Central California CoSMoS v3.1 projections of coastal cliff retreat due to 21st century sea-level rise
This dataset contains spatial projections of coastal cliff retreat (and associated uncertainty) for future scenarios of sea-level rise (SLR) in Central California. Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical models and field observations such as historical cliff retreat rate, nearshore slope, coastal cliff height, and mean annual wave power, as part of Coastal Storm Modeling System (CoSMoS). Read metadata and references ... |
Info |
Central California CoSMoS v3.1 projections of shoreline change due to 21st century sea-level rise
This dataset contains projections of shoreline positions and uncertainty bands for future scenarios of sea-level rise. Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model forced with global-to-local nested wave models and assimilated with lidar-derived shoreline vectors. Read metadata carefully. Details: Projections of shoreline position in the Central Coast of California are made for scenarios of 25, 50, 75, 92, 100 ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 100-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 1-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: 20-year storm in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Monterey County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Francisco County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Luis Obispo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in San Mateo County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Barbara County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood depth and duration projections: average conditions in Santa Cruz County
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 100-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 100-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 1-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 1-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: 20-year storm in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: 20-year storm in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood hazard projections: average conditions in Monterey County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Francisco County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Luis Obispo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in San Mateo County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Barbara County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 flood-hazard projections: average conditions in Santa Cruz County
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 100-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 1-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: 20-year storm in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Monterey County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Francisco County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Luis Obispo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in San Mateo County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Barbara County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 ocean-currents projections: average conditions in Santa Cruz County
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 100-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 1-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: 20-year storm in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Monterey County
This data contains model-derived total water elevation (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Francisco County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Luis Obispo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in San Mateo County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Barbara County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 water-level projections: average conditions in Santa Cruz County
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate. Outputs ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 100-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 1-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: 20-year storm in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Monterey County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Francisco County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Luis Obispo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in San Mateo County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Barbara County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Central California v3.1 wave-hazard projections: average conditions in Santa Cruz County
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 coastal squeeze projections
Projected coastal squeeze derived from CoSMoS Phase 2 shoreline change and cliff retreat projections. Projected coastal squeeze extents illustrate the available area between shoreline (mean high water; MHW) positions and man-made structures and barriers (referred to as non-erodible structures) or cliff-top retreat, as applicable, for a range of sea-level rise scenarios. The coastal squeeze polygons include results from the Coastal Storm Modeling System (CoSMoS) shoreline change (CoSMoS-COAST; Vitousek and ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 100-year storm in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 1-year storm in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: 20-year storm in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Los Angeles County
Projected Hazard: Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Orange County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Santa Barbara County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in the Channel Islands
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard depth and duration projections: average conditions in Ventura County
Maximum depth of flooding surface (in cm) in the region landward of the present day shoreline that is inundated for the storm condition and sea-level rise (SLR) scenario indicated. Note: Duration datasets may have occasional gaps in open-coast sections. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 100-year storm in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 1-year storm in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: 20-year storm in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Los Angeles County
