Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument
A set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate how varying carbonate budgets, and thus coral reef accretion and degradation, affect alongshore variations in wave-driven water levels along the adjacent shoreline of Buck Island Reef National Monument (BUIS) for a number of sea-level rise scenarios, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is ... |
Info |
Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D model results were subsequently used as forcing conditions for Delwaq models to simulate sediment ... |
Info |
Model parameter input files to compare locations of coral reef restoration on different reef profiles to reduce coastal flooding
This dataset consists of physics-based XBeach Non-hydrostatic hydrodynamic models input files used to study how coral reef restoration affects waves and wave-driven water levels over coral reefs, and the resulting wave-driven runup on the adjacent shoreline. Coral reefs are effective natural coastal flood barriers that protect adjacent communities. Coral degradation compromises the coastal protection value of reefs while also reducing their other ecosystem services, making them a target for restoration. ... |
Info |
Model parameter input files to compare the influence of channels in fringing coral reefs on alongshore variations in wave-driven runup along the shoreline
An extensive set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate the influence of shore-normal reef channels on flooding along fringing reef-lined coasts, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is greatest. These input files accompany the modeling conducted for the following publication: Storlazzi, C.D., Rey, A.E., and van Dongeren, A.R., 2022, ... |
Info |
Hydrodynamic model of the lower Columbia River, Oregon and Washington, 2017-2020
A three-dimensional hydrodynamic model of the lower Columbia River (LCR) was constructed using the Delft3D Flexible Mesh (DFM) modeling suite to simulate water levels, flow, and seabed stresses for time period of January 1, 2017 to April 20, 2020. This data release describes the construction and validation of the model application and provides input files suitable to run the model on Delft3D Flexible Mesh software version 2021.01. |
Info |
Hydrodynamic and sediment transport model of San Francisco Bay, California, Nov-Dec 2014
A three-dimensional hydrodynamic and sediment transport model of San Pablo and Suisun Bays was constructed using the Delft3D4 (D3D) modeling suite (Deltares, 2021a) to simulate water levels, flow, waves, and suspended sediment for time period of Nov 1 to Dec 31, 2014. This data release describes the construction and validation of the model application and provides input files suitable to run the model on D3D software version 4.04.01. |
Info |
Hydrodynamic and sediment transport model of the mouth of the Columbia River, Washington and Oregon, 2020-2021
A three-dimensional hydrodynamic and sediment transport model application of the mouth of the Columbia River (MCR) was constructed using the Delft3D4 (D3D) modeling suite (Deltares, 2021) to simulate water levels, flow, waves, and sediment transport for time period of September 22, 2020, to March 10, 2021. The model was used to predict the dispersal of sediment from a submerged, nearshore berm composed of sediment that was dredged from the entrance to the MCR navigation channel and placed on the northern ... |
Info |
Model parameter input files to study three-dimensional flow over coral reef spur-and-groove morphology
This data set consists of physics-based Delft3D-FLOW and SWAN hydrodynamic models input files used to study the wave-induced 3D flow over spur-and-groove (SAG) formations. SAG are a common and impressive characteristic of coral reefs. They are composed of a series of submerged shore-normal coral ridges (spurs) separated by shore-normal patches of sediment (grooves) on the fore reef of coral reef environments. Although their existence and geometrical properties are well documented, the literature concerning ... |
Info |