Wheaton, Cathryn J.

About the author


Sediment Grain-size Data from sediment grab samples and box cores collected in May 2014 from Barnegat Bay, New Jersey (U.S. Geological Survey Field Activity Numbers 2014-310-FA).

Barnegat Bay, located along the eastern shore of New Jersey, was significantly impacted by Hurricane Sandy in October 2012. Scientists from the U.S. Geological Survey (USGS) developed a multidisciplinary study of sediment transport and hydrodynamics to understand the mechanisms that govern estuarine and wetland responses to storm forcing. This report details the physical and chemical characteristics of surficial and downcore sediments from two areas within the bay. Eleven sites were sampled in both the ...

Info
Sedimentary Data Collected in April 2016 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2016–327–FA)

The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ...

Info
Sedimentary Data Collected in August 2015 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2015–329–FA)

The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ...

Info
Sedimentary Data Collected in February 2016 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2016–312–FA)

The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ...

Info
Sedimentary Data Collected in November 2015 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2015–341–FA)

The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ...

Info
Sedimentary Data Collected in September 2016 From Old Tampa Bay, Florida (U.S. Geological Survey Field Activity Number 2016–350–FA)

The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur. From August 2015 to September 2016, the U. S. Geological Survey (USGS) and ...

Info
Archive of sediment physical properties and grain-size data for sediment samples collected offshore of Assateague Island, Maryland and Virginia

This data release serves as an archive of sediment physical properties and grain-size data for surficial samples collected offshore of Assateague Island, Maryland and Virginia, for comparison with surficial estuarine and subaerial sedimentological samples collected and assessed following Hurricane Sandy (Ellis and others, 2015 (http://doi.org/10.3133/ofr20151219); Smith and others, 2015 (http://doi.org/10.3133/ofr20151169); Bernier and others, 2016 (https://pubs.usgs.gov/ds/0999/)). The sediment samples ...

Info
Archive of sediment physical properties and grain-size data for sediment samples collected offshore of Assateague Island, Maryland and Virginia

This data release serves as an archive of sediment physical properties and grain-size data for surficial samples collected offshore of Assateague Island, Maryland and Virginia, for comparison with surficial estuarine and subaerial sedimentological samples collected and assessed following Hurricane Sandy (Ellis and others, 2015 (http://doi.org/10.3133/ofr20151219); Smith and others, 2015 (http://doi.org/10.3133/ofr20151169); Bernier and others, 2016 (https://pubs.usgs.gov/ds/0999/)). The sediment samples ...

Info
Archive of sediment physical properties and grain-size data for sediment samples collected offshore of Assateague Island, Maryland and Virginia

This data release serves as an archive of sediment physical properties and grain-size data for surficial samples collected offshore of Assateague Island, Maryland and Virginia, for comparison with surficial estuarine and subaerial sedimentological samples collected and assessed following Hurricane Sandy (Ellis and others, 2015 (http://doi.org/10.3133/ofr20151219); Smith and others, 2015 (http://doi.org/10.3133/ofr20151169); Bernier and others, 2016 (https://pubs.usgs.gov/ds/0999/)). The sediment samples ...

Info
Chincoteague Bay calculated shear stress data from the spring and fall sampling trips of 2014 and preliminary modeled bottom shear stress values provided by the Wood’s Hole USGS office.

Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of surficial sediments from Chincoteague Bay and Tom's Cove, located between Assateague Island and the Delmarva Peninsula in March/April 2014 (2014-301-FA) and October 2014 (2014-322-FA). The sampling efforts were part of a larger U.S. Geological Survey study to assess the effects of storm events on sediment distribution. The objective of this study was to characterize the sediments ...

Info
Chincoteague Bay surface sediment physical parameters data from the spring and fall sampling trips of 2014

Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of surficial sediments from Chincoteague Bay and Tom's Cove, located between Assateague Island and the Delmarva Peninsula in March/April 2014 (2014-301-FA) and October 2014 (2014-322-FA). The sampling efforts were part of a larger U.S. Geological Survey study to assess the effects of storm events on sediment distribution. The objective of this study was to characterize the sediments ...

