Visible light imaging

Remote sensing methods using electromagnetic radiation which is visible to the human eye to react with the coating on a photographic plate or film.
This category is also used for satellite photography.
Subtopics:
(none)
Related topics:

154 results listed by similarity [list alphabetically]
Orthoimagery of Eastern Dry Rocks coral reef, Florida, 2021

A seabed orthoimage was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (0.12 square kilometers) in size, and it was created using image-mosaicking methods and saved as a tiled, 5-mm resolution raster.

Info
Bathymetric digital elevation model (DEM) of Eastern Dry Rocks coral reef, Florida, 2021

A digital elevation model (DEM) was created from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was derived in Metashape (ver. 1.6.5) from the point cloud, but it excludes the 'low noise' class. The DEM covers a rectangular area of seafloor ...

Info
GNSS locations of seabed images collected at Eastern Dry Rocks coral reef, Florida, 2021

This text file (SQUID5_EDR_2021_Image_Locations.txt) provides the GNSS antenna location for underwater images collected at Eastern Dry Rocks coral reef, near Key West, Florida, in May 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The GNSS antenna location for the time of each image capture is presented with greater precision than is stored in the individual image's EXIF header due to ...

Info
Point cloud data of Eastern Dry Rocks coral reef, Florida, 2021

A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Eastern Dry Rocks coral reef near Key West, Florida, in May 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, RGB colors, Metashape-computed confidence values, and a two-class classification ('unclassified' and 'low noise') derived from the confidence values. LAS (and its compressed form, LAZ) is an open format ...

Info
Overlapping seabed images collected at Eastern Dry Rocks coral reef, Florida, 2021

Underwater images totaling 138,733 in number were collected at Eastern Dry Rocks coral reef, near Key West, Florida, in May 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images as TIFF (.tif) format to maintain the highest resolution and bit depth. Each image includes EXIF metadata, containing GNSS ...

Info
Digital elevation model (DEM) of Looe Key, Florida, 2021

A digital elevation model (DEM) was created from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 720x100 meters (0.072 ...

Info
GNSS locations of seabed images collected at Looe Key, Florida, 2021

The text file "SQUID5_LKR_2021_Image_Locations.txt" provides the GNSS antenna location for underwater images collected at Looe Key, Florida, in July 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The GNSS antenna location for the time of each image capture is presented with greater precision than is stored in the individual image EXIF headers due to decimal place limitations of the EXIF ...

Info
Orthoimagery of Looe Key, Florida, 2021

A seabed orthoimage was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 720x100 meters (0.072 square kilometers) in size. It was created using image-mosaicking methods and saved as a tiled GeoTIFF raster at 5-millimeter resolution.

Info
Point cloud data of Looe Key, Florida, 2021

A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Looe Key, Florida, in July 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LAS (and its compressed form, LAZ) is an open format developed for the efficient use of point cloud lidar data.

Info
Overlapping seabed images collected at Looe Key, Florida, 2021

A total of 94,567 underwater images were collected at Looe Key, Florida, in July 2021, using the SQUID5 Structure-from-Motion (SfM) system, a towed-surface vehicle with five downward-looking underwater cameras developed by the U.S. Geological Survey. The images are organized in zipped files grouped by survey line. The SQUID-5 records images in the Tagged Image File Format format to maintain the highest resolution and bit depth. Each image includes Exchangeable Image File (EXIF) metadata, containing Global ...

Info
Remote Sensing Coastal Change Simple Data Distribution Service

The Remote Sensing Coastal Change Simple Data Service provides timely and long-term access to emergency, provisional, and approved photogrammetric imagery, derivatives, and ancillary data through a web service via HyperText Transfer Protocol to a folder/file structure organized by data collection platform and survey (collection effort) with metadata sufficient to facilitate both human and machine access. Data are acquired, processed, and published using standardized workflows. Each data type added to the ...