Projected Hazard: Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Orange County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Santa Barbara County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in the Channel Islands
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 flood-hazard projections: average conditions in Ventura County
Geographic extent of projected coastal flooding, low-lying vulnerable areas, and maxium/minimum flood potential (flood uncertainty) associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 100-year storm in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 1-year storm in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: 20-year storm in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Los Angeles County
Projected Hazard: Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Orange County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Santa Barbara County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in the Channel Islands
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 ocean-currents projections: average conditions in Ventura County
Model-derived ocean current velocities (in meters per second) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 runup projections
Geographic extent of projected runup associated with the sea-level rise and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 100-year storm in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 1-year storm in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: 20-year storm in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Los Angeles County
Projected Hazard: Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Orange County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Santa Barbara County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in the Channel Islands
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 water-level projections: average conditions in Ventura County
Model-derived total water levels (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 100-year storm in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 1-year storm in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: 20-year storm in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Channel Islands
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Los Angeles County
Projected Hazard: Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. Model Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Orange County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Santa Barbara County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS (Coastal Storm Modeling System) Southern California v3.0 Phase 2 wave-hazard projections: average conditions in Ventura County
Model-derived significant wave height (in meters) for the given storm condition and sea-level rise (SLR) scenario. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal ... |
Info |
CoSMoS Southern California v3.0 Phase 2 projections of coastal cliff retreat due to 21st century sea-level rise
This dataset contains projections of coastal cliff-retreat rates and positions for future scenarios of sea-level rise (SLR). Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical and statistical models based on field observations such as historical cliff retreat rate, nearshore slope, coastal cliff height, and mean annual wave power, as part of Coastal Storm Modeling System (CoSMoS) v.3.0 Phase 2 in Southern California. Details: Cliff ... |
Info |
CoSMoS Southern California v3.0 projections of shoreline change due to 21st century sea-level rise
This dataset contains projections of shoreline positions and uncertainty bands for future scenarios of sea-level rise. Projections were made using CoSMoS-COAST, a numerical model forced with global-to-local nested wave models and assimilated with lidar-derived shoreline vectors. Details: Projections of shoreline position in Southern California are made for scenarios of 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, and 5.0 meters of sea-level rise by the year 2100. Four datasets are available for different ... |
Info |
CoSMoS Whatcom County model input files
This data set consists of physics-based XBeach and SFINCS hydrodynamic model input files used for Coastal Storm Modeling System (CoSMoS) Tier 3 simulations. This data release is for Whatcom County in Washington State and presents the final tier 3 models used to produce output data that is then post-processed into final CoSMoS products. Example model input and configuration files are included for a single domain and SLR scenario, with the full modelling framework iterating on this process to simulate ... |
Info |
Digital Shoreline Analysis System (DSAS) version 5.0 transects with bluff rate change calculations for the north coast of Barter Island Alaska, 1950 to 2020
This dataset consists of rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each bluff line establishing measurement points, which are then used to ... |
Info |
Digital Shoreline Analysis System (DSAS) version 5.0 transects with shoreline rate change calculations at Barter Island Alaska, 1947 to 2020
This dataset consists of rate-of-change statistics for the shorelines at Barter Island, Alaska for the time period 1947 to 2020. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to ... |
Info |
Digital surface models of the north coast of Barter Island, Alaska acquired on July 01 2014, September 07 2014, and July 05 2015 (GeoTIFF image)
Digital surface elevation models (DSMs) of the coastline of Barter Island, Alaska derived from aerial photographs collected on July 01 2014, September 07 2014, and July 05 2015. Aerial photographs and coincident elevation data were processed using Structure-from-Motion (SfM) photogrammetric techniques. These files are single-band, 32-bit floating point DSMs (digital surface models) that represent surface elevations of buildings, vegetation, and uncovered ground surfaces in meters with 23 cm ground sample ... |
Info |
Elevation point clouds of the north coast of Barter Island, Alaska acquired July 01 2014, September 07 2014, and July 05 2015 (LAZ file)
Six elevation point cloud files in LAZ format (compressed LAS binary data) are included in this data release: 3 raw point clouds of unclassified and unedited points and 3 modified point clouds that were spatially shifted and edited to remove outliers and spurious elevation values associated with moving water surfaces. An XYZ coordinate shift was applied to each data set in order to register the data sets to an earth-based datum established from surveyed ground control points. Points are unclassified and ... |
