O'Brien, Thomas F.

About the author


Archive of boomer subbottom data collected offshore Eureka, California during USGS field activity W-1-96-NC from 1996-06-29 to 1996-07-07

This data release contains boomer subbottom data collected in June and July of 1996 on the shelf and slope offshore Eureka, California. Subbottom acoustic penetration spans up to several tens of meters, and is variable by location. This data release contains digital SEG-Y data. The data were collected aboard the R/V Wecoma using a Huntec Hydrosonde Deep-Tow system.

Info
10 meter bathymetric contours of the Gulf of the Farallones region (10mCONTOUR)

In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques ...

Info
500 meter bathymetric contours of the Gulf of the Farallones region (500mCONTOUR)

In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques ...

Info
Digital Sidescan-Sonar Mosaic collected within the Gulf of the Farallones, National Marine Sanctuary (FARALLONES.TIF, UTM 10, WGS84)

In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques ...

Info
Tracklines of Sidescan-Sonar Survey conducted within Gulf of Farallones, 1989, by the U.S. Geological Survey

In 1989, the U.S. Geological Survey (USGS) began a major geologic and oceanographic investigation of the Gulf of the Farallones continental shelf system, designed to evaluate and monitor human impacts on the marine environment (Karl and others, 2002). The study region is located off the central California coast, adjacent to San Francisco Bay and encompasses the Gulf of the Farallones National Marine Sanctuary. Geologic mapping of this area included the use of various remote sensing and sampling techniques ...

Info
All Autonomous Surface Vessel IRIS Shotpoint Navigation for Chirp Seismic Data in Apalachicola Bay collected on U.S. Geological Survey Cruise 06001 (ALLASV_NODUPES_SORT.SHP, Geographic, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
ESRI Binary 75-m Grid of the Base of the Mud Depth Surface of Apalachicola Bay based on Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (BASEMUD_SURF, UTM, Zone 16, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
ESRI Binary 75-m Grid of the Base of the Mud Isopach of Apalachicola Bay based on Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (BASEMUDISO, UTM, Zone 16, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
ESRI Binary 75-m Grid of the Flooding Surface in Apalachicola Bay based on Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (FLOODSURF, UTM, Zone 16, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
ESRI Binary 75-m Grid of the Lowstand Surface in Apalachicola Bay based on Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (LOWFILCLIP, UTM, Zone 16, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
ESRI Binary 75-m Grid of the Sea floor of Apalachicola Bay Excluding Manmade features based on Swath Bathymetry and Seismic-Reflection Profiles Collected in 2006 from U.S. Geological Survey Cruise 06001 (APALACH_SF, UTM, Zone 16, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
IRIS Chirp Seismic-Reflection Profile JPEG Images Collected in Apalachicola Bay on U.S. Geological Survey Cruise 06001

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
Point Shapefile of 1000 Interval Seismic Shotpoint Navigation for Autonomous Surface Vessel IRIS Chirp Seismic Data in Apalachicola Bay Collected on U.S. Geological Survey Cruise 06001 (ASV_1000SHOT_SORT.SHP, Geographic, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
Point Shapefile of Interpreted Base of Mud Isopach Based on Seismic-Reflection Profiles Collected in Apalachicola Bay in 2006 from U.S. Geological Survey Cruise 06001 (BASEMUD_GEOG.SHP, Geographic, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
Point Shapefile of Interpreted Lowstand Horizon Based on Seismic-Reflection Profiles Collected in Apalachicola Bay in 2006 from U.S. Geological Survey Cruise 06001 (LOWSTAND_GEOG.SHP, Geographic, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
Point Shapefile of the Interpreted Flooding Surface Isopach Based on Seismic-Reflection Profiles Collected in Apalachicola Bay in 2006 from U.S. Geological Survey Cruise 06001 (FLOODISO_GEOG.SHP, Geographic, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
Point Shapefile of the Interpreted Seafloor Horizon Based on Seismic-Reflection Profiles Collected in Apalachicola Bay in 2006 from U.S. Geological Survey Cruise 06001 (SEAFLOOR_GEOG.SHP, Geographic, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
Polyline-M Shapefile of Navigation Tracklines for Autonomous Surface Vessel IRIS Chirp Seismic Data in Apalachicola Bay collected on U.S. Geological Survey Cruise 06001 (ASV_LINES_CALIBRATED.SHP, Geographic, WGS84)

Apalachicola Bay and St. George Sound contain the largest oyster fishery in Florida, and the growth and distribution of the numerous oyster reefs here are the combined product of modern estuarine conditions and the late Holocene evolution of the bay. A suite of geophysical data and cores were collected during a cooperative study by the U.S. Geological Survey, the National Oceanic and Atmospheric Administration Coastal Services Center, and the Apalachicola National Estuarine Research Reserve to refine the ...

Info
USGS Cruise ALPH98013 Sidescan Sonar Data Files

This CD-ROM contains digital high resolution sidescan-sonar data collected during USGS cruise ALPH98013 aboard the F/V Alpha & Omega II. The coverage lies within the New York Bight Apex, offshore the Long Island and New Jersey coasts. This CD-ROM (Compact Disc-Read Only Memory) has been produced in accordance with the ISO 9660 CD-ROM Standard and is therefore capable of being read on any computing platform that has appropriate CD-ROM driver software installed. Access to the data and information contained on ...