Info
Coast Train--Labeled imagery for training and evaluation of data-driven models for image segmentation

Coast Train is a library of images of coastal environments, annotations, and corresponding thematic label masks (or ‘label images’) collated for the purposes of training and evaluating machine learning (ML), deep learning, and other models for image segmentation. It includes image sets from both geospatial satellite, aerial, and UAV imagery and orthomosaics, as well as non-geospatial oblique and nadir imagery. Images include a diverse range of coastal environments from the U.S. Pacific, Gulf of Mexico, ...

Info
Bathymetric digital elevation model (DEM) of Lake Tahoe near Dollar Point

Underwater images collected near Dollar Point in Lake Tahoe, California, were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified 3D point cloud. The DEM was derived in Metashape (ver. 1.6.4) from the point cloud, but it excludes the 'high noise' class. The DEM data were output as a geoTIFF raster at 25-mm resolution.

Info
Orthoimagery of Lake Tahoe near Dollar Point

Lakebed orthoimagery was developed from underwater images collected near Dollar Point in Lake Tahoe, California, and processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimages were developed using both image-mosaic and image-averaging methods, which were then output as 5-mm resolution rasters. In general, the "Mosaic" product is somewhat sharper in resolution but will include some distinct seam lines and noticeable differences in image quality across the image. The "Average" ...

Info
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2021

A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud, and includes points from both classes. The DEM covers a rectangular area of seafloor approximately 650x120 meters (0 ...

Info
Orthoimagery of Big Pine Ledge, Florida, 2021

A seabed orthoimage was developed from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system. The underwater images were processed using Structure-from-Motion (SfM) photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 650x120 meters (0.078 square kilometers) in size. It was created using image-averaging methods and saved as a tiled GeoTIFF raster at 5-millimeter resolution.

Info
Point cloud data of Big Pine Ledge, Florida, 2021

A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Big Pine Ledge, Florida, in July 2021 using the SQUID-5 camera system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LAS (and its compressed form, LAZ) is an open format developed for the efficient use of point cloud lidar data.

Info
Point cloud data of Lake Tahoe near Dollar Point

Three-dimensional point clouds (LAZ format) were developed from underwater images collected near Dollar Point in Lake Tahoe, California, and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, RGB colors, Metashape-computed confidence values, and a two-class classification ('unclassified' and 'high noise') derived from the confidence values. LAZ is an open format developed for the efficient use of point cloud lidar data. A description of the LAZ ...

Info
Digital elevation model (DEM) of Big Pine Ledge, Florida, 2022

A digital elevation model (DEM) was created from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.8.5) from the point cloud and includes points from both classes. The DEM covers a ...

Info
Orthoimagery of Big Pine Ledge, Florida, 2022

A seabed orthoimage was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (m) (0.12 square kilometers [km]) in size. It was created using image-averaging methods and saved as a tiled Geographic Tagged Image ...

Info
Orthomosaic of Big Pine Ledge, Florida, 2022

A seabed orthoimage was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 800x160 meters (m) (0.12 square kilometers [km]) in size. It was created using image-mosaicking methods and saved as a tiled Geographic Tagged ...

Info
Point cloud data of Big Pine Ledge, Florida, 2022

A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Big Pine Ledge (BPL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) – and its compressed form, LAZ – is an open format ...

Info
Digital Elevation Model (DEM) of Summerland Ledge, Florida, 2022

A digital elevation model (DEM) was created from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a ...

Info
Orthoimagery of Summerland Ledge, Florida, 2022

A seabed orthoimage was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 450x180 meters (m) (0.081 square kilometers [km]) in size. It was created using image-averaging methods and saved as a Geographic Tagged Image ...

Info
Orthomosaic of Summerland Ledge, Florida, 2022

A seabed orthoimage was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 450x180 meters (m) (0.081 square kilometers [km]) in size. It was created using image-mosaicing methods and saved as a Geographic Tagged Image ...

Info
Point cloud data of Summerland Ledge, Florida, 2022

A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Summerland Ledge (SL), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) - and its compressed form, LAZ - is an open format ...