Info |
hawaii_ero - Erosion Hazard Intensity Level in the coastal zone of Hawaii, Hawaii
Erosion Hazard Intensity Level in the coastal zone of Hawaii, Hawaii |
Info |
Historical coastal bluff edge positions at Barter Island, Alaska for the years spanning 1950 to 2020
This dataset includes one vector shapefile delineating the position of the top edge of the coastal permafrost bluffs at Barter Island, Alaska spanning seven decades, between the years of 1950 and 2020. Bluff-edge positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the bluff edge through time. These data were used to calculate rates of change every 10 meters alongshore using the ... |
Info |
Historical shoreline positions at Barter Island, Alaska for the years spanning 1947 to 2020
This dataset includes one vector shapefile delineating the position of the shorelines at Barter Island, Alaska spanning seven decades, between the years 1947 and 2020. Shoreline positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the shoreline through time. These data were used to calculate rates of change every 10 meters alongshore using the Digital Shoreline Analysis System ... |
Info |
kauai_ero - Erosion Hazard Intensity Level in the coastal zone of Kauai, Hawaii
Erosion Hazard Intensity Level in the coastal zone of Kauai, Hawaii |
Info |
lanai_ero - Erosion Hazard Intensity Level in the coastal zone of Lanai, Hawaii
Erosion Hazard Intensity Level in the coastal zone of Lanai, Hawaii |
Info |
maui_ero - Erosion Hazard Intensity Level in the coastal zone of Maui, Hawaii
Erosion Hazard Intensity Level in the coastal zone of Maui, Hawaii |
Info |
Mean high water (MHW) shorelines along the coast of California used to calculated shoreline change from 1998 to 2016
This dataset contains mean high water (MHW) shorelines for sandy beaches along the coast of California for the years 1998/2002, 2015, and 2016. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. The operational MHW line was extracted from Light Detection and Ranging (LiDAR) digital elevation models (DEMs) using the ArcGIS smoothed contour method. The smoothed contour line was then quality ... |
Info |
Modeled extreme total water levels along the U.S. west coast
This dataset contains information on the probabilities of storm-induced erosion (collision, inundation and overwash) for each 100-meter (m) section of the United States Pacific coast for return period storm scenarios. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respond to the hydrodynamic forcing. Storm-induced water levels, due to both surge and waves, are compared to coastal ... |
Info |
molo_ero - Erosion Hazard Intensity Level in the coastal zone of Molokai, Hawaii
Erosion Hazard Intensity Level in the coastal zone of Molokai, Hawaii |
Info |
Northern California 3.2 projections of coastal cliff retreat due to 21st century sea-level
This dataset contains projections of coastal cliff retreat and associated uncertainty across Northern California for future scenarios of sea-level rise (SLR) to include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, and 500 centimeters (cm) of SLR by the year 2100 and cover coastline from the Golden Gate Bridge to the California-Oregon state border. Present-day cliff-edge positions used as the baseline for projections are also included. Projections were made using numerical models and field observations ... |
Info |
oahu_ero - Erosion Hazard Intensity Level in the coastal zone of Oahu, Hawaii
Erosion Hazard Intensity Level in the coastal zone of Oahu, Hawaii |
Info |
Offshore baseline generated to calculate bluff change rates for the north coast of Barter Island, Alaska
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the coastal bluffs at Barter Island, Alaska for the time period 1950 to 2020. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate bluff-change rates. |
Info |
Offshore baseline generated to calculate shoreline change rates near Barter Island, Alaska
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the shorelines near Barter Island, Alaska for the time period 1947 to 2020. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate shoreline-change rates. |
Info |
Orthophotomosaic image (natural color) of the north coast of Barter Island, Alaska acquired on July 01 2014 (GeoTIFF image, 19-cm resolution)
Aerial photographs were collected from a small, fixed-wing aircraft over the coast of Barter Island, Alaska on July 01 2014, September 07 2014. Precise aircraft position information and structure-from-motion photogrammetric methods were combined to derive a high-resolution orthophotomosaic. This orthophotomosaic contain 3-band, 8-bit, unsigned raster data (red/green/blue; file format-GeoTIFF) with a ground sample distance (GSD) resolution of 19 cm. The file employs Lempel-Ziv-Welch (LZW) compression. This ... |
Info |
Orthophotomosaic image (natural color) of the north coast of Barter Island, Alaska acquired on September 07 2014 (GeoTIFF image; 11-cm resolution)
Aerial photographs were collected from a small, fixed-wing aircraft over the coast of Barter Island, Alaska on September 07 2014. Precise aircraft position information and structure-from-motion photogrammetric methods were combined to derive a high-resolution orthophotomosaic. This orthophotomosaic contain 3-band, 8-bit, unsigned raster data (red/green/blue; file format-GeoTIFF) with a ground sample distance (GSD) resolution of 11 cm. The file employs Lempel-Ziv-Welch (LZW) compression. This ... |
Info |
Orthophotomosaic images (natural color) of the north coast of Barter Island, Alaska acquired on July 05 2015 (GeoTIFF image; 8-cm resolution)
Aerial photographs were collected from a small, fixed-wing aircraft over the coast of Barter Island, Alaska on July 05 2015. Precise aircraft position information and structure-from-motion photogrammetric methods were combined to a derive high-resolution orthophotomosaic. This orthophotomosaic contain 3-band, 8-bit, unsigned raster data (red/green/blue; file format-GeoTIFF) with a ground sample distance (GSD) resolution of 8 cm. The file employs Lempel-Ziv-Welch (LZW) compression. This orthophotomosaic was ... |
Info |
PCMSC PlaneCam – Field data from periodic and event-response surveys of the U.S. West Coast.
