Temporal hydrologic and chemical records from the Ox Bel Ha cave network within the coastal aquifer of the Yucatan Peninsula, from January 2015 to January 2016
Natural cave passages penetrating a coastal aquifer in the Yucatan Peninsula (Mexico) were accessed to investigate how regional meteorology and hydrology control methane dynamics in karst subterranean estuaries. Three field trips were carried out in January 2015, June 2015, and January 2016 to obtain year-long high-resolution temporal records of water chemistry and environmental parameters below and above the surface at a site (Cenote Bang) within the Ox Bel Ha cave network. These efforts resulted in ... |
Info |
Vertical chemical profiles collected across haloclines in the water column of the Ox Bel Ha cave network within the coastal aquifer of the Yucatan Peninsula in January 2015 and January 2016
Natural cave passages penetrating a coastal aquifer in the Yucatan Peninsula (Mexico) were accessed to test the hypothesis that chemoclines associated with salinity gradients (haloclines) within the flooded cave networks of the karst subterranean estuary are sites of methane oxidation. Two field trips were carried out to the fully-submerged cave system located 6.6 km inland from the coastline in January 2015 and January 2016. Vertical chemical profiles across the water column haloclines were obtained using ... |
Info |
Radon-222 Time-Series Data Related to Submarine Groundwater Discharge Along the Western Margin of Indian River Lagoon, Florida
Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States, stretching 200 kilometers (km) along the Atlantic coast of central Florida. The width of the lagoon varies between 0.5–9.0 km and is characterized by shallow, brackish waters with significant human development along both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, working in collaboration with the St. Johns River Water ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Initial Project Conditions Grid
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - With-Project Condition 2010 Simulation Without Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - With-Project Condition 10-Year Simulation Without Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - With-Project Condition 10-Year Simulation With 0.5-meter of Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Katrina Present-Day Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Katrina Low Sea Level Rise Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Katrina Intermediate-Low Sea Level Rise Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Static Low Sea Level Rise Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Static Intermediate-Low Sea Level Rise Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Present-Day Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Low Sea Level Rise (SLR) Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results for the Hurricane Ivan Intermediate-Low Sea Level Rise (SLR) Scenario
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Radon-222 and Water Column Data Related to Submarine Groundwater Discharge Along the Western Margin of Indian River Lagoon, Florida—September 2016 to July 2017 (ver. 2.0, March 2018)
Indian River Lagoon (IRL) is one of the most biologically diverse estuarine systems in the continental United States, stretching 200 kilometers (km) along the Atlantic coast of central Florida. The width of the lagoon varies between 0.5-9.0 km and is characterized by shallow, brackish waters with significant human development along both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, working in collaboration with the St. Johns River Water ... |
Info |
Dauphin Island Storms and Sea Level Rise Assessment: XBeach Model Input and Results
Using the numerical model XBeach version 4926 (Roelvink and others, 2009), hurricanes Ivan (2004) and Katrina (2005) were simulated at Dauphin Island, Alabama, under present-day conditions and future sea level rise scenarios as described in Passeri and others, 2018. The XBeach model setup requires the input of a merged topographic and bathymetric digital elevation model (DEM), and inputs of wave spectra (based on significant wave height, peak wave period and wave direction) and water level (tide and surge) ... |
Info |
Subbottom and Sidescan Sonar Data Acquired in 2015 From Grand Bay, Mississippi and Alabama
From May 28 to June 3, 2015, the U.S. Geological Survey (USGS) conducted a geophysical survey to investigate the geologic evolution and estuarine sediment thickness in Grand Bay, Alabama and Mississippi. Specific objectives were to document the age and accumulation patterns of estuarine sediment to advance our understanding of sediment exchange with the adjacent marsh and sources of sediment to the coastal ocean. This investigation is part of the USGS Sea-level and Storm Impacts on Estuarine Environments ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Initial Existing Conditions Grid
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Existing Condition 2010 Simulation Without Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Existing Condition 2010 Simulation With 0.5-meter of Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Existing Condition 10-Year Simulation Without Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - Existing Condition 10-Year Simulation with 0.5-meter of Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - 2015/12/09 through 2015/12/11 Deterministic Scenario
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - 2015/08/27 through 2015/08/29 Deterministic Scenario
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - 2005/06/19 through 2005/11/20 Deterministic Scenario
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
Mobile Harbor Navigation Channel Delft3D Model Inputs and Results - With-Project Condition 2010 Simulation With 0.5-meter of Sea Level Rise
The numerical model Delft3D (developed by Deltares) was developed to evaluate the potential effects of proposed navigation channel deepening and widening in Mobile Harbor, Alabama (AL). The Delft3D model setup requires the input of a merged topographic and bathymetric elevations, a wave climate based on significant wave heights, peak wave period and mean wave direction, and a tidal-time series. The model was validated by comparing model outputs from deterministic runs with observations of water levels and ... |
Info |
MS_AL_XYZ_metadata: Benthic foraminiferal data from the eastern Mississippi Sound salt marshes and estuaries
Microfossil (benthic foraminifera) and coordinate/elevation data were obtained from sediments collected in the coastal zones of Mississippi and Alabama, including marsh and estuarine environments of eastern Mississippi Sound and Mobile Bay, in order to develop a census for coastal environments and to aid in paleoenvironmental reconstruction. These data provide a baseline dataset for use in future wetland and estuarine change studies and assessments, both descriptive and predictive types. The data presented ... |
Info |
MS_AL_Cores_XYZ_metadata: Benthic foraminiferal data from sedimentary cores collected in the Grand Bay (Mississippi) and Dauphin Island (Alabama) salt marshes
Microfossil (benthic foraminifera) data from coastal areas were collected from state and federally managed lands within the Grand Bay National Estuarine Research Reserve and Grand Bay National Wildlife Refuge, Grand Bay, Mississippi/Alabama; federally managed lands of Bon Secour National Wildlife Refuge on Cedar Island and Little Dauphin Island, Alabama; and municipally managed land around Dauphin Island, Alabama. Samples were analyzed and quantified for foraminiferal census in order to document changes to ... |
Info |
MS_AL_Cores_Foram_CENSUS_metadata: Benthic foraminiferal data from sedimentary cores collected in the Grand Bay (Mississippi) and Dauphin Island (Alabama) salt marshes
Microfossil (benthic foraminifera) data from coastal areas were collected from state and federally managed lands within the Grand Bay National Estuarine Research Reserve and Grand Bay National Wildlife Refuge, Grand Bay, Mississippi/Alabama; federally managed lands of Bon Secour National Wildlife Refuge on Cedar Island and Little Dauphin Island, Alabama; and municipally managed land around Dauphin Island, Alabama. Samples were analyzed and quantified for foraminiferal census in order to document changes to ... |
Info |
MS_AL_Benthic_Foram_CENSUS_metadata: Benthic foraminiferal data from the eastern Mississippi Sound salt marshes and estuaries
Microfossil (benthic foraminifera) and coordinate/elevation data were obtained from sediments collected in the coastal zones of Mississippi and Alabama, including marsh and estuarine environments of eastern Mississippi Sound and Mobile Bay, in order to develop a census for coastal environments and to aid in paleoenvironmental reconstruction. These data provide a baseline dataset for use in future wetland and estuarine change studies and assessments, both descriptive and predictive types. The data presented ... |
Info |