Records using themekt "USGS thesaurus"

Results are color-coded by center: PCMSC SPCMSC WHCMSC

Preliminary estimates of forecasted shoreline positions for Florida and Georgia

During Hurricane Irma, Florida and Georgia experienced substantial impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses from hurricanes result in increased vulnerability of coastal regions, including densely populated areas. Erosion may put critical infrastructure at risk of future flooding and may cause economic loss. The U.S. Geological Survey (USGS) Coastal and Marine Hazards Resources Program is working to assess shoreline erosion along the southeast U.S. coastline and analyze its implications for future vulnerability.

Info
Uncertainty of forecasted shoreline positions for Florida and Georgia

During Hurricane Irma, Florida and Georgia experienced substantial impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses from hurricanes result in increased vulnerability of coastal regions, including densely populated areas. Erosion may put critical infrastructure at risk of future flooding and may cause economic loss. The U.S. Geological Survey (USGS) Coastal and Marine Hazards Resources Program is working to assess shoreline erosion along the southeast U.S. coastline and analyze its implications for future vulnerability.

Info
2015 Mean High Water Shorelines of the Puerto Rico coast used in Shoreline Change Analysis

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable. This data release and other associated products represent an expansion of the USGS national-scale shoreline database to include Puerto Rico and its islands, Vieques and Culebra. The United States Geological Survey (USGS) in cooperation with the Coastal Research and Planning Institute of Puerto Rico (CoRePI, part of the Graduate School of Planning at the University of Puerto Rico, Rio Piedras Campus) has derived and compiled a database of historical shoreline positions using a variety of methods. These shorelines are used to measure the rate of shoreline change over time.

Info
2016 NOAA Mean High Water Shorelines of the Puerto Rico coast used in Shoreline Change Analysis

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable. This data release and other associated products represent an expansion of the USGS national-scale shoreline database to include Puerto Rico and its islands, Vieques and Culebra. The United States Geological Survey (USGS) in cooperation with the Coastal Research and Planning Institute of Puerto Rico (CoRePI, part of the Graduate School of Planning at the University of Puerto Rico, Rio Piedras Campus) has derived and compiled a database of historical shoreline positions using a variety of methods. These shorelines are used to measure the rate of shoreline change over time.

Info
2016 USACE Mean High Water Shorelines of the Puerto Rico coast used in Shoreline Change Analysis

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable. This data release and other associated products represent an expansion of the USGS national-scale shoreline database to include Puerto Rico and its islands, Vieques and Culebra. The United States Geological Survey (USGS) in cooperation with the Coastal Research and Planning Institute of Puerto Rico (CoRePI, part of the Graduate School of Planning at the University of Puerto Rico, Rio Piedras Campus) has derived and compiled a database of historical shoreline positions using a variety of methods. These shorelines are used to measure the rate of shoreline change over time.

Info
2018 Mean High Water Shorelines of the Puerto Rico coast used in Shoreline Change Analysis

The U.S. Geological Survey (USGS) maintains shoreline positions for the United States coasts from both older sources, such as aerial photos or topographic surveys, as well as contemporary sources like lidar point clouds and digital elevation models (DEMs). These shorelines are compiled and analyzed in the Digital Shoreline Analysis System (DSAS) software to compute rates of change. It is useful to keep a record of historical shoreline positions as a method of monitoring change over time to identify areas most susceptible to erosion or accretion. These data can help coastal managers understand which areas of the coast are vulnerable. This data release and other associated products represent an expansion of the USGS national-scale shoreline database to include Puerto Rico and its islands, Vieques and Culebra. The United States Geological Survey (USGS) in cooperation with the Coastal Research and Planning Institute of Puerto Rico (CoRePI, part of the Graduate School of Planning at the University of Puerto Rico, Rio Piedras Campus) has derived and compiled a database of historical shoreline positions using a variety of methods. These shorelines are used to measure the rate of shoreline change over time.

Info
Shorelines of the Florida east coast (FLec) coastal region used in shoreline change analysis

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The U.S. Geological Survey (USGS) Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms.

Info
Shorelines of the Florida panhandle (FLph) coastal region used in shoreline change analysis

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The U.S. Geological Survey (USGS) Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms.

Info
Shorelines of the Florida west coast (FLwc) coastal region used in shoreline change analysis

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The U.S. Geological Survey (USGS) Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms.

Info
Shorelines of the Georgia coastal region used in shoreline change analysis

During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The U.S. Geological Survey (USGS) Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms.

Info
Reference baselines used to extract shorelines for the West Coast of the United States

This data release contains reference baselines for primarily open-ocean sandy beaches along the west coast of the United States (California, Oregon and Washington). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 2002 and 2011. The shoreline positions have been previously published, but the slopes have not. A reference baseline was defined and then evenly-spaced cross-shore beach transects were created. Then all data points within 1 meter of each transect were associated with each transect. Next, it was determined which points were one the foreshore, and then a linear regression was fit through the foreshore points. Beach slope was defined as the slope of the regression. Finally, the regression was evaluated at the elevation of Mean High Water (MHW) to yield the location of the shoreline. In some areas there was more than one lidar survey available; in these areas the slopes from each survey are provided. While most of the slopes are for sandy beaches, there is some slope data from rocky headlands and other steeper beaches. These data files (referenceLine_WestCoast.csv and referenceLine_WestCoast.shp) contain information about the reference baseline, the cross-shore transects, and the Mean High Water values used to estimate the shoreline. The accompanying data files (slopeData_WestCoast.csv and slopeData_WestCoast.shp) contain the slope data. The csv and shapefiles contain the same information, both file types are provided as a convenience to the user.

Info
Beach foreshore slope for the West Coast of the United States

This data release contains foreshore slopes for primarily open-ocean sandy beaches along the west coast of the United States (California, Oregon and Washington). The slopes were calculated while extracting shoreline position from lidar point cloud data collected between 2002 and 2011. The shoreline positions have been previously published, but the slopes have not. A reference baseline was defined and then evenly-spaced cross-shore beach transects were created. Then all data points within 1 meter of each transect were associated with each transect. Next, it was determined which points were one the foreshore, and then a linear regression was fit through the foreshore points. Beach slope was defined as the slope of the regression. Finally, the regression was evaluated at the elevation of Mean High Water (MHW) to yield the location of the shoreline. In some areas there was more than one lidar survey available; in these areas the slopes from each survey are provided. While most of the slopes are for sandy beaches, there is some slope data from rocky headlands and other steeper beaches. These data files (slopeData_WestCoast.csv and slopeData_WestCoast.shp) contain beach slope, the location the beach slope data was calculated (the shoreline position), and the estimated uncertainty of the shoreline position. The accompanying data files (referenceLine_WestCoast.csv and referenceLine_WestCoast.shp) contain information about the reference baseline, the cross shore transects, and the MHW values used to estimate the shoreline location. The csv and shapefiles contain the same information, both file types are provided as a convenience to the user.

Info