This is an ongoing collection of aerial oblique and near-nadir images, ancillary data, and derivatives, from aerial surveys of coastal and near-coastal environments with a crewed light aircraft using the "PCMSC PlaneCam," a mounted fixed-lens DSLR camera with an attached consumer-grade GPS for time-keeping and approximate position, and a Global Navigation Satellite System (GNSS) for precise positioning. Data are collected and produced primarily for coastal monitoring using structure-from-motion ... |
Info |
Projections of coastal flood depths for the U.S. Atlantic coast
Projected depths from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for the U.S. Atlantic coast for three states (Florida, Georgia, and Virginia). Projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corp of Engineers. The resulting data are depths of projected flood hazards along the U.S. Atlantic ... |
Info |
Projections of coastal flood depths for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood depths associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood depths along the Whatcom ... |
Info |
Projections of coastal flood durations for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood duration associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood duration along the ... |
Info |
Projections of coastal flood extents for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood extents associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of shapefile files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood extents along the Whatcom ... |
Info |
Projections of coastal flood hazards and flood potential for North Carolina and South Carolina
Projected impacts by compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. Accompanying uncertainty for each SLR and storm scenario, indicating total uncertainty from model processes and contributing datasets, are illustrated in maximum and minimum flood potential. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the ... |
Info |
Projections of coastal flood hazards and flood potential for the U.S. Atlantic coast
Projected impacts by compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for the U.S. Atlantic coast for three states (Florida, Georgia, and southern Virginia). Accompanying uncertainty for each SLR and storm scenario, indicating total uncertainty from model processes and contributing datasets, are illustrated in maximum and minimum flood potential. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output ... |
Info |
Projections of coastal flood velocities for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood velocities associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood velocities along the ... |
Info |
Projections of coastal flood water levels for Whatcom County, Northwest Washington State coast (2015-2100)
Projected flood levels associated with compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are provided for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models with atmospheric forcing, tides, sea level position and stream discharge driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting computed coastal flood levels along the Whatcom ... |
Info |
Projections of coastal water depths for North Carolina and South Carolina
Projected water depths from compound coastal flood hazards for future sea-level rise (SLR) and storm scenarios are shown for North Carolina and South Carolina. As described by Nederhoff and others (2024), projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and a tropical cyclone database from U.S. Army Corp of Engineers. The resulting data are depths of projected flood hazards along the ... |
Info |
Projections of shoreline change for California due to 21st century sea-level rise
This dataset contains projections of shoreline change and uncertainty bands across California for future scenarios of sea-level rise (SLR). Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model run in an ensemble forced with global-to-local nested wave models and assimilated with satellite-derived shoreline (SDS) observations across the state. Scenarios include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300 and 500 ... |
Info |
Projections of shoreline change of current and future (2005-2100) sea-level rise scenarios for North Carolina and South Carolina
This dataset contains projections of shoreline change and uncertainty bands for future scenarios of sea-level rise (SLR). Scenarios include 25, 50, 75, 100, 150, 200, and 300 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2005, in accordance with recent SLR projections and guidance from the National Oceanic and Atmospheric Administration (NOAA; see process steps). Projections were made using the Coastal Storm Modeling System - Coastal One-line ... |
Info |
Projections of shoreline change of current and future (2005-2100) sea-level rise scenarios for the U.S. Atlantic Coast
