Woods Hole Science Center
Sea-Floor Character and Sedimentary Processes in the Vicinity of Woods Hole, Massachusetts
Continuous-coverage multibeam bathymetric models and sidescan-sonar imagery have been verified with high-resolution seismic-reflection profiles, sediment sampling, and bottom photography. Together these data layers provide detailed base maps that yield topographic, compositional, and environmental perspectives of the sea floor in the vicinity of Woods Hole, an important harbor and major passage between the Elizabeth Islands and Cape Cod, Massachusetts. Tidally dominated high-energy environments within Woods Hole have prevented deposition of Holocene marine sediments, exposed underlying glacial drift of the Buzzards Bay moraine, and winnowed finer grained sediments, leaving lag deposits of boulders and gravel. These conditions have also enlarged and preserved depressions in the moraine surface that were originally kettle holes and formed ebb-tidal deltas at the entrances to passages. Fields of transverse and barchanoid sand waves dominate across the southern part of the study area in Vineyard Sound, where benthic environments are characterized by processes associated with coarse-bedload transport. Transverse sand waves dominate near shoals where sediment supply is greater and have asymmetries that indicate that the shoals are shaped and maintained by clockwise gyres of net sediment transport. Barchanoid sand waves, which are most common where Holocene sediments are thinner, commonly align into elongate fields that have smaller isolated waves concentrated at the eastern ends and that progressively widen and have waveforms that increase in amplitude, wavelength, and complexity westward. The northern, protected parts of the Little and Inner Harbors are characterized by muddy sediment and processes associated with deposition. A pockmark field in Little Harbor and the muddy, organic-rich sediments that form a scarp along the edge of Parker Flat are evidence for the presence of submerged marsh deposits formed during the Holocene rise in sea level. |