Sediment Grain-size Data from sediment core samples collected in March/April 2014 from Assateague Island and the mainland of Virginia and Maryland (U.S. Geological Survey Field Activity Numbers 2014-301-FA, and 2014-322-FA).

Online link https://cmgds.marine.usgs.gov/catalog/spcmsc/OFR20151169_Grain_Size-met.faq.html
Description The influence of tropical and extratropical cyclones on coastal wetlands and marshes is highly variable in both space and time and depends on a number of climatic, geologic, and physical variables. The impacts storms can be either positive or negative with respect to the wetland and marsh ecosystems. Small to moderate amounts of inorganic sediment added during storms or other events helps to abate pressure from sea-level rise. However, if the volume of sediment is large and the resulting deposits thick, the organic substrate may compact causing submergence and a loss in elevation. Similarly, thick deposits of coarse inorganic sediment may also alter the hydrology of the site and impede vegetative processes. Alternative impacts associated with storms include shoreline erosion at the marsh edge as well as potential emergence. Predicting the outcome of these various responses and potential long-term implications can be obtained from a systematic assessment of both historical and recent event deposits. The objectives of this study are to 1) characterize the surficial sediment of the relict to recent washover fans and back-barrier marshes, and 2) characterize the sediment of 6 marsh cores from the back-barrier marshes and a single marsh island core near the mainland. These geologic data will be integrated with other remote sensing data collected along Assateague Island, Maryland / Virginia and assimilated into an assessment of coastal wetland response to storms. [More]
Originators Smith, Christopher G.; Marot, Marci E.; Ellis, Alisha M.; Wheaton, Cathryn J.; Bernier, Julie C.; and Adams, C. Scott
Field activities