Info
USGS Seafloor Mapping DIAN 97032 Chirp Subbottom Data offshore of the New York - New Jersey metropolitan area

This DVD-ROM contains digital high resolution seismic reflection data collected during the USGS DIAN 97032 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ...

Info
USGS Seafloor Mapping ATSV 99044 Chirp Data off Myrtle Beach, South Carolina

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ATSV 99044 cruise. The coverage is the nearshore of the northern South Carolina. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems ...

Info
Archive of Boomer and Sparker Data Collected During USGS Cruise DIAN 97032 Long Island, NY Inner Shelf -- Fire Island, 24 September - 19 October, 1997

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS Diane G 97032 cruise. The coverage is the nearshore of Long Island, NY in the vicinity of Fire Island. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC ...

Info
Split-beam Echo Sounder and Navigation Data Collected Using a Simrad EK80 Wide Band Transceiver and ES38-10 Transducer During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA

In summer 2018, the U.S. Geological Survey partnered with the U.S Department of Energy and the Bureau of Ocean Energy Management to conduct the Mid-Atlantic Resources Imaging Experiment (MATRIX) as part of the U.S. Geological Survey Gas Hydrates Project. The field program objectives were to acquire high-resolution 2-dimensional multichannel seismic-reflection and split-beam echo sounder data along the U.S Atlantic margin between North Carolina and New Jersey to determine the distribution of methane gas ...

Info
USGS Seafloor Mapping ALPH 98013 Water Gun Data offshore of the New York - New Jersey metropolitan area, collected in 1998

This CD-ROM contains digital high resolution seismic reflection data collected during the USGS ALPH 98013 cruise. The coverage is the nearshore of the New York and New Jersey Apex. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems ...

Info
Marine magnetics data collected by the U.S. Geological Survey in U.S. Atlantic Seaboard in 2014 (Geographic, WGS84, point shapefile 2014-011-FA_mag.shp)

In summer 2014, the U.S. Geological Survey conducted a 21-day geophysical program in deep water along the Atlantic continental margin by using R/V Marcus G. Langseth (Field Activity Number 2014-011-FA). The purpose of the seismic program was to collect multichannel seismic reflection and refraction data to determine sediment thickness. These data enable the United States to delineate its Extended Continental Shelf (ECS) along the Atlantic margin. The same data can also be used to understand large ...

Info
Post-stack migrated SEG-Y multi-channel seismic data collected by the U.S. Geological Survey in U.S. Atlantic Seaboard in 2014

In summer 2014, the U.S. Geological Survey conducted a 21-day geophysical program in deep water along the Atlantic continental margin by using R/V Marcus G. Langseth (Field Activity Number 2014-011-FA). The purpose of the seismic program was to collect multichannel seismic reflection and refraction data to determine sediment thickness. These data enable the United States to delineate its Extended Continental Shelf (ECS) along the Atlantic margin. The same data can also be used to understand large ...

Info
Trackline navigation for multi-channel seismic data collected by the U.S. Geological Survey on U.S. Atlantic Seaboard in 2014 (Geographic, WGS84, polyline shapefile 2014-011-FA_seistrk.shp)

In summer 2014, the U.S. Geological Survey conducted a 21-day geophysical program in deep water along the Atlantic continental margin by using R/V Marcus G. Langseth (Field Activity Number 2014-011-FA). The purpose of the seismic program was to collect multichannel seismic reflection and refraction data to determine sediment thickness. These data enable the United States to delineate its Extended Continental Shelf (ECS) along the Atlantic margin. The same data can also be used to understand large ...

Info
Unique common mid-point (cmp) navigation for multi-channel seismic data collected by the U.S. Geological Survey on U.S. Atlantic Seaboard in 2014 (Geographic, WGS84, point shapefile 2014-011-FA_mcscmp.shp)

In summer 2014, the U.S. Geological Survey conducted a 21-day geophysical program in deep water along the Atlantic continental margin by using R/V Marcus G. Langseth (Field Activity Number 2014-011-FA). The purpose of the seismic program was to collect multichannel seismic reflection and refraction data to determine sediment thickness. These data enable the United States to delineate its Extended Continental Shelf (ECS) along the Atlantic margin. The same data can also be used to understand large ...

Info
Multichannel Seismic-Reflection and Navigation Data Collected Using Sercel GI Guns and Geometrics GeoEel Digital Streamers During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA

In summer 2018, the U.S. Geological Survey partnered with the U.S Department of Energy and the Bureau of Ocean Energy Management to conduct the Mid-Atlantic Resources Imaging Experiment (MATRIX) as part of the U.S. Geological Survey Gas Hydrates Project. The field program objectives were to acquire high-resolution 2-dimensional multichannel seismic-reflection and split-beam echosounder data along the U.S Atlantic margin between North Carolina and New Jersey to determine the distribution of methane gas ...

Info
Sonobuoy Seismic and Navigation Data Collected Using Sercel GI Guns and Ultra Electronics Seismic Sonobuoys During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA

In summer 2018, the U.S. Geological Survey partnered with the U.S Department of Energy and the Bureau of Ocean Energy Management to conduct the Mid-Atlantic Resources Imaging Experiment (MATRIX) as part of the U.S. Geological Survey Gas Hydrates Project. The field program objectives were to acquire high-resolution 2-dimensional multichannel seismic-reflection and split-beam echo sounder data along the U.S Atlantic margin between North Carolina and New Jersey to determine the distribution of methane gas ...

Info