Info
High Resolution Digital Elevation Model (DEM) of Looe Key, Florida, 2022

A digital elevation model (DEM) was created from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a rectangular ...

Info
Quicklook Digital Elevation Model (DEM) of Looe Key, Florida, 2022

A digital elevation model (DEM) was created from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques into a classified two-class ('unclassified' and 'low noise') 3D point cloud. The DEM was created in Metashape (ver. 1.6.6) from the point cloud and includes points from both classes. The DEM covers a rectangular ...

Info
Orthoimagery of Looe Key, Florida, 2022

A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. It was created using image-averaging methods and saved as Geographic Tagged Image File Format ...

Info
Quicklook Orthoimage of Looe Key, Florida, 2022

A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. This "quicklook" version of the dataset was created using image-averaging methods and saved as ...

Info
Orthomosaic of Looe Key, Florida, 2022

A seabed orthoimage was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system. The underwater images were processed using SfM photogrammetry techniques. The orthoimage covers a rectangular area of seafloor approximately 850x160 meters (m) (0.13 square kilometers [km]) in size. It was created using image-mosaicking methods and saved as Geographic Tagged Image File Format ...

Info
Point cloud data of Looe Key, Florida, 2022

A three-dimensional point cloud (LAZ format) was developed from underwater images collected at Looe Key (LKR), Florida, in July 2022 using the SfM (Structure-from-Motion) Quantitative Underwater Imaging Device with 5 cameras (SQUID-5) system and processed using Structure-from-Motion (SfM) photogrammetry techniques. Point cloud data include x,y,z positions, and RGB colors derived from the color-corrected imagery. LIDAR Aerial Survey files (LAS) - and its compressed form, LAZ - is an open format developed for ...

Info
Unprocessed aerial imagery from 9 December 2015 coastal survey of Central California.

This is a set of 1132 oblique aerial photogrammetric images and their derivatives, collected from Capitola to Pajaro Dunes with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 26 January 2016 coastal survey of Central California.

This is a set of 1836 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 5 February 2016 coastal survey of Central California.

This is a set of 3494 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 2 March 2016 coastal survey of Central California.

This is a set of 1309 oblique aerial photogrammetric images and their derivatives, collected from Santa Cruz to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 8 March 2016 coastal survey of Central California.

This is a set of 2753 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 15 September 2016 coastal survey of Central California.

This is a set of 1600 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 26 September 2016 coastal survey of Central California.

This is a set of 1569 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ano Nuevo with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 1 December 2016 coastal survey of Central California.

This is a set of 3234 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 20 December 2016 coastal survey of Central California.

This is a set of 3036 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 25 January 2017 coastal survey of Central California.

This is a set of 4521 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Cape San Martin with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 22 February 2017 coastal survey of Central California.

This is a set of 4808 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Lucia with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 8 March 2017 coastal survey of Central California.

This is a set of 5642 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 5 April 2017 coastal survey of Central California.

This is a set of 5044 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Cape San Martin with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 8 May 2017 coastal survey of Central California.

This is a set of 1975 oblique aerial photogrammetric images and their derivatives, collected from Pedro Point to Sunset Beach with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 12 May 2017 coastal survey of Central California.

This is a set of 628 oblique aerial photogrammetric images and their derivatives, collected from SeaCliff Beach to Fort Ord with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 17 May 2017 coastal survey of Central California.

This is a set of 3045 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 19 May 2017 coastal survey of Central California.

This is a set of 3164 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 27 May 2017 coastal survey of Central California.

This is a set of 642 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 31 May 2017 coastal survey of Central California.

This is a set of 410 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 13 June 2017 coastal survey of Central California.

This is a set of 757 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 26 June 2017 coastal survey of Central California.

This is a set of 5069 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 18 December 2017 coastal survey of Central California.

This is a set of 2948 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 21 December 2017 coastal survey of Central California.

