Please refer to the citations section for the coefficients employed in:
1) M14: Ice-on model with Meylan and others, 2014 coefficients
2) D15: Ice-on model with Doble and others, 2015 coefficients
3) R18: Ice-on model with Rogers and others, 2018 coefficients
4) M18: Ice-on model with Meylan and others, 2018 coefficients
5) H20: Ice-on model with Hosekova and others, 2020 coefficients
6) R21: Ice-on model with Rogers and others, 2021 coefficients
1) Meylan, M. H., Bennetts, L. G., & Kohout, A. L. (2014). In situ measurements and analysis of ocean waves in the antarctic marginal ice zone. Geophysical Research Letters, 41 (14), 5046
5051.
2) Doble, M. J., De Carolis, G., Meylan, M. H., Bidlot, J.-R., & Wadhams, P. (2015). Relating wave attenuation to pancake ice thickness, using field measurements and model results. Geophysical Research Letters, 42 (11), 4473–4481.
3) Meylan, M. H., Bennetts, L. G., Mosig, J., Rogers, W., Doble, M., & Peter, M. A. (2018). Dispersion relations, power laws, and energy loss for waves in the marginal ice zone. Journal of Geophysical Research: Oceans, 123 (5), 3322–3335.
4) Rogers, W. E., Meylan, M. H., & Kohout, A. L. (2018). Frequency distribution of dissipation of energy of ocean waves by sea ice using data from Wave Array 3 of the ONR “Sea State” field experiment. Nav. Res. Lab. Memo. Rep, 18-9801.
5) Hošeková, L., Malila, M. P., Rogers, W. E., Roach, L. A., Eidam, E., Rainville, L., et al. (2020). Attenuation of ocean surface waves in pancake and frazil sea ice along the coast of the Chukchi Sea. Journal of Geophysical Research: Oceans, 125, e2020JC016746.
https://doi.org/10.1029/2020JC016746
6) Rogers, W. E., Yu, J., & Wang, D. W. (2021). Incorporating dependence on ice thickness in empirical parameterizations of wave dissipation by sea ice (Tech. Rep.). Naval Research Laboratory, Stennis Space Center, MS, USA.