Metadata records containing "coastal" from "ISO 19115 Topic Category"

These diagnostic searches indicate keywords that were not recognized as matching vocabularies that are actively supported by the CMHRP metadata catalog on CMGDS. Thesauri are listed here if their names did not match the preferred or alternate names included in the catalog database, OR if they contained terms that did not match terms in the specified vocabulary.

Results are color-coded by center: PCMSC SPCMSC WHCMSC

2010 Cape Canaveral, Florida Single-beam Bathymetry Data

Single-beam bathymetric surveys were conducted on July 27-29, 2010 along 37 cross-shore transects offshore from Cape Canaveral, Fla. The transects were spaced 500 meters (m) apart in the alongshore direction and each was approximately five kilometers (km) long in the cross-shore.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico

These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Gulf of Mexico coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. Data on dune morphology (dune crest and toe elevation) and hydrodynamics (storm surge, wave setup and runup) are also included in this data set. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future. The data presented here include the dune morphology observations, as derived from lidar surveys.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Bradenton Beach to Clearwater Beach, Florida Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Gulf of Mexico from Bradenton Beach to Clearwater Beach, Florida for data collected at various times between 1998 and 2010.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Bradenton Beach to Clearwater Beach, Florida Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Gulf of Mexico from Bradenton Beach to Clearwater Beach, Florida for data collected at various times between 1998 and 2010.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Gulf of Mexico Update

This dataset contains information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Gulf of Mexico coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. Data on dune morphology (dune crest and toe elevation) and hydrodynamics (storm surge, wave setup and runup) are also included in this data set. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future. The data presented here include the dune morphology observations, as derived from lidar surveys.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Mid-Atlantic Coast

These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Mid-Atlantic coast for category 1-4 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-4 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. Data on dune morphology (dune crest and toe elevation) and hydrodynamics (storm surge, wave setup and runup) are also included in this data set. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future. The data presented here include the dune morphology observations, as derived from lidar surveys.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Mid-Atlantic Coast (version 2)

These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Mid-Atlantic coast for category 1-4 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-4 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. Data on dune morphology (dune crest and toe elevation) and hydrodynamics (storm surge, wave setup and runup) are also included in this data set. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future. The data presented here include the dune morphology observations, as derived from lidar surveys taken immediately after the landfall of Hurricane Sandy.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Northeast Atlantic Coast

These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Northeast Atlantic coast for category 1-4 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-4 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. Data on dune morphology (dune crest and toe elevation) and hydrodynamics (storm surge, wave setup and runup) are also included in this data set. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future. The data presented here include the dune morphology observations, as derived from lidar surveys taken from May to July, 2010.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: South Carolina through New Hampshire Update

This data set contains information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the United States coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. Data on dune morphology (dune crest and toe elevation) and hydrodynamics (storm surge, wave setup and runup) are also included in this data set. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future. The data presented here include the dune morphology observations, as derived from lidar surveys.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic

These data sets contain information on the probabilities of hurricane-induced erosion (collision, inundation and overwash) for each 1-km section of the Southeast Atlantic coast for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct landfall of category 1-5 hurricanes. Hurricane-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. Data on dune morphology (dune crest and toe elevation) and hydrodynamics (storm surge, wave setup and runup) are also included in this data set. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future. The data presented here include the dune morphology observations, as derived from lidar surveys.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Miami to Jupiter, Florida Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Atlantic Ocean from Miami to Jupiter, Florida for data collected at various times between 1999 and 2009.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Miami to Jupiter, Florida Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives beach morphology features from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Atlantic Ocean from Miami to Jupiter, Florida for data collected at various times between 1999 and 2009.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Salvo to Duck, North Carolina Mean (interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives features of beach morphology from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines mean beach slopes along the United States Southeast Atlantic Ocean from Salvo to Duck, North Carolina for data collected at various times between 1996 and 2012.

Info
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Southeast Atlantic Salvo to Duck, North Carolina Raw (non-interpolated) Beach Slope Point Data

The National Assessment of Coastal Change Hazards project derives features of beach morphology from lidar elevation data for the purpose of understanding and predicting storm impacts to our nation's coastlines. This dataset defines beach slopes along the United States Southeast Atlantic Ocean from Salvo to Duck, North Carolina for data collected at various times between 1996 and 2012.

Info
Probability Model Outputs: National Assessment of Nor'easter-Induced Coastal Erosion Hazards: Mid- and Northeast Atlantic Coast (Polyline Shapefile)

These datasets contain information on the probabilities of nor'easter-induced erosion (collision, overwash and inundation) for each 1-km section of the Mid- and Northeast Atlantic coast, from North Carolina through Maine, for class 1-3 nor'easters. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the direct impact of class 1-3 nor'easters. Nor'easter-induced water levels, due to both surge and waves, are compared to beach and dune elevations to determine the probabilities of three types of coastal change: collision (dune erosion), overwash, and inundation. Data on dune morphology (dune crest and toe elevation) and hydrodynamics (storm surge, wave setup and runup) are also included in this dataset. As new beach morphology observations and storm predictions become available, this analysis will be updated to describe how coastal vulnerability to storms will vary in the future. The data presented here include dune morphology observations, as derived from lidar surveys taken between May and July 2010 and in November 2012.

Info