Delineated Coastal Cliff Toes Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff toes that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ... |
Info |
Delineated Coastal Cliff Tops Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff tops that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) transects ... |
Info |
Delineated Coastal Cliff Transects Derived from Post-Hurricane Maria Lidar Elevation Data Collected from Puerto Rico: 2018
The National Assessment of Coastal Change Hazards project aims to understand and forecast coastal landscape change. This dataset consists of delineated coastal cliff transects that may be used to assess the hazard posed by eroding coastal cliffs on the islands of Puerto Rico, Culebra, and Vieques. The delineation of cliff tops and toes can be used as an input into cliff hazard metrics and to measure overall cliff changes over time. Cliff tops and cliff toes were identified along three-dimensional (3D) ... |
Info |
2013 USACE NAE Topobathy Lidar: Maine Point Cloud files with Orthometric Vertical Datum North American Vertical Datum of 1988 (NAVD88) using GEOID12B
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS ... |
Info |
2008 North Carolina and Virginia NOAA/NGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 Atlantic Coast ... |
Info |
2011 USGS New York Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2011 Atlantic Coast ... |
Info |
2012 Post-Sandy New York and New Jersey USACE NCMP Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Post-Sandy New York ... |
Info |
2012 Pre-Sandy New York and New Jersey USGS Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2012 Pre Hurricane Sandy ... |
Info |
2013 Maine USACE/NAE Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2013 Maine United States ... |
Info |
2018 USGS Florida Panhandle Post-Michael Lidar-derived Dune Crest, Toe, and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2018 United States Army ... |
Info |
Fall 2000 USGS Mid-Atlantic Lidar-Derived Dune Crest, Toe and Shoreline
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2000 Atlantic Coast U.S. ... |
Info |
Georeferenced scans of National Oceanic and Atmospheric Administration (NOAA) topographic sheets (T-Sheets) Collected Along the Fire Island and Great South Bay, New York, Coastline from 1834-1875
Topographic sheets (t-sheets) produced by the National Ocean Service (NOS) during the 1800s provide the position of past shorelines. The shoreline data can be vectorized into a geographic information system (GIS) and compared to modern shoreline data to calculate estimates of long-term shoreline rates of change. Many t-sheets were scanned and digitized by the National Oceanic and Atmospheric Administration (NOAA) and are available on the NOAA Shoreline web site (https://shoreline.noaa.gov/data/datasheets/t ... |
Info |
Shapefile of Historical shorelines for Fire Island and Great South Bay, New York, derived from previously unpublished National Oceanic and Atmospheric Administration (NOAA) 1834-1875 topographic sheets
Topographic sheets (t-sheets) produced by the National Ocean Service (NOS) during the 1800s provide the position of past shorelines. The shoreline data can be vectorized into a geographic information system (GIS) and compared to modern shoreline data to calculate estimates of long-term shoreline rates of change. Many t-sheets were scanned and digitized by the National Oceanic and Atmospheric Administration (NOAA) and are available on the NOAA Shoreline website (https://shoreline.noaa.gov/data/datasheets/t ... |
Info |
Hurricane Matthew Overwash Extents (version 2.0, 20210916)
The National Assessment of Coastal Change Hazards project exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Florida, Georgia, North Carolina,and South Carolina coasts and attributed to coastal processes during [Atlantic Basin] Hurricane Matthew, which made landfall in the U.S. on October 8, 2018. |
Info |
Beach Profile Data Collected from Madeira Beach, Florida (August 26, 2021)
This dataset, prepared by the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC), provides beach profile data collected at Madeira Beach, Florida. Data were collected on foot by a person equipped with a Global Positioning System (GPS) antenna affixed to a backpack outfitted for surveying location and elevation data (XYZ) along pre-determined transects. The horizontal position data are given in the Universal Transverse Mercator (UTM) projected coordinate system, Zone 17 ... |
Info |
1998 MA, NY, MD, and VA USGS/NASA ATM2 Lidar-derived dune crest, toe and shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline ... |
Info |
2017 Georgia through New York USACE NCMP Lidar-Derived Dune Crest, Toe and Shoreline
The storm-induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards (NACCH) project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Light detection and ranging (lidar)-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline ... |
Info |
Hurricane Delta Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Louisiana coast and attributed to coastal processes during [Atlantic Basin] Hurricane Delta, which made landfall in the U.S. on October 9, 2020. |
Info |
Hurricane Florence Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the southeast coast of the United States from North Carolina to Virginia and attributed to coastal processes during [Atlantic Basin] Hurricane Florence, which made landfall in the U.S. on September 14, 2018. |
Info |
Hurricane Irma Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Florida coast and attributed to coastal processes during [Atlantic Basin] Hurricane Irma, which made landfall in the U.S. on September 9, 2017. |
Info |
Hurricane Laura Overwash Extents
The National Assessment of Coastal Change Hazards project project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Louisiana coast and attributed to coastal processes during [Atlantic Basin] Hurricane Laura, which made landfall in the U.S. on August 27, 2020. |
Info |
Hurricane Michael Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the Florida coast and attributed to coastal processes during [Atlantic Basin] Hurricane Michael, which made landfall in the U.S. on October 10, 2018. |
Info |
Hurricane Sally Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Florida and Alabama coast and attributed to coastal processes during [Atlantic Basin] Hurricane Sally, which made landfall in the U.S. on September 16, 2020. |
Info |
Hurricane Zeta Overwash Extents
The National Assessment of Coastal Change Hazards project exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the Louisiana coast and attributed to coastal processes during [Atlantic Basin] Hurricane Zeta, which made landfall in the U.S. on October 28, 2020. |
Info |
National Assessment of Hurricane-Induced Coastal Erosion Hazards: 2021 Update
This dataset contains information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-kilometer (km) section of the United States [Gulf of Mexico and Atlantic] coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due ... |
Info |
Hurricane Isaias Overwash Extents
The National Assessment of Coastal Change Hazards project at the U.S. Geological Survey (USGS) exists to understand and predict storm impacts to our nation's coastlines. This geospatial dataset defines the alongshore extent of overwash sediments deposited along the coast of the Carolinas and attributed to coastal processes during [Atlantic Basin] Hurricane Isaias, which made landfall in the U.S. on August 4, 2020. |
Info |
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Puerto Rico
This dataset contains information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 100-meter (m) section of the Puerto Rico coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due to both surge and waves, are ... |
Info |