This is a set of 2072 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 29 January 2018 coastal survey of Central California.

This is a set of 5365 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 7 March 2018 coastal survey of Central California.

This is a set of 5355 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 28 May 2018 coastal survey of Central California.

This is a set of 3550 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 5 June 2018 coastal survey of Central California.

This is a set of 1533 oblique aerial photogrammetric images and their derivatives, collected from Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ...

Info
Unprocessed aerial imagery from 10 September 2018 coastal survey of Central California.

This is a set of 5846 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 23 February 2019 coastal survey of Central California.

This is a set of 4734 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 4 March 2019 coastal survey of Central California.

This is a set of 2541 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 11 March 2019 coastal survey of Central California.

This is a set of 1967 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 10 June 2019 coastal survey of Central California.

This is a set of 5042 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 15 October 2019 coastal survey of Central California.

This is a set of 3777 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 31 October 2019 coastal survey of Central California.

This is a set of 1911 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 29 November 2019 coastal survey of Central California.

This is a set of 1782 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Davenport with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 30 November 2019 coastal survey of Central California.

This is a set of 1444 oblique aerial photogrammetric images and their derivatives, collected from Davenport to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 20 January 2020 coastal survey of Central California.

This is a set of 3072 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 25 January 2020 coastal survey of Central California.

This is a set of 1880 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 9 March 2020 coastal survey of Central California.

This is a set of 1979 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 19 March 2020 coastal survey of Central California.

This is a set of 4835 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 19 April 2020 coastal survey of Central California.

This is a set of 2889 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 5 July 2020 coastal survey of Central California.

This is a set of 1890 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 30 September 2020 coastal survey of Central California.

This is a set of 3862 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 15 October 2020 coastal survey of Central California.

This is a set of 1982 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 10 January 2021 coastal survey of Central California.

This is a set of 1896 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 11 January 2021 coastal survey of Central California.

This is a set of 3796 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ...

Info
Unprocessed aerial imagery from 29 January 2021 coastal survey of Central California.

This is a set of 4919 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 3 March 2021 coastal survey of Central California.

This is a set of 2049 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 26 March 2021 coastal survey of Central California.

This is a set of 5626 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 8 September 2021 coastal survey of Central California.

This is a set of 2678 oblique aerial photogrammetric images and their derivatives, collected from PigeonPt to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 18 December 2021 coastal survey of Central California.

This is a set of 4722 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 20 January 2022 coastal survey of Central California.

This is a set of 2066 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 4 February 2022 coastal survey of Central California.

This is a set of 2269 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 12 March 2022 coastal survey of Central California.

This is a set of 2098 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 9 June 2022 coastal survey of Central California.

This is a set of 4595 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 12-13 September 2022 coastal survey of Central California.

This is a set of 3661 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 1 January 2023 coastal survey of Central California.

This is a set of 2076 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 5 January 2023 coastal survey of Central California.

This is a set of 2105 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 16 January 2023 coastal survey of Central California.

This is a set of 2763 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 23 January 2023 coastal survey of Central California.

This is a set of 5039 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 1 February 2023 coastal survey of Central California.

This is a set of 2943 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 8 February 2023 coastal survey of Central California.

This is a set of 1939 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 2 March 2023 coastal survey of Central California.

This is a set of 1839 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 3 March 2023 coastal survey of Central California.

This is a set of 2758 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 13 March 2023 coastal survey of Central California.

This is a set of 2195 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 16 March 2023 coastal survey of Central California.

This is a set of 2915 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 17 March 2023 coastal survey of Central California.

This is a set of 2077 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 6 April 2023 coastal survey of Central California.

This is a set of 2374 vertical aerial photogrammetric images and their derivatives, collected from Half Moon Bay to Santa Cruz with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 8 June 2023 coastal survey of Central California.

This is a set of 2123 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 10 October 2023 coastal survey of Central California.

This is a set of 3929 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 11 October 2023 coastal survey of Central California.

