process_Description:
Export the values for each grid cell from MATLAB format into an ArcGIS shapefile using the Mathworks MATLAB Mapping Toolbox (v2011A). Grid cells where the height of the deepest grid cell in the circulation model is always above the maximum accepted reference height for validity of a log-profile assumption (necessary for stress calculations), as well as grid cells with depth greater than 500 m, are excluded and not exported to Arc. Grid cells with depths of greater than 500 m are excluded. In some cases, data may exist during parts of the year and not others; in this case, the statistic is calculated and included for the season where model output exist, and a missing data value of -9999 (replacing the MATLAB native NaN format) is used for seasons where no valid statistic can be calculated. A geographic data structure is created in MATLAB with the following fields: Geometry ('Polygon'), Lon (the five longitude points defining each grid cell, with one of the four grid corner values repeated to close the polygon in Arc), Lat (same as Lon, for the latitude points of the grid), Year (the statistic calculated for the entire year), Winter (the statistic calculated for December, January, and February), Spring (the statistic calculated for March, April, and May), Summer (the statistic calculated for June, July, and August), and Fall (the statistic calculated for September, October, and November). The shapefile is then written with the "shapewrite" command. Because MATLAB does not assign a projection, the projection corresponding to the projection associated with the bathymetry used in the numerical models is added in ArcCatalog 9.3. The file was then quality checked in ArcMap to insure values were properly exported to the shapefile from MATLAB.
Source_Used_Citation_Abbreviation: 95TH STATISTIC
Process_Date: 2013
Process_Step:
Process_Description:
Update to metadata only. Onlike linkage corrected from woodshole.er.usgs.gov/project-pages/mobility/ArcData/FVCOM_95th_perc.zip to http://woodshole.er.usgs.gov/project-pages/mobility/ArcData/GMAINE_95th_perc.zip.
Process_Date: 20140606
Process_Step:
Process_Description:
Edits to the metadata were made to fix any errors that MP v 2.9.32 flagged. This is necessary to enable the metadata to be successfully harvested for various data catalogs. In some cases, this meant adding text "Information unavailable" or "Information unavailable from original metadata" for those required fields that were left blank. Other minor edits were probably performed (title, publisher, publication place, etc.). This is an online database - so the series is online database. The metadata standard requires an Issue Identification - so the database title was used. The metadata date (but not the metadata creator) was edited to reflect the date of these changes. The metadata available from a harvester may supersede metadata bundled within a download file. Compare the metadata dates to determine which metadata file is most recent.
Process_Date: 20160701
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: mailing and physical address
Address: 384 Woods Hole Rd.
City: Woods Hole
State_or_Province: MA
Postal_Code: 02556
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description:
Keywords section of metadata optimized for discovery in USGS Coastal and Marine Geology Data Catalog.
Process_Date: 20170313
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Alan O. Allwardt
Contact_Position: Contractor -- Information Specialist
Contact_Address:
Address_Type: mailing and physical address
Address: 2885 Mission Street
City: Santa Cruz
State_or_Province: CA
Postal_Code: 95060
Contact_Voice_Telephone: 831-460-7551
Contact_Facsimile_Telephone: 831-427-4748
Contact_Electronic_Mail_Address: aallwardt@usgs.gov
Process_Step:
Process_Description:
Added keywords from Coastal and Marine Ecological Classification Standard (CMECS) to metadata.
Process_Date: 20180426
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: Alan O. Allwardt
Contact_Position: Contractor -- Information Specialist
Contact_Address:
Address_Type: mailing and physical address
Address: 2885 Mission Street
City: Santa Cruz
State_or_Province: CA
Postal_Code: 95060
Contact_Voice_Telephone: 831-460-7551
Contact_Facsimile_Telephone: 831-427-4748
Contact_Electronic_Mail_Address: aallwardt@usgs.gov
Process_Step:
Process_Description:
The data release was retroactively assigned a DOI number, and that information was added to the metadata. Additionally, the location of the data release changed, and the metadata links updated accordingly. Other small edits, such as the program name, were also modified.
Process_Date: 202006
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Process_Step:
Process_Description:
Added keywords section with USGS persistent identifier as theme keyword (20200908). Fixed one of the USGS Thesaurus terms.
Process_Date: 20211116
Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: VeeAnn A. Cross
Contact_Position: Marine Geologist
Contact_Address:
Address_Type: Mailing and Physical
Address: 384 Woods Hole Road
City: Woods Hole
State_or_Province: MA
Postal_Code: 02543-1598
Contact_Voice_Telephone: 508-548-8700 x2251
Contact_Facsimile_Telephone: 508-457-2310
Contact_Electronic_Mail_Address: vatnipp@usgs.gov
Spatial_Data_Organization_Information:
Indirect_Spatial_Reference: Gulf of Maine
Direct_Spatial_Reference_Method: Vector
Point_and_Vector_Object_Information:
SDTS_Terms_Description:
SDTS_Point_and_Vector_Object_Type: G-polygon
Point_and_Vector_Object_Count: 22540
Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:
Geographic:
Latitude_Resolution: 0.000001
Longitude_Resolution: 0.000001
Geographic_Coordinate_Units: Decimal degrees
Geodetic_Model:
Horizontal_Datum_Name: D_WGS_1984
Ellipsoid_Name: WGS_1984
Semi-major_Axis: 6378137.000000
Denominator_of_Flattening_Ratio: 298.257224
Entity_and_Attribute_Information:
Detailed_Description:
Entity_Type:
Entity_Type_Label: GMAINE_95th_perc
Entity_Type_Definition: Shapefile Attribute Table
Entity_Type_Definition_Source: Esri
Attribute:
Attribute_Label: FID
Attribute_Definition: Internal feature number.
