Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently anticipated questions:


What does this data set describe?

Title:
Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018
Abstract:
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. Twenty temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of: nine submerged targets consisting of small (80 centimeter X 80 centimeter) square tarps with black-and-white cross patterns anchored to the shallow (less than 1.5 meters deep) seafloor using 0.9 kilogram fishing weights; nine sub-aerial targets consisting of orange plastic five-gallon bucket lids (32 centimeter diameter) painted with a black “X” pattern and affixed in a horizontal orientation to vertical rebar stakes placed in areas of reef rubble to provide the targets with sufficient elevation to remain above the water surface; and two sub-aerial ground targets consisting of small (80 centimeter X 80 centimeter) square tarps with black-and-white cross patterns placed in the sand at the shoreline. The GCP positions were measured using post-processed kinematic (PPK) GPS, using corrections from a GPS base station (MK02) located approximately 1 kilometer from the study area. Reference coordinates for MK02 were established using the mean position derived from four static GPS occupations with durations greater than 4 hours submitted to the National Geodetic Survey Online Positioning User Service (NGS OPUS). The GCP positions are presented in a comma-delimited text file.
Supplemental_Information:
Additional information about the field activity from which these data were derived is available online at:
https://cmgds.marine.usgs.gov/fan_info.php?fan=2018-617-FA
Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
  1. How might this data set be cited?
    Logan, Joshua B., and Storlazzi, Curt D., 20220321, Ground control point locations for the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018: data release DOI:10.5066/P9XZT1FK, U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, California.

    Online Links:

    This is part of the following larger work.

    Logan, Joshua B., and Storlazzi, Curt D., 2022, Aerial imagery and structure-from-motion-derived shallow water bathymetry from a UAS survey of the coral reef off Waiakane, Molokai, Hawaii, June 2018: data release DOI:10.5066/P9XZT1FK, U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA.

    Online Links:

  2. What geographic area does the data set cover?
    West_Bounding_Coordinate: -157.15679
    East_Bounding_Coordinate: -157.15388
    North_Bounding_Coordinate: 21.09352
    South_Bounding_Coordinate: 21.08451
  3. What does it look like?
    https://www.sciencebase.gov/catalog/file/get/61ba8bbad34e9e224ac12fb7?name=Waiakane_2018-06-24_GCP_browse.jpg&allowOpen=true (JPEG)
    Photographs showing examples of ground control points used for the UAS survey.
  4. Does the data set describe conditions during a particular time period?
    Calendar_Date: 24-Jun-2018
    Currentness_Reference:
    ground condition at time data were collected
  5. What is the general form of this data set?
    Geospatial_Data_Presentation_Form: comma-delimited text
  6. How does the data set represent geographic features?
    1. How are geographic features stored in the data set?
      This is a Point data set. It contains the following vector data types (SDTS terminology):
      • Point (21)
    2. What coordinate system is used to represent geographic features?
      Grid_Coordinate_System_Name: Universal Transverse Mercator
      Universal_Transverse_Mercator:
      UTM_Zone_Number: 4
      Transverse_Mercator:
      Scale_Factor_at_Central_Meridian: 0.9996
      Longitude_of_Central_Meridian: -159.0
      Latitude_of_Projection_Origin: 0.0
      False_Easting: 500000.0
      False_Northing: 0.0
      Planar coordinates are encoded using coordinate pair
      Abscissae (x-coordinates) are specified to the nearest 0.001
      Ordinates (y-coordinates) are specified to the nearest 0.001
      Planar coordinates are specified in meters
      The horizontal datum used is NAD83 (National Spatial Reference System PA11) (EPSG:6322).
      The ellipsoid used is GRS 1980 (EPSG:7019).
      The semi-major axis of the ellipsoid used is 6378137.0.
      The flattening of the ellipsoid used is 1/298.257222101.
      Vertical_Coordinate_System_Definition:
      Altitude_System_Definition:
      Altitude_Datum_Name: GRS 1980 Ellipsoid (EPSG:7019)
      Altitude_Resolution: 0.001
      Altitude_Distance_Units: meters
      Altitude_Encoding_Method:
      Explicit elevation coordinate included with horizontal coordinates
  7. How does the data set describe geographic features?
    Attribute Table
    Table containing attribute information associated with the dataset (Source: Producer defined)
    pid
    Point ID (Source: producer defined) A unique identification code for the point.
    northing_utmz4_m
    Northing coordinate of data point relative to the NAD83 (National Spatial Reference System PA11) datum, projected in the Universal Transverse Mercator (UTM) Zone 4 North coordinate system, meters (EPSG:6634) (Source: Producer defined)
    Range of values
    Minimum:2332953.915
    Maximum:2333555.097
    Units:meters
    easting_utmz4_m
    Easting coordinate of data point relative to the NAD83 (National Spatial Reference System PA11) datum, projected in the Universal Transverse Mercator (UTM) Zone 4 North coordinate system, meters (EPSG:6634) (Source: Producer defined)
    Range of values
    Minimum:691572.329
    Maximum:692112.683
    Units:meters
    ellipsoid_ht_m
    Ellipsoid height in meters, referenced to the GRS 1980 ellipsoid (EPSG:7019). (Source: Producer defined)
    Range of values
    Minimum:-0.995
    Maximum:1.959
    Units:meters

Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)
    • Joshua B. Logan
    • Curt D. Storlazzi
  2. Who also contributed to the data set?
  3. To whom should users address questions about the data?
    U.S. Geological Survey, Pacific Coastal and Marine Science Center
    Attn: PCMSC Science Data Coordinator
    2885 Mission Street
    Santa Cruz, CA

    831-427-4747 (voice)
    pcmsc_data@usgs.gov

Why was the data set created?

These data were collected to characterize the morphology and rugosity of the shallow fringing coral reef off Waiakane, Molokai, Hawaii, as part of a larger USGS study of nearshore circulation and hydrodynamic properties of coral reefs. The point cloud can be used with geographic information systems (GIS) software or other three-dimensional analysis software for research purposes.

How was the data set created?

  1. From what previous works were the data drawn?
  2. How were the data generated, processed, and modified?
    Date: 24-Jun-2018 (process 1 of 1)
    Survey control was established using twenty temporary ground control points (GCPs) distributed throughout the survey area. The GCPs were placed using a combination of kayaking, wading, and snorkeling. The GCPs consisted of: nine submerged targets consisting of small (80 centimeter X 80 centimeter) square tarps with black-and-white cross patterns anchored to the shallow (less than 1.5 meters deep) seafloor using 0.9 kilogram fishing weights; nine sub-aerial targets consisting of orange plastic five-gallon bucket lids (32 centimeter diameter) painted with a black “X” pattern and affixed in a horizontal orientation to vertical rebar stakes placed in areas of reef rubble to provide the targets with sufficient elevation to remain above the water surface during the survey; and two sub-aerial ground targets consisting of small (80 centimeter X 80 centimeter) square tarps with black-and-white cross patterns placed in the sand at the shoreline. Two of the submerged targets were disturbed by waves or currents during the survey and were not used for SfM processing. All GCP positions were measured using post-processed kinematic (PPK) GPS, using corrections from a GPS base station on a temporary benchmark (MK02) located approximately 1 kilometer away from the study area. Reference coordinates for MK02 were established using the mean position derived from four static GPS occupations with durations greater than 4 hours submitted to the National Geodetic Survey Online Positioning User Service (NGS OPUS). Person who carried out this activity:
    Joshua Logan
    U.S. Geological Survey, Pacific Coastal and Marine Science Center
    2885 Mission Street
    Santa Cruz, CA

    831-460-7519 (voice)
    jlogan@usgs.gov
  3. What similar or related data should the user be aware of?