This dataset contains projections of shoreline change and uncertainty bands for future scenarios of sea-level rise (SLR). Scenarios include 25, 50, 75, 100, 150, 200, and 300 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2005, in accordance with recent SLR projections and guidance from the National Oceanic and Atmospheric Administration (NOAA; see process steps).Projections were made using the Coastal Storm Modeling System - Coastal One-line ... |
Info |
Projections of wave heights for Whatcom County, Northwest Washington State coast (2015-2100)
Projected wave heights associated with compound coastal flood hazards for existing and future sea-level rise (SLR) and storm scenarios are shown for Whatcom County, Washington, in a series of raster geotiff files. Projections were made using a system of numerical models driven by output from Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The resulting data are water levels of projected flood hazards along the Whatcom County coast due to sea level rise and ... |
Info |
Remote Sensing Coastal Change Simple Data Distribution Service
The Remote Sensing Coastal Change Simple Data Service provides timely and long-term access to emergency, provisional, and approved photogrammetric imagery, derivatives, and ancillary data through a web service via HyperText Transfer Protocol to a folder/file structure organized by data collection platform and survey (collection effort) with metadata sufficient to facilitate both human and machine access. Data are acquired, processed, and published using standardized workflows. Each data type added to the ... |
Info |
sand_ero - Erosion Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii
Erosion Hazard Intensity Level in the coastal zone of Sand Island (Oahu), Hawaii |
Info |
Satellite-derived shorelines for North Carolina and South Carolina (1984-2021)
This dataset contains shoreline positions derived from available Landsat satellite imagery for North Carolina and South Carolina for the time period of 1984 to 2021. Positions were determined using CoastSat (Vos and others, 2019a and 2019b), an open-source mapping toolbox, was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. To understand shoreline evolution in complex environments and operate long-term simulations illustrating potential shoreline positions in the next ... |
Info |
Satellite-derived shorelines for the U.S. Atlantic coast (1984-2021)
This dataset contains shoreline positions derived from available Landsat satellite imagery for five states (Delaware, Maryland, Viginia, Georgia, and Florida) along the U.S. Atlantic coast for the time period 1984 to 2021. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in KMZ format. Significant uncertainty is associated with the locations of shorelines in ... |
Info |
Satellite-derived shorelines for the U.S. Gulf Coast states of Texas, Louisiana, Mississippi, and Florida for the period 1984-2022, obtained using CoastSat
This dataset contains shoreline positions derived from available Landsat satellite imagery for four states (Texas, Louisiana, Mississippi, and Florida) along the U.S. Gulf coast for the time period 1984 to 2022. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in CSV format. Significant uncertainty is associated with the locations of shorelines in extremely dynamic ... |
Info |
Shoreline change data along the coast of California from 2015 to 2016
This dataset contains shoreline change measurements for sandy beaches along the coast of California over the 2015/2016 El Nino winter season. Mean high water (MHW) shorelines were extracted from Light Detection and Ranging (LiDAR) digital elevation models from the fall of 2015 and the spring of 2016 using the ArcGIS smoothed contour method. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. ... |
Info |
Shoreline change rates along the coast of California from 1998 to 2016
This dataset contains California shoreline change rates derived from mean high water (MHW) shorelines from 1998 (in Central and Southern California) and 2002 (in Northern California) to 2016. The MHW elevation in each analysis region (Northern, Central, and Southern California) maintained consistency with that of the National Assessment of Shoreline Change. The operational MHW line was extracted from Light Detection and Ranging (LiDAR) digital elevation models (DEMs) using the ArcGIS smoothed contour method ... |
Info |
Unprocessed aerial imagery from 10 January 2021 coastal survey of Central California.
This is a set of 1896 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 10 June 2019 coastal survey of Central California.
This is a set of 5042 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 10 October 2023 coastal survey of Central California.
This is a set of 3929 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 10 September 2018 coastal survey of Central California.
This is a set of 5846 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 11 January 2021 coastal survey of Central California.