Attribute_Definition_Source: Esri
Attribute_Domain_Values:
Unrepresentable_Domain:
Sequential unique whole numbers that are automatically generated.
Attribute:
Attribute_Label: Shape
Attribute_Definition: Feature geometry.
Attribute_Definition_Source: Esri
Attribute_Domain_Values:
Unrepresentable_Domain: Coordinates defining the features.
Attribute:
Attribute_Label: Year
Attribute_Definition:
This value is the 95th percentile of bottom shear stress calculated for the one year time period of May 1, 2010 through April 30, 2011. The NODATA value is -9999.
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.0039
Range_Domain_Maximum: 7.7678
Attribute_Units_of_Measure: Pa
Attribute_Measurement_Resolution: 0.0001
Attribute:
Attribute_Label: Winter
Attribute_Definition:
This value is the 95th percentile of bottom shear stress calculated for the period of December 1, 2010 through February 28, 2011. The NODATA value is -9999.
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.0033
Range_Domain_Maximum: 8.8305
Attribute_Units_of_Measure: Pa
Attribute_Measurement_Resolution: 0.0001
Attribute:
Attribute_Label: Spring
Attribute_Definition:
This value is the 95th percentile of bottom shear stress calculated for the period of March 1, 2011, through April 30, 2011, and May, 2010. The NODATA value is -9999.
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.0038
Range_Domain_Maximum: 7.6335
Attribute_Units_of_Measure: Pa
Attribute_Measurement_Resolution: 0.0001
Attribute:
Attribute_Label: Summer
Attribute_Definition:
This value is the 95th percentile of bottom shear stress calculated for the period of June 1, 2010, through August 31, 2010. The NODATA value is -9999.
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.0039
Range_Domain_Maximum: 4.5568
Attribute_Units_of_Measure: Pa
Attribute_Measurement_Resolution: 0.0001
Attribute:
Attribute_Label: Fall
Attribute_Definition:
This value is the 95th percentile of bottom shear stress calculated for the period of September 1, 2010, to November 30, 2010. The NODATA value is -9999.
Attribute_Definition_Source: USGS
Attribute_Domain_Values:
Range_Domain:
Range_Domain_Minimum: 0.0039
Range_Domain_Maximum: 8.8316
Attribute_Units_of_Measure: Pa
Attribute_Measurement_Resolution: 0.0001
Distribution_Information:
Distributor:
Contact_Information:
Contact_Person_Primary:
Contact_Person: P. Soupy Dalyander
Contact_Organization: U.S. Geological Survey
Contact_Position: Oceanographer
Contact_Address:
Address_Type: mailing and physical address
Address: 600 Fourth Street S
City: St Petersburg
State_or_Province: FL
Postal_Code: 33704
Country: USA
Contact_Voice_Telephone: (727) 502-8000 x8124
Contact_Facsimile_Telephone: (727) 502-8001
Contact_Electronic_Mail_Address: sdalyander@usgs.gov
Resource_Description:
Downloadable Data: Sea Floor Stress and Sediment Mobility Database, 95th percentile of bottom shear stress for the Gulf of Maine south into the Middle Atlantic Bight (FVCOM_95th_perc)
Distribution_Liability:
Neither the U.S. Government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of these data or related materials. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Standard_Order_Process:
Digital_Form:
Digital_Transfer_Information:
Format_Name: Shapefile
Format_Version_Number: ArcGIS 3.3
Format_Specification: Esri shapefile
Format_Information_Content:
WinZip archive file containing the shapefile components. The WinZip file also includes FGDC compliant metadata.
File_Decompression_Technique: WinZip 12.0 archive
Transfer_Size: 2.924
Digital_Transfer_Option:
Online_Option:
Computer_Contact_Information: Access_Instructions:
The first link downloads the data in a zip file, the second link is to the dataset landing page, and the third link is to the main landing page of the data release.
Fees: None
Technical_Prerequisites:
These data are available in Esri shapefile format. The user must have ArcGIS or ArcView 3.0 or greater software to read and process the data file. In lieu of ArcView or ArcGIS, the user may utilize another GIS application package capable of importing the data. A free data viewer, ArcExplorer, capable of displaying the data is available from Esri at www.esri.com.
Metadata_Reference_Information:
Metadata_Date: 20211119
Metadata_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: U.S. Geological Survey
Contact_Person: P. Soupy Dalyander
Contact_Position: Oceanographer
Contact_Address:
Address_Type: mailing and physical address
Address: 600 Fourth Street S
City: St Petersburg
State_or_Province: FL
Postal_Code: 33701
Country: USA
Contact_Voice_Telephone: (727) 502-8000 x8124
Contact_Facsimile_Telephone: (727) 502-8001
Contact_Electronic_Mail_Address: whsc_data_contact@usgs.gov
Contact_Instructions:
The metadata contact email address is a generic address in the event the metadata contact is no longer with the USGS or the email is otherwise invalid.
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata
Metadata_Standard_Version: FGDC-STD-001-1998

This page is <https://cmgds.marine.usgs.gov/catalog/whcmsc/other_datarelease/DR_P999PY84/GMAINE_95th_perc_meta.html>
Generated by mp version 2.9.50 on Fri Nov 19 13:02:55 2021