This is a set of 4930 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 26 October 2023 coastal survey of Central California.

This is a set of 2869 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 23 December 2023 coastal survey of Central California.

This is a set of 4772 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 29 December 2023 coastal survey of Central California.

This is a set of 1821 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 1 January 2024 coastal survey of Central California.

This is a set of 2876 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 12 January 2024 coastal survey of Central California.

This is a set of 1965 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 9 February 2024 coastal survey of Central California.

This is a set of 4787 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 23 February 2024 coastal survey of Central California.

This is a set of 2323 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 24 February 2024 coastal survey of Central California.

This is a set of 3059 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 7 March 2024 coastal survey of Central California.

This is a set of 2161 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 6 April 2024 coastal survey of Central California.

This is a set of 2286 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 17 June 2024 coastal survey of Central California.

This is a set of 5140 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 18 August 2024 coastal survey of Central California.

This is a set of 2003 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 6 January 2023 coastal-landslides survey of Central California.

This is a set of 8762 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 12 January 2023 coastal-landslides survey of Central California.

This is a set of 11207 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ...

Info
Unprocessed aerial imagery from 4-5 November 2020 CZU-fire survey of Central California.

This is a set of 11776 near-nadir aerial photogrammetric images and their derivatives, collected from CZU fire with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ...

Info
Unprocessed aerial imagery from 26 January 2017 landslides survey of Central California.

This is a set of 4889 oblique aerial photogrammetric images and their derivatives, collected from San Francisco Bay area with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 23 February 2017 landslides survey of Central California.

This is a set of 5954 oblique aerial photogrammetric images and their derivatives, collected from San Francisco Bay area with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 29 March 2018 coastal survey of Central and southern California.

This is a set of 1160 oblique aerial photogrammetric images and their derivatives, collected from Mud Creek Slide to Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera ...

Info
Unprocessed aerial imagery from 13 October 2018 coastal survey of Northern California to Washington.

This is a set of 11805 oblique aerial photogrammetric images and their derivatives, collected from OR-WA border to Mussel Rock CA with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 19 April 2024 coastal survey of Northern California to Washington.

This is a set of 14032 oblique aerial photogrammetric images and their derivatives, collected from Hoh Head to Cape Mendocino with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 25 September 2016 coastal survey of Oregon and Washington.

This is a set of 1712 oblique aerial photogrammetric images and their derivatives, collected from Cape Falcon to Cascade Head with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 28 September 2017 coastal survey of Oregon and Washington.

This is a set of 2060 oblique aerial photogrammetric images and their derivatives, collected from OR-WA border to Nestucca River OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 3 August 2020 coastal survey of Oregon and Washington.

This is a set of 2324 oblique aerial photogrammetric images and their derivatives, collected from Taholah WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 3 September 2020 coastal survey of Oregon and Washington.

This is a set of 2158 oblique aerial photogrammetric images and their derivatives, collected from NW WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ...

Info
Unprocessed aerial imagery from 29 August 2022 coastal survey of Oregon and Washington.

This is a set of 2413 oblique aerial photogrammetric images and their derivatives, collected from Taholah WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 1 June 2023 coastal survey of Oregon and Washington.

This is a set of 10139 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
PCMSC PlaneCam – Field data from periodic and event-response surveys of the U.S. West Coast.

This is an ongoing collection of aerial oblique and near-nadir images, ancillary data, and derivatives, from aerial surveys of coastal and near-coastal environments with a crewed light aircraft using the "PCMSC PlaneCam," a mounted fixed-lens DSLR camera with an attached consumer-grade GPS for time-keeping and approximate position, and a Global Navigation Satellite System (GNSS) for precise positioning. Data are collected and produced primarily for coastal monitoring using structure-from-motion ...

Info
Unprocessed aerial imagery from 28 September 2016 coastal survey of Southern California.

This is a set of 2671 oblique aerial photogrammetric images and their derivatives, collected from ptConception to Ventura with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 1 March 2017 coastal survey of Southern California.