This is a set of 3796 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 11 March 2019 coastal survey of Central California.
This is a set of 1967 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 11 October 2023 coastal survey of Central California.
This is a set of 4930 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12-13 September 2022 coastal survey of Central California.
This is a set of 3661 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 12 February 2024 coastal survey of Southern California.
This is a set of 2032 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 12 January 2023 coastal-landslides survey of Central California.
This is a set of 11207 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 12 January 2024 coastal survey of Central California.
This is a set of 1965 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12 March 2022 coastal survey of Central California.
This is a set of 2098 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 12 May 2017 coastal survey of Central California.
This is a set of 628 oblique aerial photogrammetric images and their derivatives, collected from SeaCliff Beach to Fort Ord with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 12 October 2023 coastal survey of Southern California.
This is a set of 2013 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Port Hueneme with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 13 June 2017 coastal survey of Central California.
This is a set of 757 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 13 March 2023 coastal survey of Central California.
This is a set of 2195 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 13 October 2018 coastal survey of Northern California to Washington.
This is a set of 11805 oblique aerial photogrammetric images and their derivatives, collected from OR-WA border to Mussel Rock CA with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 13 September 2018 coastal survey of Southern California.
This is a set of 2062 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 October 2019 coastal survey of Central California.
This is a set of 3777 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 October 2020 coastal survey of Central California.
This is a set of 1982 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 15 September 2016 coastal survey of Central California.
This is a set of 1600 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 16 January 2023 coastal survey of Central California.
This is a set of 2763 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 16 March 2023 coastal survey of Central California.
This is a set of 2915 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 17 June 2024 coastal survey of Central California.
This is a set of 5140 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 17 March 2023 coastal survey of Central California.
This is a set of 2077 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 17 May 2017 coastal survey of Central California.
This is a set of 3045 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 August 2024 coastal survey of Central California.
This is a set of 2003 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 December 2017 coastal survey of Central California.
This is a set of 2948 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 December 2021 coastal survey of Central California.
This is a set of 4722 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 18 March 2024 coastal survey of Southern California.
This is a set of 2076 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 18 September 2020 coastal survey of Southern California.
This is a set of 1968 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 April 2020 coastal survey of Central California.
This is a set of 2889 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 April 2023 thomas-fire survey of Southern California.
This is a set of 3086 vertical aerial photogrammetric images and their derivatives, collected from Montecito with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 19 April 2024 coastal survey of Northern California to Washington.
This is a set of 14032 oblique aerial photogrammetric images and their derivatives, collected from Hoh Head to Cape Mendocino with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 March 2020 coastal survey of Central California.
This is a set of 4835 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 19 May 2017 coastal survey of Central California.
This is a set of 3164 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 1 December 2016 coastal survey of Central California.
This is a set of 3234 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 February 2023 coastal survey of Central California.
This is a set of 2943 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 January 2023 coastal survey of Central California.
This is a set of 2076 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 January 2024 coastal survey of Central California.
This is a set of 2876 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 June 2023 coastal survey of Oregon and Washington.
This is a set of 10139 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 1 March 2017 coastal survey of Southern California.
This is a set of 2979 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Ventura with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 20 December 2016 coastal survey of Central California.
This is a set of 3036 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 20 January 2020 coastal survey of Central California.
This is a set of 3072 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 20 January 2022 coastal survey of Central California.
This is a set of 2066 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 21 December 2017 coastal survey of Central California.
This is a set of 2072 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 22 February 2017 coastal survey of Central California.
This is a set of 4808 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Lucia with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 December 2023 coastal survey of Central California.
This is a set of 4772 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2017 landslides survey of Central California.
This is a set of 5954 oblique aerial photogrammetric images and their derivatives, collected from San Francisco Bay area with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2019 coastal survey of Central California.
This is a set of 4734 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2024 coastal survey of Central California.
This is a set of 2323 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 23 February 2024 coastal survey of Southern California.
This is a set of 2371 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 23 January 2018 Thomas-fire survey of Southern California.
This is a set of 4838 oblique aerial photogrammetric images and their derivatives, collected from Montecito with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 23 January 2023 coastal survey of Central California.