Info
Sediment Sample Locations Collected in March/April 2014 and October 2014 from Chincoteague Bay, Virginia and Maryland (U.S. Geological Survey Field Activity Numbers 14CTB01, and 14CTB22)

Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of surficial sediments from Chincoteague Bay and Tom's Cove, located between Assateague Island and the Delmarva Peninsula in March/April 2014 (2014-301-FA) and October 2014 (2014-322-FA). The sampling efforts were part of a larger U.S. Geological Survey study to assess the effects of storm events on sediment distribution. The objective of this study was to characterize the sediments ...

Info
Textural description of surface sediment samples collected in March/April 2014 and October 2014 from Chincoteague Bay, Virginia and Maryland (U.S. Geological Survey Field Activity Numbers 14CTB01, and 14CTB22).

Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of surficial sediments from Chincoteague Bay and Tom's Cove, located between Assateague Island and the Delmarva Peninsula in March/April 2014 (2014-301-FA) and October 2014 (2014-322-FA). The sampling efforts were part of a larger U.S. Geological Survey study to assess the effects of storm events on sediment distribution. The objective of this study was to characterize the sediments ...

Info
Sand auger and trench site locations collected in March/April and October 2014 from Assateague Island, Maryland (U.S. Geological Survey Field Activity Numbers [FAN] 2014-301-FA and 2014-322-FA)

The U.S. Geological Survey has a long history of responding to and documenting the impacts of storms along the Nation’s coasts and incorporating these data into storm impact and coastal change vulnerability assessments. Although physical changes caused by tropical and extratropical storms to the sandy beaches and dunes fronting barrier islands are generally well documented, the interaction between sandy shoreline erosion and overwash with the back-barrier wetland and estuarine environments is poorly ...

Info
Sediment grain-size data from sand augers collected in March/April and October 2014 from Assateague Island, Maryland (U.S. Geological Survey Field Activity Numbers [FAN] 2014-301-FA and 2014-322-FA)

The U.S. Geological Survey has a long history of responding to and documenting the impacts of storms along the Nation’s coasts and incorporating these data into storm impact and coastal change vulnerability assessments. Although physical changes caused by tropical and extratropical storms to the sandy beaches and dunes fronting barrier islands are generally well documented, the interaction between sandy shoreline erosion and overwash with the back-barrier wetland and estuarine environments is poorly ...

Info
Assateague Island sediment core radiochemistry data from March-April 2014, USGS Field Activity Number 2014-301-FA

The influence of tropical and extratropical cyclones on coastal wetlands and marshes is highly variable in both space and time and depends on a number of climatic, geologic, and physical variables. The impacts storms can be either positive or negative with respect to the wetland and marsh ecosystems. Small to moderate amounts of inorganic sediment added during storms or other events helps to abate pressure from sea-level rise. However, if the volume of sediment is large and the resulting deposits thick, ...

Info
Assateague Island surface and subsurface sediment physical parameters data from the spring and fall sampling trips of 2014

The influence of tropical and extratropical cyclones on coastal wetlands and marshes is highly variable in both space and time and depends on a number of climatic, geologic, and physical variables. The impacts storms can be either positive or negative with respect to the wetland and marsh ecosystems. Small to moderate amounts of inorganic sediment added during storms or other events helps to abate pressure from sea-level rise. However, if the volume of sediment is large and the resulting deposits thick, ...

Info
Sediment Grain-size Data from sediment core samples collected in March/April 2014 from Assateague Island and the mainland of Virginia and Maryland (U.S. Geological Survey Field Activity Numbers 2014-301-FA, and 2014-322-FA).

The influence of tropical and extratropical cyclones on coastal wetlands and marshes is highly variable in both space and time and depends on a number of climatic, geologic, and physical variables. The impacts storms can be either positive or negative with respect to the wetland and marsh ecosystems. Small to moderate amounts of inorganic sediment added during storms or other events helps to abate pressure from sea-level rise. However, if the volume of sediment is large and the resulting deposits thick, ...

Info
Sedimentological and radiochemical characteristics of marsh deposits from Assateague Island and adjacent vicinity, Maryland and Virginia, following Hurricane Sandy

The influence of tropical and extratropical cyclones on coastal wetlands and marshes is highly variable in both space and time and depends on a number of climatic, geologic, and physical variables. The impacts storms can be either positive or negative with respect to the wetland and marsh ecosystems. Small to moderate amounts of inorganic sediment added during storms or other events helps to abate pressure from sea-level rise. However, if the volume of sediment is large and the resulting deposits thick, ...