This is a set of 2979 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Ventura with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 27 December 2017 coastal survey of Southern California.

This is a set of 2392 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Santa Barbara with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 13 September 2018 coastal survey of Southern California.

This is a set of 2062 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 6 May 2020 coastal survey of Southern California.

This is a set of 2167 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 18 September 2020 coastal survey of Southern California.

This is a set of 1968 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 2 March 2022 coastal survey of Southern California.

This is a set of 2212 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ...

Info
Unprocessed aerial imagery from 28 September 2022 coastal survey of Southern California.

This is a set of 2032 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ...

Info
Unprocessed aerial imagery from 2 October 2022 coastal survey of Southern California.

This is a set of 1108 oblique aerial photogrammetric images and their derivatives, collected from Santa Rosa Island with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by ...

Info
Unprocessed aerial imagery from 8 March 2023 coastal survey of Southern California.

This is a set of 2006 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ...

Info
Unprocessed aerial imagery from 12 October 2023 coastal survey of Southern California.

This is a set of 2013 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Port Hueneme with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 5 January 2024 coastal survey of Southern California.

This is a set of 2061 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ...

Info
Unprocessed aerial imagery from 12 February 2024 coastal survey of Southern California.

This is a set of 2032 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ...

Info
Unprocessed aerial imagery from 23 February 2024 coastal survey of Southern California.

This is a set of 2371 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ...

Info
Unprocessed aerial imagery from 18 March 2024 coastal survey of Southern California.

This is a set of 2076 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ...

Info
Unprocessed aerial imagery from 23 January 2018 Thomas-fire survey of Southern California.

This is a set of 4838 oblique aerial photogrammetric images and their derivatives, collected from Montecito with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ...

Info
Unprocessed aerial imagery from 19 April 2023 thomas-fire survey of Southern California.

This is a set of 3086 vertical aerial photogrammetric images and their derivatives, collected from Montecito with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ...

Info
Unprocessed aerial imagery from 4 August 2020 coastal survey of Washington.

This is a set of 645 oblique aerial photogrammetric images and their derivatives, collected from Elwha river mouth to Ediz Hook CG with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
Unprocessed aerial imagery from 28 August 2022 coastal survey of Washington.

This is a set of 4116 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ...

Info
Unprocessed aerial imagery from 29 August 2022 coastal survey of Washington.

This is a set of 4281 oblique and near nadir aerial photogrammetric images and their derivatives, collected from Elwha river mouth to Ediz Hook CG with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the ...

Info
Unprocessed aerial imagery from 6 July 2024 coastal survey of Washington.

This is a set of 7809 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ...

Info
Unprocessed aerial imagery from 31 August 2024 coastal survey of Washington.

This is a set of 6976 oblique aerial photogrammetric images and their derivatives, collected from Juan de Fuca Strait to Grays Harbor with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ...

Info
GNSS locations of lakebed images collected near Dollar Point, Lake Tahoe, CA, March 10 and 11, 2021

This text file (2021-607-FA_Image_Locations.txt) provides the GNSS antenna location for underwater images collected near Dollar Point, Lake Tahoe, CA, using a recently developed towed-surface vehicle with multiple downward-looking underwater cameras. The GNSS antenna location for the time of each image capture is presented with greater precision than is stored in the individual image’s EXIF header due to decimal place limitations of the EXIF format.

Info
Overlapping lakebed images collected near Dollar Point, Lake Tahoe, CA, March 10 and 11, 2021

Underwater images were collected near Dollar Point, Lake Tahoe, CA, using a recently developed towed-surface vehicle with multiple downward-looking underwater cameras. The images are organized in zipped files grouped by survey line. The SQUID-5 system records images as TIFF (.tif) format to maintain the highest resolution and bit depth. Each image includes EXIF metadata, containing GNSS date, time, and latitude and longitude of the GNSS antenna mounted on the towed surface vehicle, copyright, keywords, and ...

Info