This is a set of 5039 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 24 February 2024 coastal survey of Central California.
This is a set of 3059 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 25 January 2017 coastal survey of Central California.
This is a set of 4521 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Cape San Martin with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 25 January 2020 coastal survey of Central California.
This is a set of 1880 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 25 September 2016 coastal survey of Oregon and Washington.
This is a set of 1712 oblique aerial photogrammetric images and their derivatives, collected from Cape Falcon to Cascade Head with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 January 2016 coastal survey of Central California.
This is a set of 1836 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 January 2017 landslides survey of Central California.
This is a set of 4889 oblique aerial photogrammetric images and their derivatives, collected from San Francisco Bay area with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 June 2017 coastal survey of Central California.
This is a set of 5069 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 March 2021 coastal survey of Central California.
This is a set of 5626 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 October 2023 coastal survey of Central California.
This is a set of 2869 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 26 September 2016 coastal survey of Central California.
This is a set of 1569 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ano Nuevo with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 27 December 2017 coastal survey of Southern California.
This is a set of 2392 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Santa Barbara with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 27 May 2017 coastal survey of Central California.
This is a set of 642 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 28 August 2022 coastal survey of Washington.
This is a set of 4116 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 28 May 2018 coastal survey of Central California.
This is a set of 3550 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 28 September 2016 coastal survey of Southern California.
This is a set of 2671 oblique aerial photogrammetric images and their derivatives, collected from ptConception to Ventura with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 28 September 2017 coastal survey of Oregon and Washington.
This is a set of 2060 oblique aerial photogrammetric images and their derivatives, collected from OR-WA border to Nestucca River OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 28 September 2022 coastal survey of Southern California.
This is a set of 2032 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 29 August 2022 coastal survey of Oregon and Washington.
This is a set of 2413 oblique aerial photogrammetric images and their derivatives, collected from Taholah WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 August 2022 coastal survey of Washington.
This is a set of 4281 oblique and near nadir aerial photogrammetric images and their derivatives, collected from Elwha river mouth to Ediz Hook CG with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the ... |
Info |
Unprocessed aerial imagery from 29 December 2023 coastal survey of Central California.
This is a set of 1821 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 January 2018 coastal survey of Central California.
This is a set of 5365 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 January 2021 coastal survey of Central California.
This is a set of 4919 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 29 March 2018 coastal survey of Central and southern California.
This is a set of 1160 oblique aerial photogrammetric images and their derivatives, collected from Mud Creek Slide to Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera ... |
Info |
Unprocessed aerial imagery from 29 November 2019 coastal survey of Central California.
This is a set of 1782 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Davenport with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 March 2016 coastal survey of Central California.
This is a set of 1309 oblique aerial photogrammetric images and their derivatives, collected from Santa Cruz to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 March 2022 coastal survey of Southern California.
This is a set of 2212 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 March 2023 coastal survey of Central California.
This is a set of 1839 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 2 October 2022 coastal survey of Southern California.
This is a set of 1108 oblique aerial photogrammetric images and their derivatives, collected from Santa Rosa Island with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by ... |
Info |
Unprocessed aerial imagery from 30 November 2019 coastal survey of Central California.
This is a set of 1444 oblique aerial photogrammetric images and their derivatives, collected from Davenport to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 30 September 2020 coastal survey of Central California.
This is a set of 3862 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 31 August 2024 coastal survey of Washington.
This is a set of 6976 oblique aerial photogrammetric images and their derivatives, collected from Juan de Fuca Strait to Grays Harbor with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 31 May 2017 coastal survey of Central California.
This is a set of 410 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 31 October 2019 coastal survey of Central California.
This is a set of 1911 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 3 August 2020 coastal survey of Oregon and Washington.
This is a set of 2324 oblique aerial photogrammetric images and their derivatives, collected from Taholah WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 3 March 2021 coastal survey of Central California.
This is a set of 2049 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 3 March 2023 coastal survey of Central California.
This is a set of 2758 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 3 September 2020 coastal survey of Oregon and Washington.