How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?
    No formal attribute accuracy tests were conducted.
  2. How accurate are the geographic locations?
    GCP positions were measured using a survey-grade dual-frequency GPS receiver operating in post-processed-kinematic (PPK) mode. The GPS receiver was placed on a 2-meter fixed-height rod and set to occupy each GCP for a minimum occupation time of one minute. The PPK corrections were referenced to a GPS base station occupying a temporary benchmark (MK02) located approximately 1 kilometer away from the study area. Reference coordinates for MK02 were established using the mean position derived from four static GPS occupations with durations greater than 4 hours each submitted to the National Geodetic Survey Online Positioning User Service (NGS OPUS). The standard deviation of the four OPUS-derived horizontal positions was 0.004 meters. The mean reported horizontal precision of the PPK measurements was 0.015 meters, (standard deviation of 0.002). Due to the submerged position of some GCPs and well as the effects of wave and water motion during GCP placement and measuring, we estimate an additional 0.050 meters of uncertainty with these measurements. The sum of these independent estimated uncertainties in quadrature results in a total estimated horizontal uncertainty of 0.052 meters. Additional errors resulting from GCP disturbance by waves and currents during the survey are unknown.
  3. How accurate are the heights or depths?
    GCP positions were measured using a survey-grade dual-frequency GPS receiver operating in post-processed-kinematic (PPK) mode. The GPS receiver was placed on a 2-meter fixed-height rod and set to occupy each GCP for a minimum occupation time of one minute. The PPK corrections were referenced to a GPS base station occupying a temporary benchmark (MK02) located approximately 1 kilometer away from the study area. Reference coordinates for MK02 were established using the mean position derived from four static GPS occupations with durations greater than 4 hours each submitted to the National Geodetic Survey Online Positioning User Service (NGS OPUS). The standard deviation of the four OPUS-derived vertical positions was 0.008 meters. The mean reported vertical precision of the PPK measurements was 0.028 meters, (standard deviation of 0.006). Due to the submerged position of some GCPs and well as the effects of wave and water motion during GCP placement and measuring, we estimate an additional 0.050 meters of uncertainty with these measurements. The sum of these independent estimated uncertainties in quadrature results in a total estimated horizontal uncertainty of 0.057 meters. Additional errors resulting from GCP disturbance by waves and currents during the survey are unknown.
  4. Where are the gaps in the data? What is missing?
    Dataset is considered complete for the information presented, as described in the abstract. Users are advised to read the rest of the metadata record carefully for additional details.
  5. How consistent are the relationships among the observations, including topology?
    No formal logical accuracy tests were conducted.

How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?
Access_Constraints None
Use_Constraints USGS-authored or produced data and information are in the public domain from the U.S. Government and are freely redistributable with proper metadata and source attribution. Please recognize and acknowledge the U.S. Geological Survey as the originator(s) of the dataset and in products derived from these data. This information is not intended for navigation purposes.
  1. Who distributes the data set? (Distributor 1 of 1)
    U.S. Geological Survey - ScienceBase
    Denver Federal Center, Building 810, Mail Stop 302
    Denver, CO
    United States

    1-888-275-8747 (voice)
    sciencebase@usgs.gov
  2. What's the catalog number I need to order this data set? The GCP locations are available in comma-delimited text format (Waiakane_2018-06-24_GCP.csv).
  3. What legal disclaimers am I supposed to read?
    Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data on any other system or for general or scientific purposes, nor shall the act of distribution constitute any such warranty.
  4. How can I download or order the data?
  5. What hardware or software do I need in order to use the data set?
    The downloadable data file is available in comma-separated values (CSV) spreadsheet format. Text editing software can be used to open the file, as well as spreadsheet programs, such as Microsoft Excel.

Who wrote the metadata?

Dates:
Last modified: 21-Mar-2022
Metadata author:
U.S. Geological Survey, Pacific Coastal and Marine Science Center
Attn: PCMSC Science Data Coordinator
2885 Mission Street
Santa Cruz, CA

831-427-4747 (voice)
pcmsc_data@usgs.gov
Metadata standard:
Content Standard for Digital Geospatial Metadata (FGDC-STD-001-1998)

This page is <https://cmgds.marine.usgs.gov/catalog/pcmsc/DataReleases/ScienceBase/DR_P9XZT1FK/Waiakane_2018-06-24_GCP_metadata.faq.html>
Generated by mp version 2.9.51 on Tue Mar 22 13:38:41 2022