Info
Alpha spectroscopy radioisotopic data for box core sediments collected from Barnegat Bay, New Jersey in May 2014 (U.S. Geological Survey Field Activity Number 2014-310-FA)

Barnegat Bay, located along the eastern shore of New Jersey, was significantly impacted by Hurricane Sandy in October 2012. Scientists from the U.S. Geological Survey (USGS) developed a multidisciplinary study of sediment transport and hydrodynamics to understand the mechanisms that govern estuarine and wetland responses to storm forcing. This report details the physical and chemical characteristics of surficial and downcore sediments from two areas within the bay. Eleven sites were sampled in both the ...

Info
Barnegat Bay surface and subsurface sediment physical parameters data from May 2014 (U.S. Geological Survey Field Activity Number 2014-310-FA)

Barnegat Bay, located along the eastern shore of New Jersey, was significantly impacted by Hurricane Sandy in October 2012. Scientists from the U.S. Geological Survey (USGS) developed a multidisciplinary study of sediment transport and hydrodynamics to understand the mechanisms that govern estuarine and wetland responses to storm forcing. This report details the physical and chemical characteristics of surficial and downcore sediments from two areas within the bay. Eleven sites were sampled in both the ...

Info
Sediment Sample Locations Collected in May 2014 from Barnegat Bay, New Jersey (U.S. Geological Survey Field Activity Number 2014-310-FA)

Barnegat Bay, located along the eastern shore of New Jersey, was significantly impacted by Hurricane Sandy in October 2012. Scientists from the U.S. Geological Survey (USGS) developed a multidisciplinary study of sediment transport and hydrodynamics to understand the mechanisms that govern estuarine and wetland responses to storm forcing. This report details the physical and chemical characteristics of surficial and downcore sediments from two areas within the bay. Eleven sites were sampled in both the ...

Info
Sediment Sample Locations Collected in August 2015 from Dauphin Island and the surrounding areas

Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ...

Info
Surface sediment physical parameters data collected in August 2015 from Dauphin Island and the surrounding areas

Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ...

Info
Textural description of surface sediment samples collected in August 2015 from Dauphin Island and the surrounding areas

Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ...

Info
YSI water quality data from August 2015 from Dauphin Island and the surrounding areas.

Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, over-wash deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS ...

Info
Gamma spectroscopy data for box core sediments collected from Barnegat Bay, New Jersey in May 2014 (U.S. Geological Survey Field Activity Number 2014-310-FA)

Barnegat Bay, located along the eastern shore of New Jersey, was significantly impacted by Hurricane Sandy in October 2012. Scientists from the U.S. Geological Survey (USGS) developed a multidisciplinary study of sediment transport and hydrodynamics to understand the mechanisms that govern estuarine and wetland responses to storm forcing. This report details the physical and chemical characteristics of surficial and downcore sediments from two areas within the bay. Eleven sites were sampled in both the ...

Info
Shapefile of the Single-beam Bathymetry Tracklines Surveyed in May-June, 2015 from Grand Bay Alabama/Mississippi

As part of the Sea level and Storm Impacts on Estuarine Environments and Shorelines project (SSIEES), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open bay and tidal creek environments of Grand Bay Alabama/Mississippi, in May-June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the ...

Info
Single-Beam Bathymetry Data 10-meter DEM Collected in 2015 from Grand Bay, Alabama/Mississippi

As part of the Sea level and Storm Impacts on Estuarine Environments and Shorelines project (SSIEES), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open bay and tidal creek environments of Grand Bay Alabama/Mississippi, in May-June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the ...

Info
Single-Beam Bathymetry Data 30-meter DEM Collected in 2015 from Grand Bay, Alabama/Mississippi

As part of the Sea level and Storm Impacts on Estuarine Environments and Shorelines project (SSIEES), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open bay and tidal creek environments of Grand Bay Alabama/Mississippi, in May-June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the ...

Info
Single-Beam Bathymetry XYZ Data Collected in 2015 from Grand Bay, Alabama/Mississippi

As part of the Sea level and Storm Impacts on Estuarine Environments and Shorelines project (SSIEES), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open bay and tidal creek environments of Grand Bay Alabama/Mississippi, from May to June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along ...

Info