This is a set of 2158 oblique aerial photogrammetric images and their derivatives, collected from NW WA to Seaside OR with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 4-5 November 2020 CZU-fire survey of Central California.
This is a set of 11776 near-nadir aerial photogrammetric images and their derivatives, collected from CZU fire with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 4 August 2020 coastal survey of Washington.
This is a set of 645 oblique aerial photogrammetric images and their derivatives, collected from Elwha river mouth to Ediz Hook CG with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 4 February 2022 coastal survey of Central California.
This is a set of 2269 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 4 March 2019 coastal survey of Central California.
This is a set of 2541 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 April 2017 coastal survey of Central California.
This is a set of 5044 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Cape San Martin with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial ... |
Info |
Unprocessed aerial imagery from 5 February 2016 coastal survey of Central California.
This is a set of 3494 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 January 2023 coastal survey of Central California.
This is a set of 2105 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 5 January 2024 coastal survey of Southern California.
This is a set of 2061 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 5 July 2020 coastal survey of Central California.
This is a set of 1890 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded ... |
Info |
Unprocessed aerial imagery from 5 June 2018 coastal survey of Central California.
This is a set of 1533 oblique aerial photogrammetric images and their derivatives, collected from Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 6 April 2023 coastal survey of Central California.
This is a set of 2374 vertical aerial photogrammetric images and their derivatives, collected from Half Moon Bay to Santa Cruz with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 April 2024 coastal survey of Central California.
This is a set of 2286 oblique aerial photogrammetric images and their derivatives, collected from Point Lobos to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 January 2023 coastal-landslides survey of Central California.
This is a set of 8762 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 6 July 2024 coastal survey of Washington.
This is a set of 7809 oblique aerial photogrammetric images and their derivatives, collected from Salish Sea with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, preceded by the ... |
Info |
Unprocessed aerial imagery from 6 May 2020 coastal survey of Southern California.
This is a set of 2167 oblique aerial photogrammetric images and their derivatives, collected from Santa Barbara Channel with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 7 March 2018 coastal survey of Central California.
This is a set of 5355 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 7 March 2024 coastal survey of Central California.
This is a set of 2161 oblique aerial photogrammetric images and their derivatives, collected from Natural Bridges to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 February 2023 coastal survey of Central California.
This is a set of 1939 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 June 2023 coastal survey of Central California.
This is a set of 2123 oblique aerial photogrammetric images and their derivatives, collected from Monterey to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 March 2016 coastal survey of Central California.
This is a set of 2753 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Monterey with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 March 2017 coastal survey of Central California.
This is a set of 5642 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 March 2023 coastal survey of Southern California.
This is a set of 2006 oblique aerial photogrammetric images and their derivatives, collected from Point Conception to Point Mugu with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number ... |
Info |
Unprocessed aerial imagery from 8 May 2017 coastal survey of Central California.
This is a set of 1975 oblique aerial photogrammetric images and their derivatives, collected from Pedro Point to Sunset Beach with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 8 September 2021 coastal survey of Central California.
This is a set of 2678 oblique aerial photogrammetric images and their derivatives, collected from PigeonPt to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 9 December 2015 coastal survey of Central California.
This is a set of 1132 oblique aerial photogrammetric images and their derivatives, collected from Capitola to Pajaro Dunes with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 9 February 2024 coastal survey of Central California.
This is a set of 4787 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Ragged Point with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 9 June 2022 coastal survey of Central California.
This is a set of 4595 oblique aerial photogrammetric images and their derivatives, collected from San Francisco to Big Sur with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |
Unprocessed aerial imagery from 9 March 2020 coastal survey of Central California.
This is a set of 1979 oblique aerial photogrammetric images and their derivatives, collected from Ano Nuevo to Monterey (x2) with a fixed-lens digital camera from a crewed light aircraft, for processing using structure-from-motion photogrammetry and machine learning to study coastal geomorphic processes at high temporal and spatial resolution. JPG files in each folder follow the following naming convention: {CAM###}_{YYYYMMDDHHMMSS_ss}.jpg, where {CAM###} is the last 3 digits of the camera serial number, ... |
Info |